Stream Stabilization for Taylor Run and Strawberry Run

com.com

Project Discussion and Design Alternatives September 2022

Presented by: Brandon Alderman, Senior Stream Restoration Scientist

Delivering a better world

Meeting Agenda

Design Techniques Overview

Taylor Run Alternative Design Details

3

1

2

Strawberry Run Alternative Design Details

Design Techniques Overview

🔗 aecom.com

Delivering a bett

1

Alternative Design Techniques

• <u>Bioengineering</u>

- Engineering technique that uses a combination of hard-armoring and vegetation to stabilize banks

• Hard Armoring

- Traditional engineering technique where banks are stabilized with rock, concrete or other nonerodable materials

<u>Minimal Intervention</u>

- Standard municipality utility repair that focuses on stabilizing infrastructure in place

aecom.com

Site Preparation Required (All Alternative Techniques)

- Construction access
- Grading limits
- Material Delivery and Haul Away
- Soil Compaction
- Safe Working Areas

())

aecom.com

Bioengineering

<u>Pros</u>

- Robust armoring potential
- Vegetative solution
- Provides some habitat
- Stabilizes stream banks in large storm flows
- Protects infrastructure along stream banks
- Reduces grading footprint
- Less maintenance is required than with hard armoring

<u>Cons</u>

- Mitigation may or may not be required – depends on reviewing agency decision
- Slow and labor-intensive construction
- More detailed engineering and geotechnical design
- Requires clean, well draining imported backfill
- Steep slope remains
- Early plantings may require supplement planting or watering

Hard Armoring

Pros

- Fast implementation
- No contractor special experience required
- Simple engineering design
- Easily sourced materials

<u>Cons</u>

- Permitting challenges, costly mitigation required
- Requires regular maintenance and after large storm events
- Lacks habitat, wildlife barrier
- Significant grading and clearing required

Minimum Intervention

<u>Pros</u>

- Very Fast implementation
- Minimizes tree impacts
- Simple engineering design
- Easily sourced materials
- Reduced access road and equipment needs

Cons

- Long term stability remains a concern
- Requires frequent maintenance and after large storm events
- Lacks habitat, wildlife barrier
- Does not stabilize trail infrastructure or prevent streambank erosion

Sewer Re-Alignment

- Gravity sanitary sewers require a positive slope
- Substantial re-alignment length and structure impact
- Large equipment necessary for trenching/safe working
- Significant impacts to trees, wetlands, and trail
- Dismissed alternative due to large limits of disturbance and potential environmental impacts

Delta, CO Sewer Realignment Source: Skip Houston Construction

즑 aecom.com

Taylor Run Design Details

aecom.com

Delivering a bett

2

Taylor Run Design Options – Bioengineering Design Elements

A aecom.com

Taylor Run Design Options – Bioengineering

Taylor Run Design Options – Bioengineering

Taylor Run Design Options – Hard Armoring Design Elements

A aecom.com

Taylor Run Design Options – Hard Armoring

↔ aecom.com

Taylor Run Design Options – Hard Armoring

↔ aecom.com

Taylor Run Design Options – Profile (Both Bioengineering and Hard Armoring)

TYPICAL SANITARY SEWER PROTECTION LONGITUDINAL PROFILE - BIOENGINEERING / HARD ARMORING

- Both design techniques will require armoring in the stream bed to cover the exposed sewer.
- Boulder weirs and plunge pools used to minimize changes to the profile and provide long term stability

aecom.com

Taylor Run Design Options – Minimal Intervention Design Elements

Taylor Run Design Options – Minimal Intervention

Taylor Run Design Options – Minimal Intervention

Taylor Run Design Options – Profile (Minimal Intervention)

TYPICAL SANITARY SEWER PROTECTION LONGITUDINAL PROFILE - MINIMAL INTERVENTION

- Minimized targeted riprap placement
- Boulder weir used as a grade control below encasement
- Backwater effects caused by structure height

🔊 aecom.com

Taylor Run - Tree Impact

Tree Impacts	Hard Armoring	Bioengineering	Minimum Intervention
Limit of Disturbance	2.82 acres	2.63 acres	1.06 acres
Total Trees Cleared for Project Implementation*	202	190	53
Total Trees To Be Planted**	1,692	1,578	636
Net Trees Gained	+1,490	+1,388	+583

*Tree count conducted in 2018/2019 **Site shall be replanted at 600 stems/acre

Taylor Run – Probable Project Cost

Cost Estimate	Minimum Intervention	Hard Armoring	Bioengineering
Construction	\$915,000	\$2.6 million	\$3.4 million
Mitigation*	\$193,600 (220 LF)	\$1.2 million (1,410 LF)	\$930,600 (1,410 LF)
Maintenance (>10YR Storm)**	\$395,000	\$130,000	\$51,000
Grand Total	\$1.5 million	\$3.9 million	\$4.4 million

*Mitigation estimated from the USACE USM Compensation Calculation and a credit purchase rate of \$800/credit **Maintenance Costs are average costs. Actual costs and frequency necessary may differ.

Strawberry Run Design Details

🔗 aecom.com

Delivering a bett

3

Strawberry Run Design Options – Bioengineering Design Elements

Vegetated Wall

↔ aecom.com

Strawberry Run Design Options – Bioengineering

Strawberry Run Design Options – Hard Armoring Design Elements

↔ aecom.com

Strawberry Run Design Options – Hard Armoring

Strawberry Run Design Options – Minimal Intervention Design Elements

↔ aecom.com

Strawberry Run Design Options – Minimal Intervention

ecom.com

Strawberry Run - Tree Impact

Tree Impacts	Hard Armoring	Bioengineering	Minimum Intervention
Limit of Disturbance	1.72 acres	1.72 acres	0.68 acres
Total Trees Cleared for Project Implementation*	52	46	36
Total Trees To Be Planted**	906	882	320
Net Trees Gained	+854	+836	+284

*Tree count conducted in 2018/2019 **Site shall be replanted at 600 stems/acre

Strawberry Run – Probable Project Cost

Cost Estimate	Minimal Intervention	Hard Armoring	Bioengineering
Construction	\$604,750	\$1.5 million	\$1.8 million
Mitigation*	\$372,000 (465 LF)	\$853,600 (970 LF)	\$640,200 (970 LF)
Maintenance (>10YR Storm)**	\$228,250	\$74,000	\$26,000
Grand Total	\$1.2 million	\$2.4 million	\$2.5 million

*Mitigation estimated from the USACE USM Compensation Calculation and a credit purchase rate of \$800/credit **Maintenance Costs are average costs. Actual costs and frequency necessary may differ.

Habitat Considerations/Conclusions

- Replacement of riparian/riverine habitat
 - Where hard-armoring replaces in-stream or riparian habitat, it can have negative ecological impacts (Fischenich, 2003)
 - Impacts of riprap vary with stream characteristics (Fischenich, 2003)
 - Large rock can be beneficial in sand-bed streams where hard substrate is lacking (Fischenich, 2003)
 - Weirs created from minimal intervention structures often create barriers to fish passage
- Sediment Reduction Benefits
 - Sedimentation from stream erosion can have negative impacts on fish and benthics
 - Sediment reduction can improve habitat in eroding streams (Fischenich, 2003)
 - Inability to establish lasting vegetation with hard-armoring techniques results in short-term stabilization improvements
- Uplift Potential
 - Ecological uplift potential in urban streams is usually minimal regardless of restoration technique (Hildenbrand, Chesapeake Bay Trust)
 - Uplift depends on which species are targeted most studies focus on fish habitat rather than other forms of wildlife

References and Resources

- 1. Taylor Run Stream Restoration Project Overview Website; <u>https://www.alexandriava.gov/stormwater-management/project/taylor-run-stream-restoration</u>
- 2. Strawberry Run Stream restoration Project Overview Website; <u>https://www.alexandriava.gov/stormwater-management/project/strawberry-run-stream-restoration</u>
- 3. Phase III Assessment Stream Restoration and Outfall Stabilization Feasibility Study; 2019; <u>https://media.alexandriava.gov/docs-</u> archives/tes/stormwater/phaseiiistreamassessmentfebruary2019mainbody.pdf
- 4. City Response to January 11, 2021 Resident Letter; Taylor Run Stream Restoration Project Overview Website; https://www.alexandriava.gov/stormwater-management/project/taylor-run-stream-restoration
- 5. Taylor Run Stream Restoration Frequently Asked Questions; Taylor Run Stream Restoration Project Overview Website; <u>https://media.alexandriava.gov/docs-</u> archives/tes/stormwater/taylorrunstreamrestorationfag.pdf
- 6. Cappiella, Karen et. al.; "Recommendations of the Expert Panel to Define BMP Effectiveness for Urban Tree Canopy Expansion"; 2016; https://www.chesapeakebay.net/documents/Urban_Tree_Canopy_EP_Report_WQGIT_approved_final.pdf
- 7. 2019 BANCS Model Worksheets for Taylor Run; <u>https://media.alexandriava.gov/docs-archives/tes/stormwater/appendixebancsmodelworksheetstaylorrun.pdf</u>

References and Resources

- 8. 2019 BANCS Model Worksheets for Strawberry Run; <u>https://media.alexandriava.gov/docs-archives/tes/stormwater/appendixebancsmodelworksheetsstrawberryrun.pdf</u>
- 9. 2019 BANCS mapping for various streams in Alexandria; <u>https://media.alexandriava.gov/docs-archives/tes/appendixfbancsmapscompressed.pdf</u>
- 10. Stream Restoration in Alexandria Overview Website; <u>https://www.alexandriava.gov/stormwater-management/stream-restoration</u>
- 11. Taylor Run Stream Restoration Fact Sheet; <u>https://media.alexandriava.gov/docs-archives/tes/stormwater/taylorrunstreamrestorationwinter20192020.pdf</u>
- 12. Noe, GB, Cashman, MJ, Skalak, K, et al. Sediment dynamics and implications for management: State of the science from long-term research in the Chesapeake Bay watershed, USA. *WIREs Water*. 2020; 7:e1454. <u>https://doi.org/10.1002/wat2.1454</u>
- Fischenich, J. C. (2003). "Effects of riprap on riverine and riparian ecosystems," ERDC/EL TR-03-4, U.S. Army Engineer Research and Development Center, Vicksburg, MS. <u>https://apps.dtic.mil/sti/pdfs/ADA414974.pdf</u>
- 14. Hilderbrand et al. "Quantifying the ecological uplift and effectiveness of differing stream restoration approaches in Maryland". Chesapeake Bay Trust. <u>https://cbtrust.org/wp-content/uploads/Hilderbrand-et-al_Quantifying-the-Ecological-Uplift.pdf</u>

Thank You!

