ATTACHMENT 2-1 SOIL PROUCL RESULTS

	UCL Statist	ics for Data	Sets with Non-Detects	
User Selected Options				
	ProUCL 5.2 11/30/2023 6			
	ProUCL_Export_SO_Avg	<u>j_20231012</u>	2_a.xls	
	OFF			
	95%			
Number of Bootstrap Operations	10000			
C (soil 1,1,1,2-tetrachloroethane 63	20.20.6)			
	-0-20-0)			
		General	Statistics	
Total	Number of Observations	11	Number of Distinct Observations	8
	Number of Detects	0	Number of Non-Detects	11
Nu	mber of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All obse	vations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample	mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may dec	ide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data	set for variable C (soil 1	,1,1,2-tetra	chloroethane 630-20-6) was not processed!	
C (soil 1,1,1-trichloroethane 71-55-	6)			
		General	Statistics	
Total	Number of Observations	11	Number of Distinct Observations	8
	Number of Detects	0	Number of Non-Detects	11
Nu	mber of Distinct Detects	0	Number of Distinct Non-Detects	8
•		· · · ·	efore all statistics and estimates should also be NDs!	
			tics are also NDs lying below the largest detection limit!	
The Project Team may dec	ide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
l he da	ata set for variable C (soil	1,1,1-tricf	nloroethane 71-55-6) was not processed!	
C (soil 1,1,2,2-tetrachloroethane 79	24 5)			
		General	Statistics	
Total	Number of Observations	11	Number of Distinct Observations	10
	Number of Detects	0	Number of Non-Detects	11
Nu	mber of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All obse	vations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
			tics are also NDs lying below the largest detection limit!	
			lues to estimate environmental parameters (e.g., EPC, BTV).	
		-		
The data	set for variable C (soil	1,1,2,2-tetra	achloroethane 79-34-5) was not processed!	

bil 1,1,2-trichloro-1,2,2-trifluoroethane 76-13-1)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non Detects	(NDc) that	efore all statistics and estimates should also be NDs!	
-	•	tics are also NDs lying below the largest detection limit!	
· · · · · · · · · · · · · · · · · · ·		lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil 1,1,2	-trichloro-1,	2,2-trifluoroethane 76-13-1) was not processed!	
oil 1,1,2-trichloroethane 79-00-5)			
		Statistics	0
Total Number of Observations Number of Detects	11 0	Number of Distinct Observations Number of Non-Detects	8
Number of Detects	0	Number of Non-Detects Number of Distinct Non-Detects	8
	0		- 0
Warning: All observations are Non-Detects	(NDe) ther	efore all statistics and estimates should also be NDs!	
The data set for variable C (soil	1,1,2-trich	loroethane 79-00-5) was not processed!	
oil 1,1-dichloroethane 75-34-3)			
	Conorol	Statiation	
Total Number of Observations	11	Statistics Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	il I 1 1 dich	oroethane 75-34-3) was not processed!	
	ir [1, 1-dichi		
oil 1,1-dichloroethene 75-35-4)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
	0	Number of Non-Detects	
Number of Detects			1

Number of Distinct Detects	0	Number of Distinct Non-Detects	11
Warning: All abaan/ations are Non Dataste		profere all statistics and estimates should also be NDal	
-		erefore all statistics and estimates should also be NDs!	
		tistics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV). chloroethene 75-35-4) was not processed!	
soil 1,1-dichloropropene 563-58-6)			
	Gener	ral Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), th	erefore all statistics and estimates should also be NDs!	
-		tistics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	1,1-dict	nloropropene 563-58-6) was not processed!	
soil 1,2,3-trichlorobenzene 87-61-6)			
	Gener	ral Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), th	erefore all statistics and estimates should also be NDs!	
-	· · · · ·	tistics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
· ·	<u> </u>		
The data set for variable C (soil	1,2,3-trie	chlorobenzene 87-61-6) was not processed!	
· · · · · · · · · · · · · · · · · · ·			
soil 1,2,3-trichloropropane 96-18-4)			
	Gener	ral Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs). th	erefore all statistics and estimates should also be NDs!	
-		tistics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	1,2 3-tri	chloropropane 96-18-4) was not processed!	
	1.1,0-01	energe spans los is il nuo nor prococoda	

	General Statistics		
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects			
Specifically, sample mean, UCLs, UPLs, and o			
The Project Team may decide to use alternative site	specific values to estir	nate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil 1,	2,4,5-tetrachlorobenze	ne 95-94-3) was not processed!	
soil 1,2,4-trichlorobenzene 120-82-1)			
	General Statistics		
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
	0		
		tistics and estimates should also be NDsI	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site	(NDs), therefore all sta other statistics are also	NDs lying below the largest detection limit!	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o	(NDs), therefore all sta other statistics are also specific values to estin	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site	(NDs), therefore all sta other statistics are also specific values to estin	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil	(NDs), therefore all sta other statistics are also specific values to estin	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil	(NDs), therefore all sta other statistics are also specific values to estin 1,2,4-trichlorobenzene	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV).	8
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil Soil 1,2,4-trimethylbenzene 95-63-6)	(NDs), therefore all sta other statistics are also specific values to estir 1,2,4-trichlorobenzene General Statistics	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed!	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations	(NDs), therefore all sta other statistics are also specific values to estin 1,2,4-trichlorobenzene General Statistics 11	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations	8
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil Soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects	(NDs), therefore all sta other statistics are also specific values to estir 1,2,4-trichlorobenzene General Statistics 11 2	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Non-Detects	896
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects	(NDs), therefore all sta other statistics are also specific values to estin 1,2,4-trichlorobenzene General Statistics 11 2 2	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	8 9 6
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil Soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	(NDs), therefore all sta other statistics are also specific values to estin 1,2,4-trichlorobenzene General Statistics 11 2 2 0.96	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	8 9 6 6.4000E
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	(NDs), therefore all sta pther statistics are also specific values to estim 1,2,4-trichlorobenzene General Statistics 11 2 2 0.96 4.4	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	8 9 6 6.4000E 0.001
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil Soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	(NDs), therefore all sta other statistics are also specific values to estin 1,2,4-trichlorobenzene General Statistics 11 2 2 0.96 4.4 5.917	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects	8 9 6 6.4000E 0.001 81.82
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	(NDs), therefore all sta pther statistics are also specific values to estimation 1,2,4-trichlorobenzene General Statistics 11 2 2 0.96 4.4 5.917 2.68	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). [120-82-1) was not processed! Number of Distinct Observations Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	8 9 6.4000E 0.001 81.82 2.43
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil Soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	(NDs), therefore all sta other statistics are also specific values to estin 1,2,4-trichlorobenzene General Statistics 11 2 2 0.96 4.4 5.917 2.68 2.68	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	8 9 6.4000E 0.001 81.8 2.43 0.90 N/A
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil Soil 1,2,4-trimethylbenzene 95-63-6) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	(NDs), therefore all sta pther statistics are also specific values to estimation 1,2,4-trichlorobenzene General Statistics 11 2 2 0.96 4.4 5.917 2.68 2.68 N/A	NDs lying below the largest detection limit! nate environmental parameters (e.g., EPC, BTV). 120-82-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	8 9 6.4000E 0.001 81.8 2.43 0.90

Г

Not Enough Data to Perfor	rm GOF Test	
Kaplan-Meier (KM) Statistics using Normal Critical Va	alues and other Nonnarametric LICI s	
KM Mean 0.488	KM Standard Error of Mean	0.54
90KM SD 1.267	95% KM (BCA) UCL	N/A
95% KM (t) UCL 1.467	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (t) UCL 1.377	95% KM Bootstrap t UCL	N/A
	95% KM Chebyshev UCL	2.843
	-	5.864
97.5% KM Chebyshev UCL 3.862	99% KM Chebyshev UCL	5.804
Gamma GOF Tests on Detected	Observations Only	
Not Enough Data to Perfor	rm GOF Test	
Gamma Statistics on Detect	ted Data Only	
k hat (MLE) 2.035	k star (bias corrected MLE)	N/A
Theta hat (MLE) 1.317	Theta star (bias corrected MLE)	N/A
nu hat (MLE) 8.139	nu star (bias corrected)	N/A
Mean (detects) 2.68		
Estimates of Gamma Parameters	using KM Estimates	
Mean (KM) 0.488	SD (KM)	1.267
Variance (KM) 1.606	SE of Mean (KM)	0.54
k hat (KM) 0.148	k star (KM)	0.168
nu hat (KM) 3.26	nu star (KM)	3.704
theta hat (KM) 3.292	theta star (KM)	2.897
80% gamma percentile (KM) 0.579	90% gamma percentile (KM)	1.465
95% gamma percentile (KM) 2.621	99% gamma percentile (KM)	5.9
Gamma Kaplan-Meier (KM	· · · · · · · · · · · · · · · · · · ·	0.0070
	Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (3.70, α) 0.608	Adjusted Chi Square Value (3.70, β)	0.44
95% KM Approximate Gamma UCL 2.97	95% KM Adjusted Gamma UCL	4.106
Lognormal GOF Test on Detected	Observations Only	
Not Enough Data to Perfor	rm GOF Test	
Lognormal ROS Statistics Using In	nputed Non-Detects	
Mean in Original Scale 0.493	Mean in Log Scale	-4.518
SD in Original Scale 1.327	SD in Log Scale	2.869
	95% Percentile Bootstrap UCL	1.208
		79.41
95% H-UCL (Log ROS) 451.1		
Statistics using KM estimates on Logged Data and	d Assuming Lognormal Distribution	
KM Mean (logged) -5.886	KM Geo Mean	0.00278
		7.798
		843.1
KM SD (logged) 3.131	95% Critical H Value (KM-Log)	7.798
KM Standard Error of Mean (logged) 1.335		
95% KM Approximate Gamma UCL 2.97 Lognormal GOF Test on Detected Not Enough Data to Perfor Lognormal ROS Statistics Using In Mean in Original Scale 0.493 SD in Original Scale 1.327 95% t UCL (assumes normality of ROS data) 1.218 95% BCA Bootstrap UCL 1.691 95% H-UCL (Log ROS) 451.1 KM Mean (logged) KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged)	95% KM Adjusted Gamma UCL d Observations Only rm GOF Test mputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 05% Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	

	ם <i>ניו</i> וח	itatistics	
DL/2 Normal		DL/2 Log-Transformed	
	0.488		-5.717
Mean in Original Scale		Mean in Log Scale	-
SD in Original Scale		SD in Log Scale	3.215
95% t UCL (Assumes normality)		95% H-Stat UCL	1963
DL/2 is not a recommended me	ethod, provid	led for comparisons and historical reasons	
Nonparame	tric Distribu	tion Free UCL Statistics	
-			
	Suggested	UCL to Use	
95% KM (t) UCL	1.467		
Note: Suggestions regarding the selection of a 95%	6 UCL are p	rovided to help the user to select the most appropriate 95% UCI	L.
Recommendations are based upon data size	, data distrit	oution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data se	ets; for additional insight the user may want to consult a statistici	ian.
C (soil 1,2-dibromo-3-chloropropane 96-12-8)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
· ·	•		
The data set for variable C (soil 1.	2-dibromo-3	B-chloropropane 96-12-8) was not processed!	
C (soil 1,2-dibromoethane 106-93-4)			
	Canaral	Statistics	
Tatal Number of Observations			10
Total Number of Observations		Number of Distinct Observations	-
Number of Detects		Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV).	
The Project realiting decide to use alternative sit	e specific ve	ndes to estimate environmental parameters (e.g., Er O, DTV).	
The data set for variable C (se	il I 1 2 dibro	moethane 106-93-4) was not processed!	
	n 1, ∠- uibr0	1100011010 100-20-7) was 1101 p100055001	
C (soil 1,2-dichlorobenzene 95-50-1)			
	General	Statistics	

Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soi	I 1,2-dichlo	probenzene 95-50-1) was not processed!	
C (soil 1,2-dichloroethane 107-06-2)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
	0		0
Warning: All observations are Non-Detects	(NDe) ther	efore all statistics and estimates should also be NDs!	
_		tics are also NDs lying below the largest detection limit!	
	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
I he data set for variable C (so	il 1,2-dichie	proethane 107-06-2) was not processed!	
C (soil 1,2-dichloropropane 78-87-5)			
		Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	il 1,2-dichlo	propropane 78-87-5) was not processed!	
C (soil 1,2-diphenylhydrazine 122-66-7)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
	-		-
Warning: All observations are Non-Detects	(NDs) ther	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
i ne Project i eam may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	

The data set for variable C (soil | 1,2-diphenylhydrazine | 122-66-7) was not processed!

C (soil | 1,3,5-trichlorobenzene | 108-70-3)

	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs) ther	efore all statistics and estimates should also be NDs!	
-	· · · · ·	tics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	1,3,5-trichlo	probenzene 108-70-3) was not processed!	
(soil 1,3,5-trimethylbenzene 108-67-8)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	2	Number of Non-Detects	9
Number of Distinct Detects	2	Number of Distinct Non-Detects	6
Minimum Detect	0.31	Minimum Non-Detect	4.3333E
Maximum Detect	1.3	Maximum Non-Detect	0.0019
Variance Detects	0.49	Percent Non-Detects	81.829
Mean Detects	0.805	SD Detects	0.7
Median Detects	0.805	CV Detects	0.87
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-0.454	SD of Logged Detects	1.014
•		only 2 Detected Values. Iful or reliable statistics and estimates.	
		t on Detects Only	
Not End	ough Data to	Perform GOF Test	
Kaplan-Meier (KM) Statistics using	g Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.147	KM Standard Error of Mean	0.16
90KM SD	0.375	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.437	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.41	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.627	95% KM Chebyshev UCL	0.844
	1.146	99% KM Chebyshev UCL	1.739
97.5% KM Chebyshev UCL			
-	Tests on De	stected Observations Only	

		N/A
		N/A
	nu star (bias corrected)	N/A
0.805		
		0.375
0.141	SE of Mean (KM)	0.16
	k star (KM)	0.172
3.362	nu star (KM)	3.779
0.96	theta star (KM)	0.854
0.177	90% gamma percentile (KM)	0.441
0.785	99% gamma percentile (KM)	1.756
a Kaplan-M	eier (KM) Statistics	
	Adjusted Level of Significance (β)	0.0278
0.636	Adjusted Chi Square Value (3.78, β)	0.462
0.871	95% KM Adjusted Gamma UCL	1.2
F Test on D	etected Observations Only	
	-	
Statistics I	Jsing Imputed Non-Detects	
0.149	Mean in Log Scale	-5.387
0.393	SD in Log Scale	2.702
0.363	95% Percentile Bootstrap UCL	0.358
0.502	95% Bootstrap t UCL	17.97
57.9		
n Logged D	ata and Assuming Lognormal Distribution	
-6.419	KM Geo Mean	0.00163
2.828	95% Critical H Value (KM-Log)	7.082
1.206	95% H-UCL (KM -Log)	50.12
2.828	95% Critical H Value (KM-Log)	7.082
1.206		
DL/2 S	tatistics	
0.147	_	-5.966
0.393		2.776
0.362	95% H-Stat UCL	54.32
	led for comparisons and historical reasons	
thoa, provid	•	
tric Distribu	tion Free UCL Statistics	
tric Distribu		
	2.258 0.357 9.032 0.805 mma Parar 0.147 0.141 0.153 3.362 0.96 0.177 0.785 a Kaplan-M 0.636 0.871 F Test on D ugh Data to 0.871 F Test on D ugh Data to 0.149 0.393 0.363 0.502 57.9 n Logged D -6.419 2.828 1.206 2.828 1.206 2.828 1.206 2.828 1.206	0.357 Theta star (bias corrected MLE) 9.032 nu star (bias corrected) 0.805 nu star (bias corrected) amma Parameters using KM Estimates 0.147 0.147 SD (KM) 0.141 SE of Mean (KM) 0.153 k star (KM) 0.153 k star (KM) 0.362 nu star (KM) 0.153 k star (KM) 0.177 90% gamma percentile (KM) 0.177 90% gamma percentile (KM) 0.785 99% gamma percentile (KM) 0.636 Adjusted Level of Significance (β) 0.636 Adjusted Chi Square Value (3.78, β) 0.871 95% KM Adjusted Gamma UCL F Test on Detected Observations Only ugh Data to Perform GOF Test Statistics Using Imputed Non-Detects 0.149 Mean in Log Scale 0.393 SD in Log Scale 0.363 95% Percentile Bootstrap UCL 57.9 In Logged Data and Assuming Lognormal Distribution -6.419 KM Geo Mean 2.828 95% Critical H Value (KM-Log) <td< td=""></td<>

95% KM (t) UCL	0.437		
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL.	
		oution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data se	ets; for additional insight the user may want to consult a statisticia	ın.
C (soil 1,3-dichlorobenzene 541-73-1)			
	0	Obshishing	
Total Number of Observations	20	Statistics Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
Warning: All observations are Non-Detects	(NDs), ther	refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	1,3-dichlo	robenzene 541-73-1) was not processed!	
C (soil 1,3-dichloropropane 142-28-9)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
		· · · ·	
	<u> </u>	refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	1 1 3-dichlc	propropane 142-28-9) was not processed!	
	1,0 0,000		
C (soil 1,3-dichloropropene (total) 542-75-6)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Meming All cheer stiene are Nen Detecte		efore all statistics and estimates should also be NDs!	
-		tics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil 1,	3-dichloror	propene (total) 542-75-6) was not processed!	
	··		
C (soil 1,4-dichlorobenzene 106-46-7)			

Number of Detects 0 Number of Non-Detects 2 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDal Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit The Project Team may deckle to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil [1.4-dichlorobenzene] 106-45-7) was not processed! C (soil [1.4-dioxane] 123-91-1) Ceneral Statistics Number of Distinct Observations in Number of Distinct Observations in Number of Distinct Non-Detects 0 Number of Non-Detects 1 Number of Distinct Detects 0 Number of Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics are also NDs lying below the largest detection limit! The Project Team may deckle to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1.4-dioxane 123-91-1) was not processed! 20 Number of Non-Detects 1 Total Number of Detects 20 Number of Non-Detects 2 2 Number of Detects 14 Number of Non-Detects 2 2 Number of Detects 14 Number		Conorol	Otatiotics	
Number of Detects 0 Number of Non-Detects 2 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, ample mean, UC1s, UP1s, and other statistics are also NDs lying below the largest detection limit The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1.4-dichlorobenzene 106-46-7) was not processed! C (soil 1.4-dioxane 123-91-1) Caneeral Statistics Number of Distinct Observations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 10 Number of Distinct Non-Detects 10 Warning: All observations are Non-Detects (NDs), therefore all statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1.4-dioxane 123-91-1) was not processed! Ceneral Statistics C (soil 1-methylmaphthalene 90-12-0) Ceneral Statistics C (soil 1-methylmaphthalene 90-12-0) 20 Number of Non-Detects C (soil 1-methylmaphthalene 90-12-0) 20 Number of Distenct Detects <th></th> <th></th> <th></th> <th>10</th>				10
Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDb), therefore all statistics and estimates should also be NDs! 3 Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may dedide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soll 1,4-dichlorobenzene 106-46-7) was not processed! C(soll 1,4-dioxane 123-91-1) Centeral Statistics Total Number of Distinct Detects 0 Number of Non-Detects 1 Number of Distinct Detects 0 Number of Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may dedide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). Immediate of Non-Detects 1 C (soil 1-methylinaphthalene 90-12-0) Centeral Statistics 20 Number of Distinct Observations 2 C (soil 1-methylinaphthalene 90-12-0) 20 Number of Distinct Observations 2 Number of Distinct Observations<				18
Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dichorobenzone 106-46-7) was not processed! C (soil 1.4-dioxane 123-91-1) Ceneral Statistics Total Number of Detects 0 Number of Detects 0 Number of Distinct Detects 0 Number of Distinct Detects 0 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs tying below the largest detection limit The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylinaphthalene 90-12-0) General Statistics Total Number of Distor. Detects Number of Distor. Detects 14 Number of Distor. Detects 14 Number of Distor. Detects				20
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soll 1,4-dichorobenzene 106-46-7) was not processed! C (soll 1,4-dioxane 123-91-1) Ceneral Statistics Total Number of Distinct Detects 0 Number of Non-Detects 1 Number of Distinct Detects 0 Number of Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnephthalene 90-12-0) Ceneral Statistics C (soil 1-methylnephthalene 90-12-0) C (soil	Number of Distinct Detects	0	Number of Distinct Non-Detects	18
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dickloroberzene 106-46-7) was not processed! C (soil 1,4-dioxane 123-91-1) Ceneral Statistics Total Number of Distinct Detects 0 Number of Non-Detects 1 Number of Distinct Detects 0 Number of Instinct Non-Detects 1 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Number of Distinct Detects 1 Number				
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dichlorobenzene 106-46-7) was not processed! C (soil 1,4-dioxane 123-91-1) was not processed C (soil 1-neithylnsphthalene 90-12-0) C (soil 1-neithylnsphthalene	_	· ·		
The data set for variable C (soil 1,4-dichlorobenzene 108-46-7) was not processed! C (soil 1,4-dioxane 123-91-1) General Statistics Total Number of Doservations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLS, UPLS, and other statistics are also NDs tying below the largest detection limit The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1,4-dioxane 123-91-1) was not processed! <t< th=""><th></th><th></th><th></th><th></th></t<>				
C (soil 1,4-dioxane 123-91-1) C (soil 1,methylnaphthalene 90-12-0) C (soil 1-methylnaphthalene 90-12-0) C	The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
C (soil 1,4-dioxane 123-91-1) C (soil 1,1-metrylnaphthalene 90-12-0) C (soil 1-metrylnaphthalene 90-12-0)				
General Statistics Total Number of Observations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1.4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) Ceneral Statistics Number of Distinct Observations 20 Number of Distinct Detects 14 Number of Distinct Observations 20 Number of Distinct Detects 14 Number of Distinct Non-Detects 11 Minimum Detect 0.056 Minimum Non-Detect 11 Variance Detects 1.497 SD Detects 2 Meain Detects 0.105 CV Detects 2 Meain Detects 1.439 SD of Logged Detects 2 Meain Detects 1.439 SD of Logged Detects 2 Mean	The data set for variable C (soil	1,4-dichlo	robenzene 106-46-7) was not processed!	
General Statistics Total Number of Observations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1.4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) Ceneral Statistics Number of Distinct Observations 20 Number of Distinct Detects 14 Number of Distinct Observations 20 Number of Distinct Detects 14 Number of Distinct Non-Detects 11 Minimum Detect 0.056 Minimum Non-Detect 11 Variance Detects 1.497 SD Detects 2 Meain Detects 0.105 CV Detects 2 Meain Detects 1.439 SD of Logged Detects 2 Meain Detects 1.439 SD of Logged Detects 2 Mean				
General Statistics Total Number of Observations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1.4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) Ceneral Statistics C (soil 1-methylnaphthalene 90-12-0) 20 Number of Distinct Detects 14 Number of Distinct Detects 14 Number of Distinct Detects 11.4 Number of Distinct Detects 11.4 Number of Distinct Detects 11.4 Number of Distinct Detects 11.0 Minimum Detect 9.8 Maximum Detect 1.056 Meain Detects 1.497 Sb D of Logged Detects 1.439 Meain Detects 0.105 C VD Detects 1.4				
Total Number of Observations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soll 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) Environmental parameters (e.g., EPC, BTV). C (soil 1-methylnaphthalene 90-12-0) 20 Number of Distinct Observations 2 C (soil 1-methylnaphthalene 90-12-0) 20 Number of Distinct Non-Detects 2 Mumber of Distinct Detects 14 Number of Distinct Non-Detects 2 Mumber of Distinct Detects 11.01 Percent Non-Detects 2 Meatinane Detects 11.97 SD Detects 2 Meatin Detects 0.105 CV Detects 2 Meatin Detects 1.497 </th <td>C (soil 1,4-dioxane 123-91-1)</td> <td></td> <td></td> <td></td>	C (soil 1,4-dioxane 123-91-1)			
Total Number of Observations 11 Number of Distinct Observations 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 11 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) Environmental parameters (e.g., EPC, BTV). C (soil 1-methylnaphthalene 90-12-0) Specifically, sample mean, UCLs, UPLs, and other statistics C (soil 1-methylnaphthalene 90-12-0) Conneral Statistics C (soil 1-methylnaphthalene 90-12-0) Number of Distinct Detects I A Number of Distinct Detects 14 Number of Distinct Detects 14 Number of Distinct Detects 11.01 Percent Non-Detects 11.97 SD Detects 11.97 Mealian Detects 0.105 C (Soreal COF Test on Detects Only Mean of Logged Detects				
Number of Detects 0 Number of Non-Detects 1 Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). Image: Comparison of the statistics are also NDs lying below the largest detection limit! The Adata set for variable C (soil 1,4-dioxane 123-91-1) was not processed! Image: Comparison of the statistics C (soil 1-methylnaphthalene 90-12-0) Image: Comparison of the statistics Image: Comparison of the statistics Total Number of Distinct Detects 14 Number of Non-Detects Image: Comparison of the statistics Number of Distinct Detects 14 Number of Distinct Non-Detects Image: Comparison of the statistics Number of Distinct Detects 14 Number of Distinct Non-Detects Image: Comparison of the statistics Number of Distinct Detects 14 Number of Distinct Non-Detects Image: Comparison of the statistics Maximum Detect 0.056 Minimum Non-Detects Image: Comparison of the		General	Statistics	
Number of Distinct Detects 0 Number of Distinct Non-Detects 1 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) C (soil 1-methylnaphthalene 90-12-0) Control Total Number of Deservations 20 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Minimum Detect 0.056 Minimum Non-Detect 14 Variance Detects 11.01 Percent Non-Detects 23 Mean Detects 0.105 CV Detects 24 Mean of Logged Detects -1.439 SD of Logged Detects 24 Mean of Logged Detects -1.439 SD of Logged Detects 25 <t< th=""><td>Total Number of Observations</td><td>11</td><td>Number of Distinct Observations</td><td>10</td></t<>	Total Number of Observations	11	Number of Distinct Observations	10
Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) Ceneral Statistics Total Number of Detects 14 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 4 Minimum Detect 0.056 Minimum Non-Detect 4 Variance Detects 11.01 Percent Non-Detects 3 Meain Detects 0.105 CV Detects 3 Meain Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Normal GOF Test on Detects Only 0.482 Shapiro Wilk GOF Test 4 Normal GOF Test Not Normal at 1% Significance Level 1% Shapiro Wilk Critical Value 0.482 Detected Data Not Normal at 1% S	Number of Detects	0	Number of Non-Detects	11
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) General Statistics Total Number of Observations 20 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 14 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Maximum Detect 0.056 Minimum Non-Detect 14 Variance Detects 11.01 Percent Non-Detects 12 Median Detects 0.105 CV Detects 12 Mean of Logged Detects -1.439 SD of Logged Detects 13 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 14% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 14% Significance Level	Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) General Statistics Total Number of Detects Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects 11.01 Percent Non-Detects Median Detects 1.497 Sb petcets Mean of Logged Detects 1.497 Sb petcets Skewness Detects 2.293 Kurtosis Detects Mean of Logged Detects -1.439 SD of Logged Detects 1% Shapiro Wilk Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263	'		· · · · · ·	
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) General Statistics C (soil 1-methylnaphthalene 90-12-0) General Statistics 20 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 1 Number of Distinct Detects 14 Number of Distinct Non-Detects 1 Maximum Detect 0.056 Minimum Non-Detects 1 Maximum Detect 9.8 Maximum Non-Detects 3 Mean Detects 1.497 SD Detects 3 Mean Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 4% Significance Level	Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
The data set for variable C (soil 1,4-dioxane 123-91-1) was not processed! C (soil 1-methylnaphthalene 90-12-0) General Statistics Total Number of Observations 20 Number of Distinct Observations 2 Number of Detects 14 Number of Non-Detects 14 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Mumber of Distinct Detects 14 Number of Distinct Non-Detects 14 Mumber of Distinct Detects 14 Number of Distinct Non-Detects 14 Maximum Detect 0.056 Minimum Non-Detect 14 Maximum Detect 9.8 Maximum Non-Detect 14 Variance Detects 11.01 Percent Non-Detects 3 Median Detects 0.105 CV Detects 3 Median Detects 0.293 Kurtosis Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 4 Normal GOF Test on Detects Only Sbapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level	Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
C (soil 1-methylnaphthalene 90-12-0) C (soil 1-methylnaphthalene 90-12-0 C (soil 1-methylnaphthalene	The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
C (soil 1-methylnaphthalene 90-12-0) C (soil 1-methylnaphthalene 90-12-0 C (soil 1-methylnaphthalene				
General Statistics Total Number of Observations 20 Number of Distinct Observations 22 Number of Distinct Observations 20 Number of Distinct Observations 22 Number of Distinct Detects 14 Number of Non-Detects 14 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Minimum Detect 0.056 Minimum Non-Detect 14 Maximum Detect 9.8 Maximum Non-Detect 14 Variance Detects 11.01 Percent Non-Detects 3 Mean Detects 1.497 SD Detects 3 Median Detects 0.105 CV Detects 3 Median Detects 2.293 Kurtosis Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mormal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level 11	The data set for variable C	(soil 1,4-d i	ioxane 123-91-1) was not processed!	
General Statistics Total Number of Observations 20 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 1 Number of Distinct Detects 14 Number of Distinct Non-Detects 1 Minimum Detect 0.056 Minimum Non-Detects 1 Maximum Detect 9.8 Maximum Non-Detects 1 Variance Detects 11.01 Percent Non-Detects 3 Mean Detects 0.105 CV Detects 3 Median Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mormal GOF Test on Detects Only -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 Shapiro Wilk GOF Test 3 Mormal GOF Test on Detects Only<				
General Statistics Total Number of Observations 20 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 1 Number of Distinct Detects 14 Number of Distinct Non-Detects 1 Minimum Detect 0.056 Minimum Non-Detects 1 Maximum Detect 9.8 Maximum Non-Detects 1 Variance Detects 11.01 Percent Non-Detects 3 Mean Detects 0.105 CV Detects 3 Median Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mormal GOF Test on Detects Only -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 Shapiro Wilk GOF Test 3 Mormal GOF Test on Detects Only<				
Total Number of Observations 20 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 14 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Minimum Object 14 Number of Distinct Non-Detects 14 Minimum Non-Detect 14 Number of Distinct Non-Detects 14 Maximum Non-Detect 0.056 Minimum Non-Detect 14 Variance Detects 11.01 Percent Non-Detects 3 Mean Detects 1.497 SD Detects 3 Median Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 3 Mean of Logged Detects 0.482 Detected Data Not Normal at 1% Significance Level 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level 1% Lilliefors Critical Value <th>C (soil 1-methylnaphthalene 90-12-0)</th> <th></th> <th></th> <th></th>	C (soil 1-methylnaphthalene 90-12-0)			
Total Number of Observations 20 Number of Distinct Observations 2 Number of Distinct Detects 14 Number of Non-Detects 14 Number of Distinct Detects 14 Number of Distinct Non-Detects 14 Minimum Object 14 Number of Distinct Non-Detects 14 Minimum Non-Detect 14 Number of Distinct Non-Detects 14 Maximum Non-Detect 0.056 Minimum Non-Detect 14 Variance Detects 11.01 Percent Non-Detects 3 Variance Detects 1.497 SD Detects 3 Median Detects 0.105 CV Detects 3 Median Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 3 Mean of Logged Detects 0.482 Detected Data Not Normal at 1% Significance Level 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level 1% Lilliefors Critical Value 0.				
Number of Detects 14 Number of Non-Detects Number of Distinct Detects 14 Number of Distinct Non-Detects Minimum Detect 0.056 Minimum Non-Detect Maximum Detect 9.8 Maximum Non-Detect Variance Detects 11.01 Percent Non-Detects Variance Detects 1.497 SD Detects Mean Detects 0.105 CV Detects Skewness Detects 2.293 Kurtosis Detects Mean of Logged Detects -1.439 SD of Logged Detects Mean of Logged Detects -1.439 Shapiro Wilk GOF Test Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level		General	Statistics	
Number of Distinct Detects 14 Number of Distinct Non-Detects 0 Minimum Detect 0.056 Minimum Non-Detect 0 Maximum Detect 9.8 Maximum Non-Detect 0 Variance Detects 11.01 Percent Non-Detects 3 Mean Detects 1.497 SD Detects 3 Median Detects 0.105 CV Detects 3 Median Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 4 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level	Total Number of Observations	20	Number of Distinct Observations	20
Minimum Detect0.056Minimum Non-DetectMaximum Detect9.8Maximum Non-DetectVariance Detects11.01Percent Non-DetectsVariance Detects1497SD DetectsMean Detects0.105CV DetectsMedian Detects0.105CV DetectsMean of Logged Detects-1.439SD of Logged DetectsMean of Logged Detects-1.439SD of Logged DetectsMean of Logged Detects0.482Shapiro Wilk GOF TestMormal GOF Test on Detects Only1% Shapiro Wilk Critical Value0.825Detected Data Not Normal at 1% Significance LevelLilliefors Test Statistic0.4471% Lilliefors Critical Value0.263Detected Data Not Normal at 1% Significance Level	Number of Detects	14	Number of Non-Detects	6
Maximum Detect9.8Maximum Non-DetectVariance Detects11.01Percent Non-Detects3Mean Detects1.497SD Detects3Median Detects0.105CV Detects3Median Detects0.105CV Detects3Skewness Detects2.293Kurtosis Detects3Mean of Logged Detects-1.439SD of Logged Detects3Mean of Logged Detects0.482Shapiro Wilk GOF Test3Mean of Logged Detects0.482Detected Data Not Normal at 1% Significance Level447Lilliefors Test Statistic0.447Detected Data Not Normal at 1% Significance Level1% Lilliefors Critical Value0.263Detected Data Not Normal at 1% Significance Level1% Lilliefors Critical Value0.263Detected Data Not Normal at 1% Significance Level	Number of Distinct Detects	14	Number of Distinct Non-Detects	6
Variance Detects 11.01 Percent Non-Detects 3 Mean Detects 1.497 SD Detects 3 Median Detects 0.105 CV Detects 3 Median Detects 0.105 CV Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 3 Mean of Logged Detects 0.482 Shapiro Wilk GOF Test 4 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Critical Value 0.263 Detected Data Not Nor	Minimum Detect	0.056	Minimum Non-Detect	0.193
Mean Detects1.497SD DetectsMedian Detects0.105CV Detects2Skewness Detects2.293Kurtosis Detects3Mean of Logged Detects-1.439SD of Logged Detects3Mean of Logged Detects-1.439SD of Logged Detects3Normal GOF Test on Detects OnlyShapiro Wilk Test Statistic0.482Shapiro Wilk GOF Test1% Shapiro Wilk Critical Value0.825Detected Data Not Normal at 1% Significance LevelLilliefors Test Statistic0.447Lilliefors GOF Test1% Lilliefors Critical Value0.263Detected Data Not Normal at 1% Significance Level	Maximum Detect	9.8	Maximum Non-Detect	0.22
Median Detects0.105CV DetectsSkewness Detects2.293Kurtosis Detects3Mean of Logged Detects-1.439SD of Logged Detects3Normal GOF Test on Detects OnlyShapiro Wilk Test Statistic0.482Shapiro Wilk GOF Test1% Shapiro Wilk Critical Value0.825Detected Data Not Normal at 1% Significance LevelLilliefors Test Statistic0.447Lilliefors GOF Test1% Lilliefors Critical Value0.263Detected Data Not Normal at 1% Significance Level	Variance Detects	11.01	Percent Non-Detects	30%
Skewness Detects 2.293 Kurtosis Detects 3 Mean of Logged Detects -1.439 SD of Logged Detects 4 Normal GOF Test on Detects Only 5 5 5 Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 5 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level	Mean Detects	1.497	SD Detects	3.318
Mean of Logged Detects -1.439 SD of Logged Detects SD of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level	Median Detects	0.105	CV Detects	2.216
Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level	Skewness Detects	2.293	Kurtosis Detects	3.868
Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level	Mean of Logged Detects	-1.439	SD of Logged Detects	1.749
Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level				
Shapiro Wilk Test Statistic 0.482 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level	Norm	al GOF Tes	t on Detects Only	
1% Shapiro Wilk Critical Value 0.825 Detected Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level			-	
Lilliefors Test Statistic 0.447 Lilliefors GOF Test 1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level				
1% Lilliefors Critical Value 0.263 Detected Data Not Normal at 1% Significance Level				
Detected Data Not Normal at 1% Significance Level				
Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs	Konlon Moior //M. Statiation unior	a Normal C	ritical Values and other Nonnorometric LICLs	

KM Mean			
	1.075	KM Standard Error of Mean	0.639
90KM SD	2.752	95% KM (BCA) UCL	2.316
95% KM (t) UCL	2.179	95% KM (Percentile Bootstrap) UCL	2.074
95% KM (z) UCL	2.125	95% KM Bootstrap t UCL	16.92
90% KM Chebyshev UCL	2.991	95% KM Chebyshev UCL	3.859
97.5% KM Chebyshev UCL	5.063	99% KM Chebyshev UCL	7.429
		L	
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	2.23	Anderson-Darling GOF Test	
5% A-D Critical Value	0.82	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.326	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.246	Detected Data Not Gamma Distributed at 5% Significance	Level
Detected Data Not G	amma Distr	ibuted at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.363	k star (bias corrected MLE)	0.333
Theta hat (MLE)	4.128	Theta star (bias corrected MLE)	4.502
nu hat (MLE)	10.16	nu star (bias corrected)	9.314
Mean (detects)	1.497		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	is <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
<u> </u>			
This is especi	ally true whe	en the sample size is small.	
		en the sample size is small. ay be computed using gamma distribution on KM estimates	
			1.051
For gamma distributed detected data, BTVs a	ind UCLs ma	ay be computed using gamma distribution on KM estimates	1.051 0.076
For gamma distributed detected data, BTVs a Minimum	nd UCLs ma	ay be computed using gamma distribution on KM estimates Mean	
For gamma distributed detected data, BTVs a Minimum Maximum	0.01 9.8	ay be computed using gamma distribution on KM estimates Mean Median	0.076
For gamma distributed detected data, BTVs a Minimum Maximum SD	0.01 9.8 2.832	ay be computed using gamma distribution on KM estimates Mean Median CV	0.076 2.694
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	0.01 9.8 2.832 0.285	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.076 2.694 0.276
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.01 9.8 2.832 0.285 3.687	Ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.076 2.694 0.276 3.813
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.01 9.8 2.832 0.285 3.687 11.4	Ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.076 2.694 0.276 3.813
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	0.01 9.8 2.832 0.285 3.687 11.4 0.038	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.076 2.694 0.276 3.813 11.03
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α)	nd UCLs ma 0.01 9.8 2.832 0.285 3.687 11.4 0.038 4.593	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (11.03, β)	0.076 2.694 0.276 3.813 11.03 4.269
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL	nd UCLs ma 0.01 9.8 2.832 0.285 3.687 11.4 0.038 4.593 2.524	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (11.03, β)	0.076 2.694 0.276 3.813 11.03 4.269
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL	nd UCLs ma 0.01 9.8 2.832 0.285 3.687 11.4 0.038 4.593 2.524	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL	0.076 2.694 0.276 3.813 11.03 4.269
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga	0.01 9.8 2.832 0.285 3.687 11.4 0.038 4.593 2.524	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL	0.076 2.694 0.276 3.813 11.03 4.269 2.715
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM)	0.01 9.8 2.832 0.285 3.687 11.4 0.038 4.593 2.524 amma Paran 1.075	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL meters using KM Estimates SD (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM)	amma Param 1.075 7.573	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL meters using KM Estimates SD (KM) SE of Mean (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752 0.639
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM)	amma Paran 1.075 7.573 0.101 9.8 2.832 0.285 3.687 11.4 0.038 4.593 2.524	Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL SD (KM) SE of Mean (KM) k star (king corrected MLE) solution (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.715 2.752 0.639 0.163
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	amma Paran 1.075 7.573 0.1285 3.687 11.4 0.038 4.593 2.524 0.153 6.104	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752 0.639 0.163 6.522
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	amma Paran 1.075 7.573 0.153 0.285 3.687 11.4 0.038 4.593 2.524 0.153 6.104 7.045	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL Meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.715 2.752 0.639 0.163 6.522 6.593
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	amma Paran 1.075 7.573 0.1285 3.687 11.4 0.038 4.593 2.524 0.153 6.104 7.045 1.248	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL Meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752 0.639 0.163 6.522 6.593 3.219
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) fueta hat (KM) 80% gamma percentile (KM)	amma Paran 1.075 7.573 0.153 6.104 7.045 1.248 5.816	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL Meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752 0.639 0.163 6.522 6.593 3.219
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) fueta hat (KM) 80% gamma percentile (KM)	amma Paran 1.075 7.573 0.153 6.104 7.045 1.248 5.816	Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL SE of Mean (KM) SE of Mean (KM) k star (kim) nu star (kim) heters using KM Estimates	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752 0.639 0.163 6.522 6.593 3.219
For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (11.03, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM)	a Kaplan-Me	ay be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (11.03, β) 95% Gamma Adjusted UCL Meters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	0.076 2.694 0.276 3.813 11.03 4.269 2.715 2.752 0.639 0.163 6.522 6.593 3.219 13.23

L ognormal GO	F Test on Det	ected Observations Only	
Shapiro Wilk Test Statistic	0.769	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.895	Detected Data Not Lognormal at 10% Significance Lev	رما
•	Lilliefors Test Statistic 0.241	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.241	Detected Data Not Lognormal at 10% Significance Lev	(ol
		at 10% Significance Level	
	ot Lognormal		
Lognormal BOS	Statistics Us	ing Imputed Non-Detects	
Mean in Original Scale	1.08	Mean in Log Scale	-1.682
SD in Original Scale	2.822	SD in Log Scale	1.496
95% t UCL (assumes normality of ROS data)	2.171	95% Percentile Bootstrap UCL	2.077
95% BCA Bootstrap UCL	2.514	95% Bootstrap t UCL	15.64
95% H-UCL (Log ROS)	1.843		
Statistics using KM estimates of	n Logged Dat	a and Assuming Lognormal Distribution	
KM Mean (logged)	-1.751	KM Geo Mean	0.174
KM SD (logged)	1.5	95% Critical H Value (KM-Log)	3.427
KM Standard Error of Mean (logged)	0.353	95% H-UCL (KM -Log)	1.74
KM SD (logged)	1.5	95% Critical H Value (KM-Log)	3.427
KM Standard Error of Mean (logged)	0.353		
	DL/2 Stat	tistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.079	Mean in Log Scale	-1.69
SD in Original Scale	2.822	SD in Log Scale	1.5
95% t UCL (Assumes normality)	2.17	95% H-Stat UCL	1.847
DL/2 is not a recommended me	thod, provided	d for comparisons and historical reasons	
Nonparame	tric Distributio	n Free UCL Statistics	
Data do no	ot follow a Dise	cernible Distribution	
	Suggested U	CL to Use	
95% KM (t) UCL	2.179		
-		ata were collected in a random and unbiased manner.	
		cted from random locations.	
		ntal or other non-random methods,	
then contact a s	statistician to c	correctly calculate UCLs.	
		vided to help the user to select the most appropriate 95% UCL	
		tion, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data sets	; for additional insight the user may want to consult a statisticia	an.
(soil 2,2-dichloropropane 594-20-7)			
	• • • •		
T. 141	General St		
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8

Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	2,2-dichlo	propropane 594-20-7) was not processed!	
oil 2,2'-oxybis(1-chloropropane) 108-60-1)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
		· · · · · · · · · · · · · · · · · · ·	
-		efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data act for veriable Q (acil 2.2	l essible/1		
i në data sët for variable C (soli 2,2	-oxybis(1-0	chloropropane) 108-60-1) was not processed!	
T . (1)		Statistics	4 -
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	2,4,5-tricl	hlorophenol 95-95-4) was not processed!	
pil 2,4,6-trichlorophenol 88-06-2)			
	Ganaral	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
· · · · · · · · · · · · · · · · · · ·		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	

	General Statistics	;	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and o		statistics and estimates should also be NDs!	
The Project Team may decide to use alternative site			
The data set for variable C (soil	2,4-dichloropheno	I 120-83-2) was not processed!	
2,4-dimethylphenol 105-67-9)			
	General Statistics	i	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	2	Number of Non-Detects	18
Number of Distinct Detects	2	Number of Distinct Non-Detects	14
Minimum Detect	0.14	Minimum Non-Detect	0
Maximum Detect	0.2	Maximum Non-Detect	0
Variance Detects	0.0018	Percent Non-Detects	90
Mean Detects	0.17	SD Detects	0.
Median Detects	0.17	CV Detects	0
Skewness Detects	N/A	Kurtosis Detects	N//
Mean of Logged Detects	-1.788	SD of Logged Detects	0
_	ta set has only 2 De		
i nis is not enough to compl	ite meaningful or rei	able statistics and estimates.	
Norma	al GOF Test on Dete	cts Only	
	ugh Data to Perform	-	
		ues and other Nonparametric UCLs	
KM Mean	0.17	KM Standard Error of Mean	0.
90KM SD	0.03	95% KM (BCA) UCL	N//
95% KM (t) UCL	0.222	95% KM (Percentile Bootstrap) UCL	N//
95% KM (z) UCL	0.219	95% KM Bootstrap t UCL	N//
AAA/	0.26	95% KM Chebyshev UCL	0
90% KM Chebyshev UCL	0.357	99% KM Chebyshev UCL	0
90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.007		
97.5% KM Chebyshev UCL Gamma GOF	ests on Detected O	•	
97.5% KM Chebyshev UCL Gamma GOF T Not Eno	Tests on Detected O ugh Data to Perform	GOF Test	
97.5% KM Chebyshev UCL Gamma GOF T Not Eno	ests on Detected O	GOF Test	N//

Theta hat (MLE)	0.00535	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	127.1	nu star (bias corrected)	N/A
Mean (detects)	0.17		
Estimates of G	amma Parar	neters using KM Estimates	
Mean (KM)	0.17	SD (KM)	0.03
Variance (KM)		SE of Mean (KM)	0.00
k hat (KM)	32.11	k star (KM)	27.33
nu hat (KM)	1284	nu star (KM)	1093
theta hat (KM)	0.00529	theta star (KM)	0.00622
80% gamma percentile (KM)	0.197	90% gamma percentile (KM)	0.213
95% gamma percentile (KM)	0.227	99% gamma percentile (KM)	0.255
Gamm	a Kaplan-M	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.038
Approximate Chi Square Value (N/A, α)	1017	Adjusted Chi Square Value (N/A, β)	1012
95% KM Approximate Gamma UCL	0.183	95% KM Adjusted Gamma UCL	0.184
Lognormal GO	F Test on D	etected Observations Only	
		Perform GOF Test	
	2 Statiation I	loing Imputed Non Detecto	
Mean in Original Scale	0.169	Jsing Imputed Non-Detects	-1.788
_		Mean in Log Scale	
SD in Original Scale 95% t UCL (assumes normality of ROS data)	0.024	SD in Log Scale 95% Percentile Bootstrap UCL	0.141
95% LOCE (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.178	95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.178
95% BCA Boolstrap OCL 95% H-UCL (Log ROS)	0.178		0.18
KM Mean (logged)		Pata and Assuming Lognormal Distribution KM Geo Mean	0.167
KM Mean (logged) KM SD (logged)	0.178	95% Critical H Value (KM-Log)	1.773
KM Standard Error of Mean (logged)	0.178	95% H-UCL (KM -Log)	0.183
KM SD (logged)		95% Critical H Value (KM-Log)	1.773
KM Standard Error of Mean (logged)		33 / Children Value (KW-L09)	1.775
		aset. Other substitution method recommended	
DL/2 Normal	DL/2 S	tatistics DL/2 Log-Transformed	
Mean in Original Scale	0.197	Mean in Log Scale	-1.629
SD in Original Scale	0.0153	SD in Log Scale	0.0874
95% t UCL (Assumes normality)	0.203	95% H-Stat UCL	N/A
	thod, provid	led for comparisons and historical reasons	
Nonparame	tric Distribut	tion Free UCL Statistics	
		iscernible Distribution	
	Que		
		UCL to Use	
95% KM (t) UCL	0.222		
Warning: Recommen	aea UCL ex	ceeds the maximum observation	

		n an	
		ibution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real Wo	orld data s	sets; for additional insight the user may want to consult a statisticia	an.
il 2,4-dinitrophenol 51-28-5)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
-		erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	oil 2,4-di i	nitrophenol 51-28-5) was not processed!	
il 2,4-dinitrotoluene 121-14-2)			
		al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs) the	erefore all statistics and estimates should also be NDs!	
-		stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
	•		
The data set for variable C (soi	l 2,4-din	itrotoluene 121-14-2) was not processed!	
il 2,6-dinitrotoluene 606-20-2)			
Total Number of Observations		al Statistics	10
Number of Detects	20 0	Number of Distinct Observations Number of Non-Detects	15 20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
	U		10
Warning: All observations are Non-Detects	(NDs), the	prefore all statistics and estimates should also be NDs!	
-		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
		itrotoluene 606-20-2) was not processed!	
The data set for variable C (soi	i 2,0-uiii		
The data set for variable C (soi	i 2,0-uiii		

	General S	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
Number of Detects	3	Number of Non-Detects	8
Number of Distinct Detects	3	Number of Distinct Non-Detects	8
Minimum Detect	0.0285	Minimum Non-Detect	0.012
Maximum Detect	1.8	Maximum Non-Detect	0.038
Variance Detects	0.839	Percent Non-Detects	72.73%
Mean Detects	0.78	SD Detects	0.916
Median Detects	0.51	CV Detects	1.175
Skewness Detects	1.209	Kurtosis Detects	N/A
Mean of Logged Detects	-1.214	SD of Logged Detects	2.125
		nly 3 Detected Values. ful or reliable statistics and estimates.	
N			
		on Detects Only	
Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	0.935 0.753	Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Leve	
Lilliefors Test Statistic		Lilliefors GOF Test	ei
	0.282		-
1% Lilliefors Critical Value	0.429	Detected Data appear Normal at 1% Significance Leve	el
-	-	al at 1% Significance Level iable for small sample sizes	
		tical Values and other Nonparametric UCLs	0 191
KM Mean	0.227	KM Standard Error of Mean	0.191 N/A
KM Mean 90KM SD	0.227 0.517	KM Standard Error of Mean 95% KM (BCA) UCL	N/A
KM Mean 90KM SD 95% KM (t) UCL	0.227 0.517 0.573	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL	0.227 0.517 0.573 0.541	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A
KM Mean 90KM SD 95% KM (t) UCL	0.227 0.517 0.573	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.227 0.517 0.573 0.541 0.799 1.419	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 1.059
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF 1	0.227 0.517 0.573 0.541 0.799 1.419	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 1.059
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL Standard Error of Mean 95% KM Bootstrap t 95% KM Chebyshev UCL 99% KM Chebyshev UCL Standard Error of Mean Anderson-Darling GOF Test	N/A N/A 1.059 2.127
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value	0.227 0.517 0.573 0.541 0.799 1.419 Tests on Det 0.255 0.646	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL Detected Observations Only Detected data appear Gamma Distributed at 5% Significance	N/A N/A N/A 1.059 2.127
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Stected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF	N/A N/A 1.059 2.127
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.232	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL Detected Observations Only Detected data appear Gamma Distributed at 5% Significance	N/A N/A 1.059 2.127
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma Comparence	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.446 amma Distri	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL Detected Observations Only Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance buted at 5% Significance Level	N/A N/A 1.059 2.127
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Ch	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.446 amma Distri	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected Observations Only Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance buted at 5% Significance Level Detected Data Only	N/A N/A 1.059 2.127
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma S K hat (MLE)	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.446 amma Distri	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance buted at 5% Significance Level Detected Data Only k star (bias corrected MLE)	N/A N/A 1.059 2.127 e Level e Level
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma S k hat (MLE) Theta hat (MLE)	0.227 0.517 0.573 0.541 0.799 1.419 Tests on Det 0.255 0.646 0.232 0.446 amma Distri Statistics on 0.635 1.228	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected Observations Only Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance buted at 5% Significance Level Exected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	N/A N/A 1.059 2.127 e Level e Level N/A N/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 98.00 Chebyshev UCL 98.00 Chebyshe	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.446 amma Distri Statistics on 0.635 1.228 3.809	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance buted at 5% Significance Level Detected Data Only k star (bias corrected MLE)	N/A N/A 1.059 2.127 e Level e Level
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 98.000 Chebyshev UCL 98.000 Chebys	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.446 0.232 0.446 Statistics on 0.635 1.228 3.809 0.78	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 1000 K Context of the star (bias corrected MLE) Nu star (bias corrected)	N/A N/A 1.059 2.127 e Level e Level n/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Statistic 5% A-D Critical Value Detected Data Not Ga Gamma S k hat (MLE) Nu hat (MLE) Mean (detects)	0.227 0.517 0.573 0.541 0.799 1.419 Tests on Det 0.255 0.646 0.232 0.446 amma Distri Statistics on 0.635 1.228 3.809 0.78 Statistics usi	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected Observations Only Kolmogorov-Smirnov GOF Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects	N/A N/A 1.059 2.127 e Level e Level n/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 8 97.5% KM Chebyshev UCL 8 98 98 99 97 98	0.227 0.517 0.573 0.541 0.799 1.419 Fests on Det 0.255 0.646 0.232 0.446 amma Distri Statistics on 0.635 1.228 3.809 0.78 Statistics usi attistics usi	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 1000 K Context of the star (bias corrected MLE) Nu star (bias corrected)	N/A N/A 1.059 2.127 e Level e Level N/A N/A

This is especia	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.22
Maximum	1.8	Median	0.01
SD	0.545	CV	2.479
k hat (MLE)	0.316	k star (bias corrected MLE)	0.29
Theta hat (MLE)	0.696	Theta star (bias corrected MLE)	0.758
nu hat (MLE)	6.947	nu star (bias corrected)	6.385
Adjusted Level of Significance (β)	0.0278		
Approximate Chi Square Value (6.39, α)	1.84	Adjusted Chi Square Value (6.39, β)	1.471
95% Gamma Approximate UCL	0.763	95% Gamma Adjusted UCL	N/A
Estimates of Ga	amma Parar	neters using KM Estimates	
Mean (KM)	0.227	SD (KM)	0.517
Variance (KM)	0.267	SE of Mean (KM)	0.191
k hat (KM)	0.192	k star (KM)	0.2
nu hat (KM)	4.226	nu star (KM)	4.407
theta hat (KM)	1.18	theta star (KM)	1.131
80% gamma percentile (KM)	0.299	90% gamma percentile (KM)	0.685
95% gamma percentile (KM)	1.167	99% gamma percentile (KM)	2.493
		eier (KM) Statistics	
Approximate Chi Square Value (4.41, α)	0.889	Adjusted Chi Square Value (4.41, β)	0.665
95% KM Approximate Gamma UCL	1.124	95% KM Adjusted Gamma UCL	1.502
Lognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.789	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.267	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance L	evel
		mal at 10% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
L ognormal BOS	Statistics I	Jsing Imputed Non-Detects	
Mean in Original Scale	0.216	Mean in Log Scale	-4.338
SD in Original Scale	0.547	SD in Log Scale	2.294
95% t UCL (assumes normality of ROS data)	0.515	95% Percentile Bootstrap UCL	0.514
95% BCA Bootstrap UCL	0.704	95% Bootstrap t UCL	15.89
95% H-UCL (Log ROS)	12.46		
		ata and Assuming Lognormal Distribution	
KM Mean (logged)	-3.273	KM Geo Mean	0.0379
KM SD (logged)	1.595	95% Critical H Value (KM-Log)	4.241
KM Standard Error of Mean (logged)	0.648	95% H-UCL (KM -Log)	1.148
KM SD (logged)	1.595	95% Critical H Value (KM-Log)	4.241
KM Standard Error of Mean (logged)	0.648		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	

C (soil 2-chlorotoluene 95-49-8)			
The data set for variable C (s	soil 2-chloi	rophenol 95-57-8) was not processed!	
The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
Specifically, sample mean, UCLs, UPLs, and	other statist	tics are also NDs lying below the largest detection limit!	
Warning: All observations are Non-Detects	(NDs), then	efore all statistics and estimates should also be NDs!	
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Number of Detects	0	Number of Non-Detects	20
Total Number of Observations	20	Number of Distinct Observations	15
	General	Statistics	
(soil 2-chlorophenol 95-57-8)			
The data set for variable C (soil	2-chloron	aphthalene 91-58-7) was not processed!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
-		efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit!	
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Number of Detects	0	Number of Non-Detects	20
Total Number of Observations	20	Number of Distinct Observations	15
	General	Statistics	
(soil 2-chloronaphthalene 91-58-7)			
(asil 12 ablergenerhthologe 1 01 52 7)			
However, simulations results will not cover all Real We	orld data se	ets; for additional insight the user may want to consult a statisticia	an.
· · · · · · · · · · · · · · · · · · ·		oution, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL	
		o correctly calculate UCLs.	
-		nental or other non-random methods,	
		data were collected in a random and unbiased manner. llected from random locations.	
		· · · · · · · · · · · · · · · · · · ·	
95% KM (t) UCL	0.573		
	Suggested	UCL to Use	
-		tion Free UCL Statistics stributed at 1% Significance Level	
DL/2 is not a recommended me	thod, provid	led for comparisons and historical reasons	
95% t UCL (Assumes normality)	0.543	95% H-Stat UCL	1.692
Mean in Original Scale SD in Original Scale	0.224	Mean in Log Scale SD in Log Scale	-3.374

		Statistics	-
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs) ther	efore all statistics and estimates should also be NDs!	
_		tics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
		indes to estimate environmental parameters (e.g., Er O, DTV).	
The data set for variable C (s	soil 2-chlor	otoluene 95-49-8) was not processed!	
C (soil 2-hexanone 591-78-6)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil 2-hex	anone 591-78-6) was not processed!	
C (soil 2-methylnaphthalene 91-57-6)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	19
Number of Detects	14	Number of Non-Detects	6
Number of Distinct Detects	13	Number of Distinct Non-Detects	6
Minimum Detect	0.084	Minimum Non-Detect	0.193
Maximum Detect	16	Maximum Non-Detect	0.22
Variance Detects	28.71	Percent Non-Detects	30%
Mean Detects	2.416	SD Detects	5.358
Median Detects	0.145	CV Detects	2.218
Skewness Detects	2.299	Kurtosis Detects	3.928
Mean of Logged Detects	-1.003	SD of Logged Detects	1.78
	-1.005		1.70
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.485	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.447	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263	Detected Data Not Normal at 1% Significance Level	
Detected Data	Not Norma	I at 1% Significance Level	
Kaplan-Meier (KM) Statistics usin	g Normal Ci	itical Values and other Nonparametric UCLs	

KM Mean	1.726	KM Standard Error of Mean	1.032
90KM SD	4.446	95% KM (BCA) UCL	3.69
95% KM (t) UCL	3.511	95% KM (Percentile Bootstrap) UCL	3.364
95% KM (z) UCL	3.424	95% KM Bootstrap t UCL	23.93
90% KM Chebyshev UCL	4.822	95% KM Chebyshev UCL	6.224
97.5% KM Chebyshev UCL	8.17	99% KM Chebyshev UCL	11.99
Gamma GOF	Tests on Det	ected Observations Only	
A-D Test Statistic	2.266	Anderson-Darling GOF Test	
5% A-D Critical Value	0.821	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.348	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.246	Detected Data Not Gamma Distributed at 5% Significance	Level
Detected Data Not G	amma Distril	buted at 5% Significance Level	
		Detected Data Only	
k hat (MLE)	0.356	k star (bias corrected MLE)	0.327
Theta hat (MLE)	6.79	Theta star (bias corrected MLE)	7.384
nu hat (MLE)	9.962	nu star (bias corrected)	9.161
Mean (detects)	2.416		
Gamma BOS	Statistics usi	ing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
GRUS may not be used when data s			
	small such as	s < 1.0 especially when the sample size is small (e.g. $< 15-20$)	
GROS may not be used when kstar of detects is		s <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs	
GROS may not be used when kstar of detects is For such situations, GROS	method may y	yield incorrect values of UCLs and BTVs	
GROS may not be used when kstar of detects is For such situations, GROS i This is especi	method may y ally true wher	yield incorrect values of UCLs and BTVs n the sample size is small.	
GROS may not be used when kstar of detects is a For such situations, GROS o This is especi For gamma distributed detected data, BTVs a	method may y ally true wher nd UCLs may	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates	1 694
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum	method may y ally true wher nd UCLs may 0.01	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean	1.694
GROS may not be used when kstar of detects is a For such situations, GROS o This is especi For gamma distributed detected data, BTVs a Minimum Maximum	nethod may y ally true wher nd UCLs may 0.01 16	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median	0.12
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD	nethod may y ally true wher nd UCLs may 0.01 16 4.574	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV	0.12 2.7
GROS may not be used when kstar of detects is a For such situations, GROS in This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.12 2.7 0.262
GROS may not be used when kstar of detects is a For such situations, GROS of This is especial For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE)	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.12 2.7 0.262 6.469
GROS may not be used when kstar of detects is a For such situations, GROS in This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.12 2.7 0.262
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.12 2.7 0.262 6.469 10.48
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α)	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.12 2.7 0.262 6.469
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (10.48, β)	0.12 2.7 0.262 6.469 10.48 3.931
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (10.48, β)	0.12 2.7 0.262 6.469 10.48 3.931
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL	0.12 2.7 0.262 6.469 10.48 3.931
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL	0.12 2.7 0.262 6.469 10.48 3.931 4.514
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.446
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.446 1.032
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM)	Method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77 0.151	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.446 1.032 0.161
GROS may not be used when kstar of detects is a For such situations, GROS in This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM)	nethod may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77 0.151 6.031	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.514 4.446 1.032 0.161 6.459
GROS may not be used when kstar of detects is a For such situations, GROS in This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77 0.151 6.031 11.45	yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.514 4.446 1.032 0.161 6.459 10.69
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77 0.151 6.031 11.45 1.99 9.36	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.514 4.446 1.032 0.161 6.459 10.69 5.165
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77 0.151 6.031 11.45 1.99 9.36	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.514 4.446 1.032 0.161 6.459 10.69 5.165 21.36
GROS may not be used when kstar of detects is a For such situations, GROS I This is especi For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (10.48, α) 95% Gamma Approximate UCL Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	method may y ally true wher nd UCLs may 0.01 16 4.574 0.269 6.301 10.76 0.038 4.241 4.185 amma Param 1.726 19.77 0.151 6.031 11.45 1.99 9.36	yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (10.48, β) 95% Gamma Adjusted UCL Neters using KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	0.12 2.7 0.262 6.469 10.48 3.931 4.514 4.514 4.446 1.032 0.161 6.459 10.69 5.165

Lognormal GOI	F Test on Dete	acted Observations Only	
Shapiro Wilk Test Statistic	0.758	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.895	Detected Data Not Lognormal at 10% Significance Lev	/el
Lilliefors Test Statistic	0.259	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.208	Detected Data Not Lognormal at 10% Significance Lev	/el
Detected Data N	ot Lognormal a	at 10% Significance Level	
Lognormal ROS	Statistics Usi	ng Imputed Non-Detects	
Mean in Original Scale	1.733	Mean in Log Scale	-1.294
SD in Original Scale	4.56	SD in Log Scale	1.541
95% t UCL (assumes normality of ROS data)	3.496	95% Percentile Bootstrap UCL	3.367
95% BCA Bootstrap UCL	4.068	95% Bootstrap t UCL	23.37
95% H-UCL (Log ROS)	3.096		
KM Mean (logged)	-1.349	a and Assuming Lognormal Distribution KM Geo Mean	0.26
KM Mean (logged) KM SD (logged)	1.533	95% Critical H Value (KM-Log)	3.482
KM SD (logged) KM Standard Error of Mean (logged)	0.357	95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	2.857
	1.533	95% Critical H Value (KM-Log)	3.482
KM Stondard Error of Moon (logged)	0.357	95% Chucai H Value (Kivi-Log)	3.402
KM Standard Error of Mean (logged)	0.357		
	DL/2 Stat	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.722	Mean in Log Scale	-1.384
SD in Original Scale	4.564	SD in Log Scale	1.589
95% t UCL (Assumes normality)	3.486	95% H-Stat UCL for comparisons and historical reasons	3.264
	uliou, provideu		
		n Free UCL Statistics	
Data do no	ot follow a Disc	cernible Distribution	
	Suggested UC	CL to Use	
95% KM (t) UCL	3.511		
The selected UOL and been done and the			
-		ta were collected in a random and unbiased manner.	
-			
		ntal or other non-random methods, orrectly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%	UCL are prov	ided to help the user to select the most appropriate 95% UCL	
		ion, and skewness using results from simulation studies.	
		for additional insight the user may want to consult a statisticia	an
(soil 2-methylphenol 95-48-7)			
	0		
	General Sta		10
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	2	Number of Non-Detects	18
Number of Distinct Detects	2	Number of Distinct Non-Detects	14

Minimum Detect	0.005		0.00
	0.085	Minimum Non-Detect	0.38
Maximum Detect	0.13	Maximum Non-Detect	0.44
Variance Detects	0.00101	Percent Non-Detects	90%
Mean Detects	0.108	SD Detects	0.0318
Median Detects	0.108	CV Detects	0.296
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-2.253	SD of Logged Detects	0.3
Warning: Da This is not enough to comp	ata set has only 2 Dete ute meaningful or relia		
Norm	al GOF Test on Detect	s Only	
Not Enc	ough Data to Perform (OF Test	
Kaplan-Meier (KM) Statistics using	g Normal Critical Value	s and other Nonparametric UCLs	
KM Mean	0.108	KM Standard Error of Mean	0.0225
90KM SD	0.0225	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.146	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.145	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.175	95% KM Chebyshev UCL	0.206
97.5% KM Chebyshev UCL	0.248	99% KM Chebyshev UCL	0.331
Gamma GOF	Tests on Detected Obs	servations Only	
Not Enc	ough Data to Perform (
	bugh Data to Perform C	GOF Test	
	-	GOF Test	N/A
Gamma	Statistics on Detected	GOF Test	N/A N/A
Gamma Samma K hat (MLE)	Statistics on Detected	AOF Test Data Only k star (bias corrected MLE)	
Gamma S k hat (MLE) Theta hat (MLE)	Statistics on Detected 22.49 0.00478	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	N/A
Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	Statistics on Detected 22.49 0.00478 89.96	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	N/A
Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	Statistics on Detected 22.49 0.00478 89.96 0.108	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	N/A
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g KM Estimates	N/A N/A
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g KM Estimates SD (KM)	N/A N/A 0.0225
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM)	N/A N/A 0.0225 0.0225
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) k hat (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM)	N/A N/A 0.0225 0.0225 19.44 777.5
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	N/A N/A 0.0225 0.0225 19.44 777.5
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) k hat (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471 0.127 0.15	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553 0.14
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) k hat (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471 0.127 0.127	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553 0.14 0.172
Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471 0.127 0.15	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) g KM Estimates g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553 0.14 0.172 0.038
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471 0.127 0.15 a Kaplan-Meier (KM) S 713.8	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) Statistics Adjusted Level of Significance (β) Adjusted Chi Square Value (777.46, β)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553 0.14 0.172 0.038 708.9
Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471 0.127 0.15	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) g KM Estimates g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553 0.14 0.172 0.038
Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Estimates of Ga Mean (KM) Variance (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM)	Statistics on Detected 22.49 0.00478 89.96 0.108 amma Parameters usir 0.108 5.0625E-4 22.83 913.1 0.00471 0.127 0.15 a Kaplan-Meier (KM) S 713.8	AOF Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) g KM Estimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	N/A N/A 0.0225 0.0225 19.44 777.5 0.00553 0.14 0.172 0.038 708.9

SD in Original Scale0.0181SD in Log Scale0.11495% t UCL (assumes normality of ROS data)0.11495% Percentile Bootstrap UCL0.1195% BCA Bootstrap UCL0.11395% Bootstrap UCL0.1195% H-UCL (Log ROS)0.11400Statistics using KM estimates on Logged Data and Assuming Lognormal DistributionKM Geo Mean0.10KM Geo Mean0.10KM Geo Mean0.11Statistics using KM estimates on Logged Data and Assuming Lognormal DistributionKM Geo Mean0.10KM Geo Mean0.10KM SD (logged)0.21295% Critical H Value (KM-Log)1.79KM Standard Error of Mean (logged)0.21295% Critical H Value (KM-Log)0.11Note: KM UCLs may be biased low with this dataset. Other substitution method recommendedDL/2 StatisticsDL/2 NormalDL/2 Log-TransformedMean in Original Scale0.19Mean in Original Scale0.302SD in Log Scale0.212		S Statistics Using Im	puted Non-Detects	
95% I UCL (assumes normality of ROS data) 0.114 95% Percentile Bootsrap UCL 0.1 95% BCA Bootstrap UCL 0.113 95% Bootstrap t UCL 0.11 95% H-UCL (Log ROS) 0.114 95% Bootstrap t UCL 0.11 95% H-UCL (Log ROS) 0.114 95% Bootstrap t UCL 0.11 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Geo Maan 0.11 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Eritical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Eritical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Eritical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Eritical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Eritical H Value (KM-Log) 1.6 Statistics 0.302 SD in Log Scale 1.6	Mean in Original Scale	0.107	Mean in Log Scale	-2.253
95% BCA Bootstrap UCL 0.113 95% Bootstrap UCL 0.11 95% H-UCL (Log ROS) 0.114 0.11 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) -2.253 KM Geo Mean 0.11 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.6 DL/2 Normal DL/2 Log-Trensformed 0.2 0.2 95% Critical H Value (KM-Log) 0.2 DL/2 Norm	SD in Original Scale	0.0181	SD in Log Scale	0.16
95% H-LUCL (Log ROS) 0.114 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) -2.253 KM Geo Mean 0.11 KM SD (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 0.1 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 DL/2 Normal DL/2 Normal DL/2 Log-Transformed 1.67 DL/2 Normal	95% t UCL (assumes normality of ROS data)	0.114	95% Percentile Bootstrap UCL	0.11
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Stein (logged) 2.253 KM Geo Mean 0.11 KM Sto (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.6 DL/2 Normal DL/2 Log-Transformed 0.22 95% Critical H Value (KM-Log) 1.6 DL/2 Normal DL/2 Log-Transformed 0.302 <	95% BCA Bootstrap UCL	0.113	95% Bootstrap t UCL	0.11
KM Mean (logged) -2.253 KM Gao Mean 0.11 KM SD (logged) 0.212 95% Critical H Value (KM-Log) 1.77 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.77 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.77 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.77 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.77 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.77 Note: KM UCLs may be biased low with this dataset. Other substitution method recommended DL/2 Statistics 0.19 Mean in Log Scale 1.67 SD in Original Scale 0.19 Mean in Log Scale 0.22 95% H-IStat UCL 0.20 DL/2 is not a recommended method, provided for comperisons and historical reasons Data do not follow a Discernible Distribution 2 Suggested UCL to Use 95% KM (t) UCL 0.146 1.67 2 2 Warning: Recommended UCL exceeds the maximum observation Warning: Recommended UCL exceeds the maximum observation 3 3 3 Note: Sugge	95% H-UCL (Log ROS)	0.114		
KM SD (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 0.1 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Mean (logged) 0.212 95% Critical H Value (KM-Log) 1.7 Note: KM UCLs may be biased low with this dataset. Other substitution method recommended 01/2 Statistics 01/2 Statistics DL/2 Normal DL/2 log-Transformed -1.67 SD in Original Scale 0.19 Mean in Log Scale 0.22 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.21 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.22 0.21 Suggested UCL to Use 95% KM (t) UCL 0.146 0.146 0.146 Warning: Recommended UCL are provided to help the user to select the most appropriate 95% UCL. Recommended UCL exceeds the maximum observation Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Statistics using KM estimates of	on Logged Data and	Assuming Lognormal Distribution	
KM Standard Error of Men (logged) 0.212 95% H-UCL (KM - Log) 0.1 KM Standard Error of Men (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Men (logged) 0.212 95% Critical H Value (KM-Log) 1.7 KM Standard Error of Men (logged) 0.212 95% Critical H Value (KM-Log) 1.7 Note: KM UCLs may be biased low with this dataset. Other substitution method recommended 0.12 Note: KM UCL may be biased low with this dataset. Other substitution method recommended DL/2 Normal DL/2 Log-Transformed 0.19 Mean in Log Scale 0.2 SD in Original Scale 0.3002 SD in Log Scale 0.2 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.2 DL/2 brot a recommended method, provided for comparisons and historical reasons 0.2 0.2 Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution 0.2 Suggested UCL to Use 95% KM (t) UCL 0.146 0.146 Warning: Recommended UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulation studies will not cover all Real Wo	KM Mean (logged)	-2.253	KM Geo Mean	0.10
KM SD (logged) 0.212 95% Critical H Value (KM-Log) 1.74 KM Standard Error of Mean (logged) 0.212 1	KM SD (logged)	0.212	95% Critical H Value (KM-Log)	1.79
KM Standard Error of Mean (logged) 0.212 Note: KM UCLs may be biased low with this dataset. Other substitution method recommended DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.19 Mean in Log Scale 0.2 SD in Original Scale 0.19 Mean in Log Scale 0.2 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.2 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.2 95% t UCL (Assumes normality) 0.202 Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution Suggested UCL to Use 95% t M(UCL 0.146 Warning: Recommended UCL exceeds the maximum observation VCL. Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. iil 2-nitroenline 88-74-4) 20 Varning: All observations are Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects	KM Standard Error of Mean (logged)	0.212	95% H-UCL (KM -Log)	0.11
Note: KM UCLs may be biased low with this dataset. Other substitution method recommended DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.19 Mean in Log Scale 0.20 SD in Original Scale 0.302 SD in Log Scale 0.20 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.21 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution Suggested UCL to Use 95% KM (t) UCL 0.146 Varning: Recommended UCL exceeds the maximum observation Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations regults will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 15 Number of Deservations 20 Number of Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Number of Distinct Number of Distinct Non-Detects 15 Number of Distinct Number of Distinct Non-Detects 20 Number of Distinct Detects 0	KM SD (logged)	0.212	95% Critical H Value (KM-Log)	1.79
DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.19 Mean in Log Scale 0.167 SD in Original Scale 0.0302 SD in Log Scale 0.22 95% It UCL (Assumes normality) 0.202 95% H-Stat UCL 0.21 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.22 0.22 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.22 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.21 Nonparametric Distribution Free UCL Statistics 0.21 0.21 0.21 Data do not follow a Discernible Distribution 0.21 0.21 0.21 Suggested UCL to Use 95% KM (t) UCL 0.146 0.21 0.21 Warning: Recommended UCL exceeds the maximum observation 0.21 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. <td>KM Standard Error of Mean (logged)</td> <td>0.212</td> <td></td> <td></td>	KM Standard Error of Mean (logged)	0.212		
DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.19 Mean in Log Scale -1.67 SD in Original Scale 0.0302 SD in Log Scale 0.22 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.20 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.22 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.20 0.21 Nonparametric Distribution Free UCL Statistics 0.21 0.22 0.22 Data do not follow a Discernible Distribution 0.21 0.22 0.22 Suggested UCL to Use 95% KM (1) UCL 0.146 0.146 0.146 Warning: Recommended UCL exceeds the maximum observation 0.146 0.146 0.146 Warning: Recommended UCL acceeds the maximum observation 0.146 0.146 0.146 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticican.	Note: KM UCLs may be biased low	with this dataset. Otl	ner substitution method recommended	
Mean in Original Scale 0.19 Mean in Log Scale 1.67 SD in Original Scale 0.0302 SD in Log Scale 0.2 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.20 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.22 Nonparametric Distribution Free UCL Statistics 0.21 0.22 Data do not follow a Discernible Distribution 5 0.22 Suggested UCL to Use 95% KM (t) UCL 0.146 0.146 Warning: Recommended UCL exceeds the maximum observation 0.22 0.24 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 15 Mumber of Observations 20 Number of Distinct Observations 15 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects 0		DL/2 Statistics		
SD in Original Scale 0.0302 SD in Log Scale 0.2 95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.21 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.21 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.21 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 0.21 Nonparametric Distribution Free UCL Statistics 0.21 0.21 Data do not follow a Discernible Distribution 0.22 0.21 Suggested UCL to Use 95% KM (t) UCL 0.146 0.146 Warning: Recommended UCL exceeds the maximum observation 0.22 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 11 iil [2-nitroaniline] 88-74-4) 20 Number of Distinct Observations 15 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 <td>DL/2 Normal</td> <td></td> <td>DL/2 Log-Transformed</td> <td></td>	DL/2 Normal		DL/2 Log-Transformed	
95% t UCL (Assumes normality) 0.202 95% H-Stat UCL 0.20 DL/2 is not a recommended method, provided for comparisons and historical reasons 0.21 Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution Suggested UCL to Use 95% KM (t) UCL 0.146 Warning: Recommended UCL exceeds the maximum observation 0.22 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. atil 2-nitroaniline 88-74-4) General Statistics Total Number of Observations 20 Number of Distinct Detects 0 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Mean in Original Scale	0.19	Mean in Log Scale	-1.67
DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution Suggested UCL to Use 95% KM (t) UCL 0.146 Warning: Recommended UCL exceeds the maximum observation Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. iil [2-nitroaniline 88-74-4) General Statistics Total Number of Observations 20 Number of Distinct Detects 0 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	SD in Original Scale	0.0302	SD in Log Scale	0.21
DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution Suggested UCL to Use 95% KM (t) UCL 0.146 Warning: Recommended UCL exceeds the maximum observation Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. iil [2-nitroaniline 88-74-4) General Statistics Total Number of Observations 20 Number of Distinct Detects 0 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	95% t UCL (Assumes normality)	0.202	95% H-Stat UCL	0.20
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. iii 2-nitroaniline 88-74-4) General Statistics Total Number of Observations 20 Number of Distinct Observations 15 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). Image: Statistic site site specific values to estimate environmental parameters (e.g., EPC, BTV).				
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Idea World data sets; for additional insight the user may want to consult a statistician. Idea World data sets; for additional insight the user may want to consult a statistician. Idea World data sets; for additional insight the user may want to consult a statistician. Idea World data sets; for additional insight the user may want to consult a statistician. Idea World data sets; for additional insight the user may want to consult a statistician. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additional insight the user may want to consult a statistican. Idea World data sets; for additiona	95% KM (t) UCL	0.146		
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Mil 2-nitroaniline 88-74-4) General Statistics Total Number of Observations 20 Number of Distinct Observations 15 Number of Detects 0 Number of Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).			e maximum observation	
III 2-nitroaniline 88-74-4) General Statistics Total Number of Observations 20 Number of Distinct Observations 15 Number of Detects 0 Number of Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen	ded UCL exceeds th		
General Statistics Total Number of Observations 20 Number of Distinct Observations 15 Number of Detects 0 Number of Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 20 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! 15 Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen Note: Suggestions regarding the selection of a 95%	ided UCL exceeds th	o help the user to select the most appropriate 95% UCL.	
Total Number of Observations 20 Number of Distinct Observations 15 Number of Detects 0 Number of Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! 15 Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! 15 The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). 15	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	ded UCL exceeds th 6 UCL are provided t , data distribution, ar	o help the user to select the most appropriate 95% UCL. Ind skewness using results from simulation studies.	
Number of Detects 0 Number of Non-Detects 20 Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Image: Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	ded UCL exceeds th 6 UCL are provided t , data distribution, ar	o help the user to select the most appropriate 95% UCL. Ind skewness using results from simulation studies.	an.
Number of Distinct Detects 0 Number of Distinct Non-Detects 15 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	ded UCL exceeds th 6 UCL are provided t , data distribution, ar /orld data sets; for ac	o help the user to select the most appropriate 95% UCL. nd skewness using results from simulation studies. Iditional insight the user may want to consult a statisticia	an.
Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	ded UCL are provided t 6 UCL are provided t , data distribution, an /orld data sets; for ac General Statistic	o help the user to select the most appropriate 95% UCL. Ind skewness using results from simulation studies. Iditional insight the user may want to consult a statisticia	
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W I 2-nitroaniline 88-74-4) Total Number of Observations	ded UCL exceeds th 6 UCL are provided t , data distribution, an /orld data sets; for ac General Statistic 20	o help the user to select the most appropriate 95% UCL. nd skewness using results from simulation studies. dditional insight the user may want to consult a statisticia	15
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W I 2-nitroaniline 88-74-4) Total Number of Observations Number of Detects	ded UCL are provided t 6 UCL are provided t , data distribution, an /orld data sets; for ac General Statistic 20 0	o help the user to select the most appropriate 95% UCL. Ind skewness using results from simulation studies. Iditional insight the user may want to consult a statisticia S Number of Distinct Observations Number of Non-Detects	15 20
	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W I 2-nitroaniline 88-74-4) Total Number of Observations Number of Detects Number of Distinct Detects	ded UCL are provided t 6 UCL are provided t , data distribution, ar /orld data sets; for ac General Statistic 20 0 0	o help the user to select the most appropriate 95% UCL. Ind skewness using results from simulation studies. Iditional insight the user may want to consult a statisticia S Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	15 20
The data set for variable C (soil 2-nitroaniline 88-74-4) was not processed!	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W I 2-nitroaniline 88-74-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	ded UCL are provided t 6 UCL are provided t , data distribution, ar /orld data sets; for ac General Statistic: 20 0 0 0 0	o help the user to select the most appropriate 95% UCL. nd skewness using results from simulation studies. Iditional insight the user may want to consult a statisticia S Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Statistics and estimates should also be NDs!	15 20
	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W 1 2-nitroaniline 88-74-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	ded UCL exceeds th 6 UCL are provided t , data distribution, an /orld data sets; for ad General Statistic 20 0 0 0 0 0 0 0 0 0 0 0	o help the user to select the most appropriate 95% UCL. Ind skewness using results from simulation studies. Iditional insight the user may want to consult a statisticia S Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Statistics and estimates should also be NDs! Ilso NDs lying below the largest detection limit!	15 20
	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W 1 2-nitroaniline 88-74-4) Total Number of Observations Number of Detects Number of Distinct Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	ded UCL exceeds th 6 UCL are provided t , data distribution, an /orld data sets; for ad General Statistic 20 0 0 0 (NDs), therefore all other statistics are a e specific values to e	o help the user to select the most appropriate 95% UCL. additional insight the user may want to consult a statisticia S Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects S Statistics and estimates should also be NDs! Ilso NDs lying below the largest detection limit! Istimate environmental parameters (e.g., EPC, BTV).	15 20
	Warning: Recommen Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W 1 2-nitroaniline 88-74-4) Total Number of Observations Number of Detects Number of Distinct Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	ded UCL exceeds th 6 UCL are provided t , data distribution, an /orld data sets; for ad General Statistic 20 0 0 0 (NDs), therefore all other statistics are a e specific values to e	o help the user to select the most appropriate 95% UCL. additional insight the user may want to consult a statisticia S Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects S Statistics and estimates should also be NDs! Ilso NDs lying below the largest detection limit! Istimate environmental parameters (e.g., EPC, BTV).	15 20

	General S	Statistics	
Total Number of Observations		Number of Distinct Observations	15
Number of Detects		Number of Non-Detects	20
Number of Distinct Detects	_	Number of Distinct Non-Detects	15
-		fore all statistics and estimates should also be NDs!	
· · · · · · · · · · · · · · · · · · ·		cs are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific valu	ues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil 2-nitroj	ohenol 88-75-5) was not processed!	
C (soil 3&4-methylphenol 65794-96-9)			
	General S		
Total Number of Observations	-	Number of Distinct Observations	16
Number of Detects	3	Number of Non-Detects	17
Number of Distinct Detects	3	Number of Distinct Non-Detects	13
Minimum Detect	0.088	Minimum Non-Detect	0.38
Maximum Detect	0.12	Maximum Non-Detect	0.44
Variance Detects	2.6133E-4	Percent Non-Detects	85%
Mean Detects	0.103	SD Detects	0.0162
Median Detects	0.1	CV Detects	0.157
Skewness Detects	0.722	Kurtosis Detects	N/A
Mean of Logged Detects	-2.284	SD of Logged Detects	0.156
Warning: D	ata set has o	nly 3 Detected Values.	
This is not enough to comp	oute meaningf	ul or reliable statistics and estimates.	
		on Detects Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic		Lilliefors GOF Test	
1% Lilliefors Critical Value	0.429	Detected Data appear Normal at 1% Significance Leve	el
Detected Data a	appear Norma	al at 1% Significance Level	
Note GOF tests	may be unreli	able for small sample sizes	
Kaplan-Meier (KM) Statistics usin	g Normal Crit	ical Values and other Nonparametric UCLs	
KM Mean	0.103	KM Standard Error of Mean	0.00933
90KM SD	0.0132	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.119	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.118	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.131	95% KM Chebyshev UCL	0.143
	0.404	99% KM Chebyshev UCL	0.196
97.5% KM Chebyshev UCL	0.161		
97.5% KM Chebyshev UCL		ected Observations Only	
97.5% KM Chebyshev UCL	Tests on Det	-	

K C Toot Statistic	0.026	Kolmogorov Smirrov COE	
K-S Test Statistic 5% K-S Critical Value	0.236	Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significan	
			ce Levei
	aamma Disu	ibuted at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	61.48	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00167	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	368.9	nu star (bias corrected MLE)	N/A
Mean (detects)	0.103	nu star (bias correcteu)	N/A
	0.105		
Gamma BOS	Statistics us	ing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
-		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum	0.0868	Mean	0.102
Maximum	0.12	Median	0.102
SD	0.12	CV	0.0882
k hat (MLE)	135.8	k star (bias corrected MLE)	115.5
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected MLL)	4618
Adjusted Level of Significance (β)	0.038		4018
Adjusted Level of Significance (β) Approximate Chi Square Value (N/A, α)	4461	Adjusted Chi Square Value (N/A, β)	4449
95% Gamma Approximate UCL	0.106	95% Gamma Adjusted UCL	4449 N/A
Estimates of G	amma Parar	neters using KM Estimates	
Mean (KM)	0.103	SD (KM)	0.0132
Variance (KM)	1.7422E-4	SE of Mean (KM)	0.00933
k hat (KM)	60.5	k star (KM)	51.46
nu hat (KM)	2420	nu star (KM)	2058
theta hat (KM)	0.0017	theta star (KM)	0.002
80% gamma percentile (KM)	0.114	90% gamma percentile (KM)	0.121
95% gamma percentile (KM)	0.127	99% gamma percentile (KM)	0.139
Comm	o Koplon M		
	-	eier (KM) Statistics	10/6
Approximate Chi Square Value (N/A, α)	1954	Adjusted Chi Square Value (N/A, β)	1946
95% KM Approximate Gamma UCL	0.108	95% KM Adjusted Gamma UCL	0.109
L agnormal OO	E Toot on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.99	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.99	Detected Data appear Lognormal at 10% Significance I	مريما
Lilliefors Test Statistic	0.789	Lilliefors GOF Test	-9461
10% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 10% Significance I	ورروا
		nal at 10% Significance Level	-9961
	-	liable for small sample sizes	
	may be unite	וומאיפ ועו פווומוו פמווואיב פולבפ	
	S Statietice I	Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-2.284
	0.102		-2.204

SD in Original Scale			
-	0.00898	SD in Log Scale	0.0873
95% t UCL (assumes normality of ROS data)	0.106	95% Percentile Bootstrap UCL	0.105
95% BCA Bootstrap UCL	0.106	95% Bootstrap t UCL	0.106
95% H-UCL (Log ROS)	N/A		
Statistics using KM estimates of	n Logged Da	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-2.284	KM Geo Mean	0.102
KM SD (logged)	0.127	95% Critical H Value (KM-Log)	1.746
KM Standard Error of Mean (logged)	0.09	95% H-UCL (KM -Log)	0.108
KM SD (logged)	0.127	95% Critical H Value (KM-Log)	1.746
KM Standard Error of Mean (logged)	0.09		
	with this data	aset. Other substitution method recommended	
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.185	Mean in Log Scale	-1.713
SD in Original Scale	0.0367	SD in Log Scale	0.254
95% t UCL (Assumes normality)	0.199	95% H-Stat UCL	0.207
DL/2 is not a recommended me	thod, provide	ed for comparisons and historical reasons	
Managemen	uia Distrikusi		
-		on Free UCL Statistics	
	Normal Dist	tributed at 1% Significance Level	
	Suggested l		
95% KM (t) UCL	0.119		
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	lorld data cot	ts; for additional insight the user may want to consult a statisticia	
HOWEVER, SITURATIONS LESUITS WIII HOL COVEL AIL REAL M	Unu uata set	is, for additional insight the user may want to consult a statisticia	an.
		is, for additional insight the user may want to consult a statistica	an.
			an.
			an.
	General S		an.
			an. 13
(soil 3,3'-dichlorobenzidine 91-94-1)	General S	Statistics	
(soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations	General S 20	Statistics Number of Distinct Observations	13
C (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects	General S 20 0 0	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	13 20
e (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	General S 20 0 0 (NDs), there	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects store all statistics and estimates should also be NDs!	13 20
c (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	General S 20 0 0 (NDs), there other statisti	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit!	13 20
C (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	General S 20 0 0 (NDs), there other statisti	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects store all statistics and estimates should also be NDs!	13 20
c (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General S 20 0 (NDs), there other statisti e specific val	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects sfore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV).	13 20
(soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General S 20 0 (NDs), there other statisti e specific val	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit!	13 20
c (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General S 20 0 (NDs), there other statisti e specific val	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects sfore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV).	13 20
(soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil	General S 20 0 (NDs), there other statisti e specific val	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects sfore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV).	13 20
(soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil	General S 20 0 (NDs), there other statisti e specific val	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects sfore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV).	13 20
c (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil	General S 20 0 (NDs), there other statisti e specific val 3,3'-dichlor	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects store all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV). robenzidine 91-94-1) was not processed!	13 20
c (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil c (soil 3-nitroaniline 99-09-2)	General S 20 0 0 (NDs), there other statisti specific value 3,3'-dichlor	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects store all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV). robenzidine 91-94-1) was not processed! Statistics	13 20 13
C (soil 3,3'-dichlorobenzidine 91-94-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General S 20 0 (NDs), there other statisti e specific val 3,3'-dichlor	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects store all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV). robenzidine 91-94-1) was not processed!	13 20

Number of Distinct Detects	0	Number of Distinct Non-Detects	15
-		erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil 3-nit	roaniline 99-09-2) was not processed!	
C (soil 4,6-dinitro-2-methylphenol 534-52-1)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
		erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil 4	6-dinitro-2	-methylphenol 534-52-1) was not processed!	
	,0-41111-0-2		
C (soil 4-bromophenyl-phenyl ether 101-55-3)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
	(15.) 1		
	<u> </u>	erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil 4-	promopher	nyl-phenyl ether 101-55-3) was not processed!	
C (soil 4-chloro-3-methylphenol 59-50-7)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
		· · · · · · · · · · · · · · · · · · ·	
-	•	erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
I ne Project I eam may decide to use alternative site	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data act for variable O (act)	A-oblara 3	-methylphenol 59-50-7) was not processed!	
		meanyiphenor 03-00-7 / was not processed!	

soil 4-chloroaniline 106-47-8)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
-		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (s	oil 4-chlor	oaniline 106-47-8) was not processed!	
soil 4-chlorophenyl-phenyl ether 7005-72-3)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
The data set for variable C (soil 4-c	hloropheny	I-phenyl ether 7005-72-3) was not processed!	
	hloropheny	I-phenyl ether 7005-72-3) was not processed!	
		I-phenyl ether 7005-72-3) was not processed! Statistics	
			8
soil 4-chlorotoluene 106-43-4)	General	Statistics	-
soil 4-chlorotoluene 106-43-4) Total Number of Observations	General 11	Statistics Number of Distinct Observations	
soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects	General 11 0 0	Statistics Number of Distinct Observations Number of Non-Detects	11
soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	General 11 0 0 (NDs), ther	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	11
soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	General 11 0 0 (NDs), ther other statis	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs!	11
soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General 11 0 (NDs), ther other statis	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! alues to estimate environmental parameters (e.g., EPC, BTV).	11
soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General 11 0 (NDs), ther other statis	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit!	11
(soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	General 11 0 (NDs), ther other statis	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! alues to estimate environmental parameters (e.g., EPC, BTV).	11
(soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (set	General 11 0 0 (NDs), ther other statis e specific va oil 4-chlore	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! alues to estimate environmental parameters (e.g., EPC, BTV). btoluene 106-43-4) was not processed!	11
soil 4-chlorotoluene 106-43-4) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (set	General 11 0 0 (NDs), ther other statis e specific va oil 4-chlore	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! alues to estimate environmental parameters (e.g., EPC, BTV).	11

Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Maria Allaharan Mar Dahah			
-		efore all statistics and estimates should also be NDs!	
		ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	
	e specific va	ides to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	l 4-methyl-2-	-pentanone 108-10-1) was not processed!	
· · · · · · · · · · · · · · · · · · ·		, .	
C (soil 4-nitroaniline 100-01-6)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects		efore all statistics and estimates should also be NDs!	
-		ics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The date set for veriable C	(coil 4 pitro	aniline 100-01-6) was not processed!	
	(5011 4-11100	annine 100-01-0) was not processed!	
O(acii A piraphana 100,02,7)			
C (soil 4-nitrophenol 100-02-7)			
	Gonoral	Statistics	
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
	Ũ		10
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
-		ics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
		(
The data set for variable C	(soil 4-nitro	phenol 100-02-7) was not processed!	
		, .	
C (soil acenaphthene 83-32-9)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	4	Number of Non-Detects	16
Number of Distinct Detects	4	Number of Distinct Non-Detects	12
Minimum Detect	0.065	Minimum Non-Detect	0.187
Maximum Detect	0.55	Maximum Non-Detect	0.22
Variance Detects	0.0477	Percent Non-Detects	80%
Mean Detects	0.229	SD Detects	0.218
Median Detects	0.15	CV Detects	0.955
Skewness Detects	1.764	Kurtosis Detects	3.285

Mean of Logged Detects	-1.786	SD of Logged Detects	0.89
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.807	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Lev	el
Lilliefors Test Statistic	0.356	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Lev	el
Detected Data a	appear Norm	al at 1% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics usin	g Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.143	KM Standard Error of Mean	0.0365
90KM SD	0.102	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.206	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.203	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.253	95% KM Chebyshev UCL	0.302
97.5% KM Chebyshev UCL	0.371	99% KM Chebyshev UCL	0.506
		ł – – – – – – – – – – – – – – – – – – –	
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.348	Anderson-Darling GOF Test	
5% A-D Critical Value	0.661	Detected data appear Gamma Distributed at 5% Significance	ce Level
K-S Test Statistic	0.296	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.399	Detected data appear Gamma Distributed at 5% Significance	ce Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	1.757	k star (bias corrected MLE)	0.606
Theta hat (MLE)	0.13	Theta star (bias corrected MLE)	0.377
nu hat (MLE)	14.06	nu star (bias corrected)	4.848
Mean (detects)	0.229		
Gamma ROS	Statistics us	ing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is especi	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.049	Mean	0.142
Maximum	0.55	Median	0.117
SD	0.104	CV	0.733
k hat (MLE)	3.62	k star (bias corrected MLE)	3.11
Theta hat (MLE)	0.0391	Theta star (bias corrected MLE)	0.0456
nu hat (MLE)	144.8	nu star (bias corrected)	124.4
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (124.42, α)		Adjusted Chi Square Value (124.42, β)	97.91
95% Gamma Approximate UCL	0.177	95% Gamma Adjusted UCL	N/A
Estimates of G	amma Parar	neters using KM Estimates	

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

C (soil | acenaphthylene | 208-96-8)

	General S	tatistics	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	4	Number of Non-Detects	16
Number of Distinct Detects	4	Number of Distinct Non-Detects	12
Minimum Detect	0.067	Minimum Non-Detect	0.1
Maximum Detect	0.29	Maximum Non-Detect	0.2
Variance Detects	0.00965	Percent Non-Detects	809
Mean Detects	0.147	SD Detects	0.0
Median Detects	0.115	CV Detects	0.6
Skewness Detects	1.662	Kurtosis Detects	3.7
Mean of Logged Detects	-2.067	SD of Logged Detects	0.6
Norma	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.829	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Lev	rel
Lilliefors Test Statistic	0.357	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Lev	el
Detected Data a	ppear Norma	al at 1% Significance Level	
Note GOF tests m	nay be unreli	able for small sample sizes	
Kaplan-Meier (KM) Statistics using	Normal Crit 0.109	ical Values and other Nonparametric UCLs KM Standard Error of Mean	0.0
90KM SD	0.0473	95% KM (BCA) UCL	0.0 N/A
95% KM (t) UCL	0.0473	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.138	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.163	95% KM Chebyshev UCL	0.1
97.5% KM Chebyshev UCL	0.222	99% KM Chebyshev UCL	0.2
Gamma GOF 1	Fests on Det	ected Observations Only	
A-D Test Statistic	0.387	Anderson-Darling GOF Test	
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significance	ce Lev
K-S Test Statistic	0.323	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance	ce Lev
Detected data appear (ributed at 5% Significance Level	
		able for small sample sizes	
Gamma S	Statistics on I	Detected Data Only	
k hat (MLE)	3.534	k star (bias corrected MLE)	1.(
Theta hat (MLE)	0.0415	Theta star (bias corrected MLE)	0.1
nu hat (MLE)	28.27	nu star (bias corrected)	8.4
Mean (detects)	0.147		
0			
		ng Imputed Non-Detects	
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	

		vield incorrect values of UCLs and BTVs	
		n the sample size is small.	
		y be computed using gamma distribution on KM estimates	
Minimum	0.0616	Mean	0.109
Maximum	0.29	Median	0.0986
SD	0.0472	CV	0.433
k hat (MLE)	8.702	k star (bias corrected MLE)	7.43
Theta hat (MLE)	0.0125	Theta star (bias corrected MLE)	0.0147
nu hat (MLE)	348.1	nu star (bias corrected)	297.2
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (297.21, α)	258.3	Adjusted Chi Square Value (297.21, β)	255.4
95% Gamma Approximate UCL	0.125	95% Gamma Adjusted UCL	N/A
Estimates of G	amma Param	eters using KM Estimates	
Mean (KM)	0.109	SD (KM)	0.0473
Variance (KM)	0.00224	SE of Mean (KM)	0.0181
k hat (KM)	5.272	k star (KM)	4.514
nu hat (KM)	210.9	nu star (KM)	180.6
theta hat (KM)	0.0206	theta star (KM)	0.024
80% gamma percentile (KM)	0.148	90% gamma percentile (KM)	0.177
95% gamma percentile (KM)	0.204	99% gamma percentile (KM)	0.261
Gamm	a Kaplan-Mei	ier (KM) Statistics	
Approximate Chi Square Value (180.58, α)	150.5	Adjusted Chi Square Value (180.58, β)	148.3
95% KM Approximate Gamma UCL	0.13	95% KM Adjusted Gamma UCL	0.132
Lognormal GO	F Test on De	tected Observations Only	
Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.285	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data app	oear Lognorm	nal at 10% Significance Level	
Note GOF tests	nay be unreli	able for small sample sizes	
Lognormal ROS	S Statistics Us	sing Imputed Non-Detects	
Mean in Original Scale	0.108	Mean in Log Scale	-2.278
SD in Original Scale	0.0461	SD in Log Scale	0.303
95% t UCL (assumes normality of ROS data)	0.126	95% Percentile Bootstrap UCL	0.127
95% BCA Bootstrap UCL	0.136	95% Bootstrap t UCL	0.148
95% H-UCL (Log ROS)	0.122	· ·	
Statictice using KM actimates	n Logged De	ata and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	0.101
KM Mean (logged) KM SD (logged)	-2.288 0.347	95% Critical H Value (KM-Log)	1.886
		· •	0.125
KM Standard Error of Mean (logged)	0.174	95% H-UCL (KM -Log)	
KM SD (logged) KM Standard Error of Mean (logged)	0.347 0.174	95% Critical H Value (KM-Log)	1.886
	DL/2 Sta	atistics	

DL/2 Normal	0.100	DL/2 Log-Transformed	0.055
Mean in Original Scale	0.109	Mean in Log Scale	-2.258
SD in Original Scale	0.0437	SD in Log Scale	0.264
95% t UCL (Assumes normality)	0.126	95% H-Stat UCL	0.121
DL/2 IS NOT & recommended me	inoa, proviae	ed for comparisons and historical reasons	
-		on Free UCL Statistics	
Detected Data appear	Normal Dist	ributed at 1% Significance Level	
	Suggested L	JCL to Use	
95% KM (t) UCL	0.14		
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size,	data distribu	tion, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data set	s; for additional insight the user may want to consult a statisticia	ın.
C (soil acetone 67-64-1)	General S	Statistics	
Total Number of Observations		Number of Distinct Observations	10
Number of Detects	2	Number of Non-Detects	9
Number of Distinct Detects	2	Number of Distinct Non-Detects	8
Minimum Detect	1.6	Minimum Non-Detect	0.032
Maximum Detect	4.9	Maximum Non-Detect	0.0955
Variance Detects	5.445	Percent Non-Detects	81.82%
Mean Detects	3.25	SD Detects	2.333
Median Detects	3.25	CV Detects	0.718
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	1.03	SD of Logged Detects	0.791
Warning: Da	ata set has o	nly 2 Detected Values.	
This is not enough to compu	ute meaningf	ul or reliable statistics and estimates.	
		on Detects Only	
Not Eno	ugh Data to	Perform GOF Test	
Kaplan-Meier (KM) Statistics using	ı Normal Crit	ical Values and other Nonparametric UCLs	
KM Mean	0.617	KM Standard Error of Mean	0.608
90KM SD	1.427	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.72	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.618	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	2.442	95% KM Chebyshev UCL	3.269
97.5% KM Chebyshev UCL	4.416	99% KM Chebyshev UCL	6.67
Gamma COF	Tests on Det	ected Observations Only	
		Perform GOF Test	
Gamma	Statistics on	Detected Data Only	

k hat (MLE)	3.513	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.925	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	14.05	nu star (bias corrected)	N/A
Mean (detects)	3.25		
Estimates of Ga	mma Parameters usi	ng KM Estimates	
Mean (KM)	0.617	SD (KM)	1.427
Variance (KM)	2.035	SE of Mean (KM)	0.608
k hat (KM)	0.187	k star (KM)	0.008
	4.116		4.327
nu hat (KM)		nu star (KM)	
theta hat (KM)	3.299	theta star (KM)	3.138
80% gamma percentile (KM) 95% gamma percentile (KM)	0.806	90% gamma percentile (KM) 99% gamma percentile (KM)	1.866 6.858
	3.194	99% gamma percentile (KM)	0.000
Gamma	a Kaplan-Meier (KM) \$	Statistics	
		Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (4.33, α)	0.855	Adjusted Chi Square Value (4.33, β)	0.637
95% KM Approximate Gamma UCL	3.123	95% KM Adjusted Gamma UCL	4.191
	- Test on Detected Ol	hearvations Only	
	ugh Data to Perform	-	
Lognormal ROS	Statistics Using Impu	uted Non-Detects	
Mean in Original Scale	0.615	Mean in Log Scale	-2.801
SD in Original Scale	1.497	SD in Log Scale	1.968
95% t UCL (assumes normality of ROS data)	1.433	95% Percentile Bootstrap UCL	1.371
95% BCA Bootstrap UCL	1.805	95% Bootstrap t UCL	58.06
95% H-UCL (Log ROS)	9.944		
Statistics using KM estimates of	n Logged Data and A	ssuming Lognormal Distribution	
		ssuming Lognormal Distribution	0 0722
KM Mean (logged)	-2.629	KM Geo Mean	
KM Mean (logged) KM SD (logged)	-2.629 1.741	KM Geo Mean 95% Critical H Value (KM-Log)	4.567
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	-2.629 1.741 0.742	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	4.567 4.06
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	-2.629 1.741 0.742 1.741	KM Geo Mean 95% Critical H Value (KM-Log)	4.567
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	-2.629 1.741 0.742	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	4.06
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	-2.629 1.741 0.742 1.741	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	4.567 4.06
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	-2.629 1.741 0.742 1.741 0.742	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	4.567 4.06
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	-2.629 1.741 0.742 1.741 0.742	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	4.567 4.06
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	-2.629 1.741 0.742 1.741 0.742 DL/2 Statistics	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed	4.567 4.06 4.567
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale	-2.629 1.741 0.742 1.741 0.742 DL/2 Statistics 0.624	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale	4.567 4.06 4.567 -2.461
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale	-2.629 1.741 0.742 1.741 0.742 0.742 DL/2 Statistics 0.624 1.493 1.44	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	4.567 4.06 4.567 -2.461 1.771
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met	-2.629 1.741 0.742 1.741 0.742 0.742 DL/2 Statistics 0.624 1.493 1.44 chod, provided for con	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed DL/2 Log-Transformed SD in Log Scale 95% H-Stat UCL nparisons and historical reasons	4.567 4.06 4.567 -2.461 1.771
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met	-2.629 1.741 0.742 1.741 0.742 0.742 DL/2 Statistics 0.624 1.493 1.44	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.567 4.06 4.567 -2.461 1.771
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met	-2.629 1.741 0.742 1.741 0.742 0.742 DL/2 Statistics 0.624 1.493 1.44 chod, provided for con	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.567 4.06 4.567 -2.461 1.771
KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparamet Data do no	-2.629 1.741 0.742 1.741 0.742 0.742 DL/2 Statistics 0.624 1.493 1.44 chod, provided for con	KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL nparisons and historical reasons JCL Statistics Distribution	4.567 4.06 4.567 -2.461 1.771

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

C (soil | acetophenone | 98-86-2)

	General Statistic	5	
Total Number of Observations	20	Number of Distinct Observations	17
Number of Detects	2	Number of Non-Detects	18
Number of Distinct Detects	2	Number of Distinct Non-Detects	15
Minimum Detect	0.068	Minimum Non-Detect	0.38
Maximum Detect	0.56	Maximum Non-Detect	0.51
Variance Detects	0.121	Percent Non-Detects	90%
Mean Detects	0.314	SD Detects	0.348
Median Detects	0.314	CV Detects	1.108
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.634	SD of Logged Detects	1.491
Mean of Logged Decess	1.004		1.401
Warning: Da	ata set has only 2 De	etected Values	
-	-	liable statistics and estimates.	
Norm	al GOF Test on Det	acts Only	
	and OP Test on Der ough Data to Perform		
NOT ENO	lugh Data to Periorn	TGOF Test	
Karlan Majar (KN) Statistics using		use and other Nensermetric LICLs	
Kapian-Meler (KM) Statistics using KM Mean		ues and other Nonparametric UCLs KM Standard Error of Mean	0.0339
90KM SD	0.107	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.151	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.148	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.194	95% KM Chebyshev UCL	0.24
97.5% KM Chebyshev UCL	0.304	99% KM Chebyshev UCL	0.43
0	Tanta an Data stad (Nacar stiens Only	
	Tests on Detected C	•	
Not Eno	ough Data to Perform	TGOF Test	
	Platiatian on Datast	d Data Only	
	Statistics on Detecte	-	N1/A
k hat (MLE)	1.19	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.264	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	4.761	nu star (bias corrected)	N/A
Mean (detects)	0.314		
	amma Parameters u	•	0.10-
Mean (KM)	0.0926	SD (KM)	0.107
Variance (KM)	0.0115	SE of Mean (KM)	0.0339
k hat (KM)	0.746	k star (KM)	0.667
nu hat (KM)	29.83	nu star (KM)	26.69
theta hat (KM)	0.124	theta star (KM)	0.139
80% gamma percentile (KM)		90% gamma percentile (KM)	0.235

95% gamma percentile (KM)	0.321	99% gamma percentile (KM)	0.526
55% gamma percentile (KW)	0.021	3370 ganna percenue (KW)	0.020
Gamm	a Kaplan-Meier (KM)	Statistics	
		Adjusted Level of Significance (β)	0.038
Approximate Chi Square Value (26.69, α)	15.91	Adjusted Chi Square Value (26.69, β)	15.25
95% KM Approximate Gamma UCL	0.155	95% KM Adjusted Gamma UCL	0.162
Lognormal GO	F Test on Detected C	Observations Only	
	ough Data to Perform	•	
	S Statistics Using Imp		
Mean in Original Scale	0.0946	Mean in Log Scale	-2.585
SD in Original Scale	0.111	SD in Log Scale	0.537
95% t UCL (assumes normality of ROS data)	0.138	95% Percentile Bootstrap UCL	0.142
95% BCA Bootstrap UCL	0.17	95% Bootstrap t UCL	0.364
95% H-UCL (Log ROS)	0.112		
Statistics using KM estimates of	on Logged Data and A	Assuming Lognormal Distribution	
KM Mean (logged)	-2.583	KM Geo Mean	0.075
KM SD (logged)	0.46	95% Critical H Value (KM-Log)	1.981
KM Standard Error of Mean (logged)	0.145	95% H-UCL (KM -Log)	0.103
KM SD (logged)	0.46	95% Critical H Value (KM-Log)	1.98
		(0,	
KM Standard Error of Mean (logged) Note: KM UCLs may be biased low	0.145 with this dataset. Oth DL/2 Statistics	er substitution method recommended	
	with this dataset. Oth	er substitution method recommended DL/2 Log-Transformed	
Note: KM UCLs may be biased low	with this dataset. Oth		-1.602
Note: KM UCLs may be biased low DL/2 Normal	with this dataset. Oth DL/2 Statistics	DL/2 Log-Transformed	-1.602
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale	DL/2 Statistics	DL/2 Log-Transformed Mean in Log Scale	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	DL/2 Statistics 0.214 0.0881 0.248	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me	DL/2 Statistics 0.214 0.0881 0.248	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame	DL/2 Statistics 0.214 0.2881 0.248	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 ethod, provided for co ttric Distribution Free ot follow a Discernible	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution	
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 ethod, provided for co ttric Distribution Free	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Data do n 95% KM (t) UCL	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co third provided for co tric Distribution Free ot follow a Discernible Suggested UCL to U 0.151	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics Distribution	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Data do n 95% KM (t) UCL	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co thick provided for co tric Distribution Free ot follow a Discernible Suggested UCL to U 0.151	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics Distribution Ise e collected in a random and unbiased manner.	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Data do n 95% KM (t) UCL The calculated UCLs are based on assumptin Please verify the d	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co third, provided for co tric Distribution Free ot follow a Discernible Suggested UCL to L 0.151 ons that the data were ata were collected from	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics Distribution Ise e collected in a random and unbiased manner.	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Data do n 95% KM (t) UCL The calculated UCLs are based on assumption Please verify the d If the data were collected	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co third, provided for co tric Distribution Free ot follow a Discernible Suggested UCL to L 0.151 ons that the data were ata were collected from	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution Ise collected in a random and unbiased manner. om random locations. other non-random methods,	0.349
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Data do n Data do n 95% KM (t) UCL The calculated UCLs are based on assumption Please verify the d If the data were collected then contact a second s	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co tric Distribution Free ot follow a Discernible Suggested UCL to U 0.151 ons that the data were ata were collected from using judgmental or costatistician to correct	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution Ise collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs.	0.34
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Data do n 95% KM (t) UCL The calculated UCLs are based on assumption Please verify the d If the data were collected then contact a second seco	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co thick provided for co ttric Distribution Free ot follow a Discernible Suggested UCL to L 0.151 ons that the data were ata were collected free using judgmental or estatistician to correctly 6 UCL are provided to	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution Ise c collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. a help the user to select the most appropriate 95% UCL	0.34
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Data do n 95% KM (t) UCL The calculated UCLs are based on assumption Please verify the d If the data were collected then contact a second s	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co third, provided for co tric Distribution Free ot follow a Discernible Suggested UCL to U 0.151 ons that the data were ata were collected from using judgmental or costatistician to correctly 6 UCL are provided to , data distribution, an	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution Ise c collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. a help the user to select the most appropriate 95% UCL. d skewness using results from simulation studies.	0.34
Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Data do n 95% KM (t) UCL The calculated UCLs are based on assumption Please verify the d If the data were collected then contact a second s	with this dataset. Oth DL/2 Statistics 0.214 0.0881 0.248 othod, provided for co third, provided for co tric Distribution Free ot follow a Discernible Suggested UCL to U 0.151 ons that the data were ata were collected from using judgmental or costatistician to correctly 6 UCL are provided to , data distribution, an	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL mparisons and historical reasons UCL Statistics a Distribution Ise c collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. a help the user to select the most appropriate 95% UCL	0.34

	General	Statistics	
Total Number of Observations		Number of Distinct Observations	10
Number of Detects		Number of Non-Detects	10
Number of Distinct Detects		Number of Distinct Non-Detects	10
	0		10
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
	· · ·	tics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
	· ·		
The data set for variable C	(soil acrylo	pnitrile 107-13-1) was not processed!	
C (soil aluminum 7429-90-5)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	19
		Number of Missing Observations	0
Minimum	1200	Mean	8051
Maximum	13000	Median	8500
SD	3040	Std. Error of Mean	679.8
Coefficient of Variation	0.378	Skewness	-0.783
		1	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.931	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.191	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.223	Data appear Normal at 1% Significance Level	
Data appea	ar Normal at	1% Significance Level	
As	suming Nori	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	9226	95% Adjusted-CLT UCL (Chen-1995)	9042
		95% Modified-t UCL (Johnson-1978)	9207
		· I	
	Gamma	GOF Test	
A-D Test Statistic	1.417	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.745	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.256	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.195	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamr	na Distribute	d at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	4.434	k star (bias corrected MLE)	3.803
Theta hat (MLE)	1816	Theta star (bias corrected MLE)	2117
nu hat (MLE)	177.4	nu star (bias corrected)	152.1
MLE Mean (bias corrected)	8051	MLE Sd (bias corrected)	4129
		Approximate Chi Square Value (0.05)	124.6

Ass	suming Gamma D	stribution	
95% Approximate Gamma UCL	9828	95% Adjusted Gamma UCL	9986
		Test	
Shapiro Wilk Test Statistic	Lognormal GOF		
10% Shapiro Wilk Critical Value	0.756	Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.92	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.274	Data Not Lognormal at 10% Significance Level	
	ognormal at 10% S	5 5	
	Lognormal Stati	stics	
Minimum of Logged Data	7.09	Mean of logged Data	8.87
Maximum of Logged Data	9.473	SD of logged Data	0.58
Assu	iming Lognormal I	Distribution	
95% H-UCL	11277	90% Chebyshev (MVUE) UCL	11882
95% Chebyshev (MVUE) UCL	13452	97.5% Chebyshev (MVUE) UCL	15631
99% Chebyshev (MVUE) UCL			
Nonparame	tric Distribution Fr	ee UCL Statistics	
•	r to follow a Disce		
Nonpar	ametric Distributio	on Free UCLs	
95% CLT UCL	9169	95% BCA Bootstrap UCL	9054
95% CLT UCL 95% Standard Bootstrap UCL	9169 9137	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	9054 9105
95% Standard Bootstrap UCL	9137	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	9105 9112
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	9137 9072	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	9105 9112 11014
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	9137 9072 10090	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	9105 9112 11014
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	9137 9072 10090 12296	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	9105 9112 11014
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL	9137 9072 10090 12296 Suggested UCL t 9226	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL	9137 9072 10090 12296 Suggested UCL t 9226	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution,	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies.	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution,	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Student's-t UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	9137 9072 10090 12296 Suggested UCL t 9226 GUCL are provide , data distribution, forld data sets; for	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies.	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size. However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution, forld data sets; for	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide reliable. Chen's and Johnson's met	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution, forld data sets; for	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size. However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution, forld data sets; for	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide reliable. Chen's and Johnson's met	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution, forld data sets; for	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici then, Johnson, Lognormal, and Gamma) may not be istments for positvely skewed data sets.	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide reliable. Chen's and Johnson's met	9137 9072 10090 12296 Suggested UCL t 9226 OUCL are provide , data distribution, /orld data sets; for ence limits (e.g., C thods provide adju	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici then, Johnson, Lognormal, and Gamma) may not be istments for positvely skewed data sets.	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide reliable. Chen's and Johnson's met aniline 62-53-3)	9137 9072 10090 12296 Suggested UCL t 9226 6 UCL are provide , data distribution, /orld data sets; for ence limits (e.g., C thods provide adju General Statis	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici then, Johnson, Lognormal, and Gamma) may not be istments for positvely skewed data sets.	9105 9112 11014 14815
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size. However, simulations results will not cover all Real W Note: For highly negatively-skewed data, confide reliable. Chen's and Johnson's met aniline 62-53-3) Total Number of Observations	9137 9072 10090 12296 Suggested UCL to 9226 OUCL are provide out a distribution, forld data sets; for ence limits (e.g., Control adjute thods provide adjute General Statis 20	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici then, Johnson, Lognormal, and Gamma) may not be istments for positvely skewed data sets.	9105 9112 11014 14815

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable C (soil | aniline | 62-53-3) was not processed!

C (soil | anthracene | 120-12-7)

	General S	Statistics	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	4	Number of Non-Detects	16
Number of Distinct Detects	4	Number of Distinct Non-Detects	12
Minimum Detect	0.14	Minimum Non-Detect	0.18
Maximum Detect	0.69	Maximum Non-Detect	0.22
Variance Detects	0.0509	Percent Non-Detects	80%
Mean Detects	0.403	SD Detects	0.22
Median Detects	0.39	CV Detects	0.56
Skewness Detects	0.328	Kurtosis Detects	1.40
Mean of Logged Detects	-1.056	SD of Logged Detects	0.6
Norma	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.969	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.237	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Leve	el
Detected Data ap	opear Norma	al at 1% Significance Level	
Note GOF tests m	ay be unreli	able for small sample sizes	
Kaplan-Meier (KM) Statistics using	Normal Crit	tical Values and other Nonparametric UCLs	
Kaplan-Meier (KM) Statistics using KM Mean	Normal Crit	tical Values and other Nonparametric UCLs KM Standard Error of Mean	0.03
		-	0.03 N/A
KM Mean	0.193	KM Standard Error of Mean	
KM Mean 90KM SD	0.193 0.137	KM Standard Error of Mean 95% KM (BCA) UCL	N/A
KM Mean 90KM SD 95% KM (t) UCL	0.193 0.137 0.253	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A N/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL	0.193 0.137 0.253 0.251	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A 0.3
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.193 0.137 0.253 0.251 0.298 0.413	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	N/A N/A N/A 0.34
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.193 0.137 0.253 0.251 0.298 0.413	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 0.34
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T	0.193 0.137 0.253 0.251 0.298 0.413	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 0.34 0.54
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic	0.193 0.137 0.253 0.251 0.298 0.413 Fests on Det 0.287	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL ected Observations Only Anderson-Darling GOF Test	N/A N/A N/A 0.3 0.5
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value	0.193 0.137 0.253 0.251 0.298 0.413 Tests on Det 0.287 0.659	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 0.3 0.5
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.193 0.137 0.253 0.251 0.298 0.413 Tests on Det 0.287 0.659 0.258 0.396	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected data appear Gamma Distributed at 5% Significanc Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significanc	N/A N/A N/A 0.3 0.5
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear C	0.193 0.137 0.253 0.251 0.298 0.413 Fests on Det 0.287 0.659 0.258 0.396 Gamma Dist	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL ected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significanc Kolmogorov-Smirnov GOF	N/A N/A 0.3 0.5
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear (Compared to the state of t	0.193 0.137 0.253 0.251 0.298 0.413 Fests on Det 0.287 0.659 0.258 0.396 Gamma Dist ay be unreli	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 0000 Comparison Com	N/A N/A N/A 0.3 0.5
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear (Comparison) Note GOF tests m	0.193 0.137 0.253 0.251 0.298 0.413 Fests on Det 0.287 0.659 0.258 0.396 Gamma Dist may be unreli	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance ributed at 5% Significance Level able for small sample sizes	N/A N/A 0.3 0.5
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear O Note GOF tests m Gamma S k hat (MLE)	0.193 0.137 0.253 0.251 0.298 0.413 Tests on Det 0.287 0.659 0.258 0.396 Gamma Dist hay be unreliant Statistics on 3.59	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 0000 KM C	N/A N/A N/A 0.3/ 0.5/ e Leve
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF T A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear (Comparison) Note GOF tests m	0.193 0.137 0.253 0.251 0.298 0.413 Fests on Det 0.287 0.659 0.258 0.396 Gamma Dist may be unreli	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance ributed at 5% Significance Level able for small sample sizes Detected Data Only	N/A N/A 0.34 0.54

Gamma ROS	Statistics us	ing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS n	nethod may	yield incorrect values of UCLs and BTVs	
This is especia	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.165
Maximum	0.69	Median	0.105
SD	0.158	CV	0.954
k hat (MLE)	1.612	k star (bias corrected MLE)	1.404
Theta hat (MLE)	0.102	Theta star (bias corrected MLE)	0.118
nu hat (MLE)	64.5	nu star (bias corrected)	56.16
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (56.16, α)	39.93	Adjusted Chi Square Value (56.16, β)	38.85
95% Gamma Approximate UCL	0.232	95% Gamma Adjusted UCL	N/A
Estimates of Ga	mma Paran	neters using KM Estimates	
Mean (KM)	0.193	SD (KM)	0.137
Variance (KM)	0.0187	SE of Mean (KM)	0.0353
k hat (KM)	1.986	k star (KM)	1.721
nu hat (KM)	79.44	nu star (KM)	68.86
theta hat (KM)	0.0969	theta star (KM)	0.112
80% gamma percentile (KM)	0.293	90% gamma percentile (KM)	0.388
95% gamma percentile (KM)	0.479	99% gamma percentile (KM)	0.683
Gamma	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (68.86, α)	50.76	Adjusted Chi Square Value (68.86, β)	49.53
95% KM Approximate Gamma UCL	0.261	95% KM Adjusted Gamma UCL	0.268
Lognormal GOF	Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.287	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance L	evel
		nal at 10% Significance Level	
		liable for small sample sizes	
Lognormal BOS	Statistics U	Ising Imputed Non-Detects	
Mean in Original Scale	0.19	Mean in Log Scale	-1.818
SD in Original Scale	0.143	SD in Log Scale	0.509
95% t UCL (assumes normality of ROS data)	0.246	95% Percentile Bootstrap UCL	0.246
95% BCA Bootstrap UCL	0.240	95% Bootstrap t UCL	0.301
95% H-UCL (Log ROS)	0.234		0.001
	0.204		
Statistics using VM estimates a	n Logged D	ata and Assuming Lognormal Distribution	
		ata and Assuming Lognormal Distribution KM Geo Mean	0.168
KM Mean (logged)	-1.784 0.446		1.969
KM Stondard Error of Moon (logged)		95% Critical H Value (KM-Log)	
KM Standard Error of Mean (logged)	0.115	95% H-UCL (KM -Log)	0.227
KM SD (logged)	0.446	95% Critical H Value (KM-Log)	1.969

KM Standard Error of Mean (logged)	0.115		
	DI /0.01		
DL/2 Normal	DL/2 Sta	DL/2 Log-Transformed	
Mean in Original Scale	0.16	Mean in Log Scale	-2.055
SD in Original Scale	0.153	SD in Log Scale	0.57
95% t UCL (Assumes normality)	0.133	95% H-Stat UCL	0.37
		ed for comparisons and historical reasons	0.2
Nonparame	tric Distributio	on Free UCL Statistics	
Detected Data appear	Normal Dist	ributed at 1% Significance Level	
	Suggested L	ICI to lise	
95% KM (t) UCL	0.253		
	0.200		
		ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data set	s; for additional insight the user may want to consult a statisticia	an.
oil antimony 7440-36-0)			
	General S	Statistics	
Total Number of Observations	20	Number of Distinct Observations	17
Number of Detects	2	Number of Non-Detects	18
	-		10
Number of Distinct Detects	2	Number of Distinct Non-Detects	15
Number of Distinct Detects	2	Number of Distinct Non-Detects	15
Minimum Detect	1.367	Minimum Non-Detect	0.73
Minimum Detect Maximum Detect	1.367 1.6	Minimum Non-Detect Maximum Non-Detect	0.73
Minimum Detect Maximum Detect Variance Detects	1.367 1.6 0.0272	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	0.73 2.5 90%
Minimum Detect Maximum Detect Variance Detects Mean Detects	1.367 1.6 0.0272 1.483	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	0.73 2.5 90% 0.16
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	1.367 1.6 0.0272 1.483 1.483	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	0.73 2.5 90% 0.16 0.11
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	1.367 1.6 0.0272 1.483 1.483 N/A	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	1.367 1.6 0.0272 1.483 1.483	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	1.367 1.6 0.0272 1.483 1.483 N/A 0.391	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: Detects	1.367 1.6 0.0272 1.483 1.483 N/A 0.391	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: Detects	1.367 1.6 0.0272 1.483 1.483 N/A 0.391	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: Detects	1.367 1.6 0.0272 1.483 1.483 N/A 0.391	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: De This is not enough to compu	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 ata set has or ute meaningf	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: De This is not enough to compu-	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 ata set has or ute meaningf mal GOF Test	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects nly 2 Detected Values.	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: De This is not enough to compu-	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 ata set has or ute meaningf mal GOF Test	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects nly 2 Detected Values.	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: De This is not enough to compu- Norm Not Enc	1.367 1.6 0.0272 1.483 1.483 N/A 0.391	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects nly 2 Detected Values.	0.73 2.5 90% 0.16 0.11 N/A
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: De This is not enough to compu- Norm Not Enc	1.367 1.6 0.0272 1.483 1.483 N/A 0.391	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects nly 2 Detected Values.	0.73 2.5 90% 0.16 0.11 N/A 0.11
Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Warning: Da This is not enough to compu- Norm Not Enco Kaplan-Meier (KM) Statistics using	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 ata set has or ute meaningf al GOF Test bugh Data to g Normal Crit	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects rul or reliable statistics and estimates.	0.73 2.5 90% 0.16 0.11 N/A 0.11
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: Da Warning: Da This is not enough to compu- Norm Not Enc Kaplan-Meier (KM) Statistics using KM Mean	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 at set has or ute meaningf al GOF Test bugh Data to g Normal Crit 0.986	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects rul or reliable statistics and estimates.	0.73 2.5 90% 0.16 0.1 ⁻ N/A 0.1 ⁻ 0.20
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: Da Warning: Da This is not enough to compu- Norm Not Enc Kaplan-Meier (KM) Statistics using KM Mean 90KM SD	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 ata set has or ute meaningf al GOF Test bugh Data to g Normal Crit 0.986 0.358	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects inly 2 Detected Values. ful or reliable statistics and estimates.	0.73 2.5 90% 0.16 0.1 ⁻¹ N/A 0.1 ⁻¹
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: De This is not enough to compu- Norm Not Enc Kaplan-Meier (KM) Statistics using KM Mean 90KM SD 95% KM (t) UCL	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 ata set has or ute meaningf ata set has or ata se	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects nly 2 Detected Values. ful or reliable statistics and estimates. on Detects Only Perform GOF Test tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (BCA) UCL	0.73 2.5 90% 0.16 0.11 N/A 0.11
Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: Da Warning: Da This is not enough to compu- Norm Not Enc Kaplan-Meier (KM) Statistics using KM Mean 90KM SD	1.367 1.6 0.0272 1.483 1.483 N/A 0.391 at set has or ute meaningf al GOF Test bugh Data to g Normal Crit 0.986 0.358 1.343	Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects rul or reliable statistics and estimates.	0.73 2.5 90% 0.16 0.11 N/A 0.11

a			
	Statistics on Detected	Data Only	
k hat (MLE)	161.3	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.0092	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	645.3 1.483	nu star (bias corrected)	N/A
Mean (detects)	1.483		
Estimates of Ga	amma Parameters usi	ng KM Estimates	
Mean (KM)	0.986	SD (KM)	0.35
Variance (KM)	0.128	SE of Mean (KM)	0.20
k hat (KM)	7.563	k star (KM)	6.40
nu hat (KM)	302.5	nu star (KM)	258.5
theta hat (KM)	0.13	theta star (KM)	0.1
80% gamma percentile (KM)	1.288	90% gamma percentile (KM)	1.50
95% gamma percentile (KM)	1.698	99% gamma percentile (KM)	2.1
Gamm	a Kaplan-Meier (KM) :	Statistics	
		Adjusted Level of Significance (β)	0.03
Approximate Chi Square Value (258.48, α)	222.3	Adjusted Chi Square Value (258.48, β)	219.6
95% KM Approximate Gamma UCL	1.146	95% KM Adjusted Gamma UCL	1.10
	bugh Data to Perform		
Lognormal ROS	S Statistics Using Impu	uted Non-Detects	0.05
Lognormal ROS Mean in Original Scale	S Statistics Using Impl	u ted Non-Detects Mean in Log Scale	
Lognormal ROS Mean in Original Scale SD in Original Scale	S Statistics Using Impu 1.068 0.186	u ted Non-Detects Mean in Log Scale SD in Log Scale	0.16
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	5 Statistics Using Imp 1.068 0.186 1.139	u ted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	0.10
Lognormal ROS Mean in Original Scale SD in Original Scale	S Statistics Using Impu 1.068 0.186	u ted Non-Detects Mean in Log Scale SD in Log Scale	0.1
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.139	uted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.1
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.139	u ted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	0.10
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged)	S Statistics Using Impo 1.068 0.186 1.139 1.152 1.139	uted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution	0.1(
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged)	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.139 m Logged Data and A -0.0734	uted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean	0.1(1.1) 1.1(0.9) 1.8
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	S Statistics Using Imputing 1.068 0.186 1.139 1.152 1.139 m Logged Data and A -0.0734 0.332 0.191	Juted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.10 1.13 1.10 0.92 1.8 1.13
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged)	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.139 0.186 0.332	Uted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	0.10 1.13 1.10 0.92 1.8 1.13
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged)	S Statistics Using Imput 1.068 0.186 1.139 1.152 1.139 on Logged Data and A -0.0734 0.332 0.191 0.332 0.191	Juted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.10 1.11 1.10 0.92 1.8 1.11
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged)	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.152 1.139 on Logged Data and A -0.0734 0.332 0.191 0.332	Jeted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	0.10 1.13 1.10 0.92 1.87 1.13
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	S Statistics Using Imput 1.068 0.186 1.139 1.152 1.139 on Logged Data and A -0.0734 0.332 0.191 0.332 0.191	Juted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.05 0.16 1.13 1.16 0.92 1.87 1.13 1.87
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged)	S Statistics Using Imput 1.068 0.186 1.139 1.152 1.139 on Logged Data and A -0.0734 0.332 0.191 0.332 0.191 DL/2 Statistics	Juted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	0.10
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged)	S Statistics Using Impo 1.068 0.186 1.139 1.152 1.139 1.152 1.139 0.186 0.186 1.139 1.152 1.139 0.101 0.332 0.191 0.332 0.191 0.332 0.191 0.332 0.191 0.332 0.191	Lited Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	0.10 1.11 1.10 0.92 1.87 1.11 1.87 -0.16
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) CDL/2 Normal Mean in Original Scale SD in Original Scale	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.152 1.139 on Logged Data and A -0.0734 0.332 0.191 0.332 0.191 0.32 0.191 0.332 0.191 0.332 0.191	Jited Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	0.10 1.11 1.10 0.92 1.8 1.13 1.8 -0.16 0.43
Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) CDL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me	S Statistics Using Impu 1.068 0.186 1.139 1.152 1.152 1.139 on Logged Data and A -0.0734 0.332 0.191 0.332 0.191 0.32 0.191 0.332 0.191 0.332 0.191	Jated Non-Detects SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL ssuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% H-Stat UCL Mean in Log Scale 95% H-Stat UCL nparisons and historical reasons	0.11 1.11 1.11 0.92 1.8 1.11 1.8 -0.16 0.4

	Suggested L	JCL to Use	
95% KM (t) UCL	1.343		
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
		tion, and skewness using results from simulation studies.	
		s; for additional insight the user may want to consult a statisticia	an
			an.
il arsenic 7440-38-2)			
	General S	statistics	
Total Number of Observations	20	Number of Distinct Observations	20
		Number of Missing Observations	0
Minimum	3	Mean	7.01
Maximum	25	Median	5.65
SD	4.731	Std. Error of Mean	1.05
Coefficient of Variation	0.675	Skewness	3.14
Shapiro Wilk Test Statistic	Normal G 0.646	OF Test Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.242	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.242	Data Not Normal at 1% Significance Level	
		6 Significance Level	
	Normal at 17		
Ass	suming Norm	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	8.839	95% Adjusted-CLT UCL (Chen-1995)	9.54
		95% Modified-t UCL (Johnson-1978)	8.90
	Gamma G	OF Test	
A-D Test Statistic	0.917	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.746	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.188	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.195	Detected data appear Gamma Distributed at 5% Significand	ce Leve
		stribution at 5% Significance Level	
k hat (MLE)	Gamma S 4.003	k star (bias corrected MLE)	3.43
Theta hat (MLE)	1.751	Theta star (bias corrected MLE)	2.04
nu hat (MLE)	160.1	nu star (bias corrected)	137.5
MLE Mean (bias corrected)	7.01	MLE Sd (bias corrected)	3.78
	0.000	Approximate Chi Square Value (0.05)	111.4
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	109.5
Ass	uming Gam	na Distribution	
95% Approximate Gamma UCL	8.652	95% Adjusted Gamma UCL	8.79
	Lognormal	GOF Test	

I. I	0.916	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.15	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data appear Lognormal at 10% Significance Level	
Data appear Approxi	imate Lognorma	l at 10% Significance Level	
	Lognormal Sta		
Minimum of Logged Data	1.099	Mean of logged Data	1.817
Maximum of Logged Data	3.219	SD of logged Data	0.476
العكم	ming Lognorma	Distribution	
95% H-UCL	8.571	90% Chebyshev (MVUE) UCL	9.11
95% Chebyshev (MVUE) UCL	10.13	97.5% Chebyshev (MVUE) UCL	11.55
99% Chebyshev (MVUE) UCL	14.35		
	11.00		
Nonparamet	tric Distribution I	Free UCL Statistics	
Data appear	to follow a Disc	ernible Distribution	
-	ametric Distribut	tion Free UCLs	
95% CLT UCL	8.75	95% BCA Bootstrap UCL	9.753
95% Standard Bootstrap UCL	8.706	95% Bootstrap-t UCL	10.81
95% Hall's Bootstrap UCL	15.96	95% Percentile Bootstrap UCL	8.875
90% Chebyshev(Mean, Sd) UCL	10.18	95% Chebyshev(Mean, Sd) UCL	11.62
97.5% Chebyshev(Mean, Sd) UCL	13.62	99% Chebyshev(Mean, Sd) UCL	17.54
	0		
	Suggested UCL 8.798	. to Use	
95% Adjusted Gamma UCL	8.798		
	roximate distrib	ution passing only one of the GOF tests,	
When a data set follows an app			
		bution passing both GOF tests in ProUCL	
it is suggested to use a UCL base	ed upon a distril		
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95%	ed upon a distril	bution passing both GOF tests in ProUCL	
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ed upon a distril UCL are provid data distribution	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL.	n.
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ed upon a distril UCL are provid data distribution	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	n.
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ed upon a distril UCL are provid data distribution	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	n.
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a distril UCL are provid data distribution	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	n.
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a distril UCL are provid data distribution	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	n.
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a distril UCL are provid data distribution	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statisticia	n.
it is suggested to use a UCL base Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a distril UCL are provid data distribution orld data sets; fo	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statisticia	n. 18
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a distril UCL are provid data distribution orld data sets; fo General Stat	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statisticial istics	
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a distril UCL are provid data distribution orld data sets; fo General Stat	bution passing both GOF tests in ProUCL led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticial istics Number of Distinct Observations	18
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil barium 7440-39-3) Total Number of Observations	ed upon a distril UCL are provid data distribution orld data sets; fo General Stat 20	istics Number of Distinct Observations Number of Missing Observations	18 0
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W C (soil barium 7440-39-3) Total Number of Observations Minimum	ed upon a distril UCL are provid data distribution orld data sets; fo General Stat 20 41	istics Number of Distinct Observations Number of Missing Observations Mean	18 0 63.93
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil barium 7440-39-3) Total Number of Observations Minimum Maximum	ed upon a distril UCL are provid data distribution orld data sets; fo General Stati 20 41 140	istics Number of Distinct Observations Number of Missing Observations Mean Median	18 0 63.93 59.08
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil barium 7440-39-3) Total Number of Observations Minimum Maximum SD	ed upon a distril UCL are provid data distribution orld data sets; for General Stati 20 41 140 22.74	istics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	18 0 63.93 59.08 5.085
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil barium 7440-39-3) Total Number of Observations Minimum Maximum SD	ed upon a distril UCL are provid data distribution orld data sets; for General Stat 20 41 140 22.74 0.356 Normal GOF	istics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	18 0 63.93 59.08 5.085
it is suggested to use a UCL bas Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W C (soil barium 7440-39-3) Total Number of Observations Minimum Maximum SD	ed upon a distril UCL are provid data distribution orld data sets; for General Stati 20 41 140 22.74 0.356	istics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	18 0 63.93 59.08 5.085

Lilliefors Test Statistic	0.264	Lilliefors GOF Test	
1% Lilliefors Critical Value		Data Not Normal at 1% Significance Level	
		% Significance Level	
As	sumina Norr	nal Distribution	
95% Normal UCL	g	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	72.72	95% Adjusted-CLT UCL (Chen-1995)	75.05
		95% Modified-t UCL (Johnson-1978)	73.15
	Gamma	GOF Test	
A-D Test Statistic	0.897	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.742	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Lev	el
		d at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)		k star (bias corrected MLE)	9.499
Theta hat (MLE)		Theta star (bias corrected MLE)	6.73
nu hat (MLE)		nu star (bias corrected)	380
MLE Mean (bias corrected)	63.93	MLE Sd (bias corrected)	20.74
		Approximate Chi Square Value (0.05)	335.8
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	332.5
		· · · · · · · · · · · · · · · · · · ·	
As	sumina Gam	ma Distribution	
95% Approximate Gamma UCL	72.34	95% Adjusted Gamma UCL	73.05
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.195	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not Lo	ognormal at	10% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	3.714	Mean of logged Data	4.112
Maximum of Logged Data	4.942	SD of logged Data	0.292
Ass	uming Logno	rmal Distribution	
95% H-UCL	72.11	90% Chebyshev (MVUE) UCL	76.2
95% Chebyshev (MVUE) UCL	81.91	97.5% Chebyshev (MVUE) UCL	89.83
99% Chebyshev (MVUE) UCL	105.4		
	1	1	
Nonparame	etric Distribut	ion Free UCL Statistics	
Data do n	ot follow a D	iscernible Distribution	
Nonpa	rametric Dist	ribution Free UCLs	
95% CLT UCL	72.29	95% BCA Bootstrap UCL	75.25
95% Standard Bootstrap UCL	72.04	95% Bootstrap-t UCL	79.54

Gamma	Statistics on	Detected Data Only	
Note GOF tests r	nay be unreli	iable for small sample sizes	
		tributed at 5% Significance Level	
5% K-S Critical Value	0.33	Detected data appear Gamma Distributed at 5% Significanc	e Level
K-S Test Statistic	0.278	Kolmogorov-Smirnov GOF	
5% A-D Critical Value	0.763	Detected data appear Gamma Distributed at 5% Significanc	e Level
Gamma GOF A-D Test Statistic	Tests on Det 0.385	ected Observations Only Anderson-Darling GOF Test	
97.5% KM Chebyshev UCL	0.58	99% KM Chebyshev UCL	0.86
90% KM Chebyshev UCL	0.333	95% KM Chebyshev UCL	0.43
95% KM (z) UCL	0.23	95% KM Bootstrap t UCL	0.96
95% KM (t) UCL	0.236	95% KM (Percentile Bootstrap) UCL	0.24
90KM SD	0.323	95% KM (BCA) UCL	0.24
KM Mean	0.105	KM Standard Error of Mean	0.070
	-	tical Values and other Nonparametric UCLs	
Detected Data	Not Normal	at 1% Significance Level	
1% Lilliefors Critical Value	0.35	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.372	Lilliefors GOF Test	
1% Shapiro Wilk Critical Value	0.73	Detected Data Not Normal at 1% Significance Level	
Shapiro Wilk Test Statistic	0.617	Shapiro Wilk GOF Test	
Norm	al GOF Test	on Detects Only	
Mean of Logged Detects	-2.704	SD of Logged Detects	2.27
	2.378 -2.704	Kurtosis Detects	5.76
Median Detects Skewness Detects			
Mean Detects	0.304	SD Detects CV Detects	0.54
Variance Detects	0.294	Percent Non-Detects	66.6
Maximum Detect	1.5	Maximum Non-Detect	0.27
Minimum Detect	0.001	Minimum Non-Detect 4	
Number of Distinct Detects	7	Number of Distinct Non-Detects	11
Number of Detects	7	Number of Non-Detects	14
Total Number of Observations	21	Number of Distinct Observations	18
	General S	Statistics	
soil benzene 71-43-2)			
However, simulations results will not cover all Real W	orld data set	s; for additional insight the user may want to consult a statisticia	ın.
Recommendations are based upon data size,	, data distribu	ution, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
95% Student's-t UCL	72.72		
	Suggested l	JCL to Use	
97.5% Chebyshev(Mean, Sd) UCL	95.68	99% Chebyshev(Mean, Sd) UCL	114.5
90% Chebyshev(Mean, Sd) UCL	79.18	95% Chebyshev(Mean, Sd) UCL	86.0

k hat (MLE)	0.43	k star (bias corrected MLE)	0.341
Theta hat (MLE)		Theta star (bias corrected MLE)	0.891
nu hat (MLE)	6.018	nu star (bias corrected)	4.772
Mean (detects)	0.304		
		ing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
-		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	n the sample size is small.	
		y be computed using gamma distribution on KM estimates	0.108
Minimum Maximum		Mean Median	0.108
SD	0.329	CV	3.05
			0.358
k hat (MLE)	0.38	k star (bias corrected MLE) Theta star (bias corrected MLE)	0.358
Theta hat (MLE)		· · · · · · · · · · · · · · · · · · ·	
nu hat (MLE)		nu star (bias corrected)	15.02
Adjusted Level of Significance (β)			
Approximate Chi Square Value (15.02, α)		Adjusted Chi Square Value (15.02, β)	6.862
95% Gamma Approximate UCL	0.223	95% Gamma Adjusted UCL	0.236
Estimates of Q		notors using KM Estimator	
		neters using KM Estimates	0.323
Mean (KM)		SD (KM)	
Variance (KM)		SE of Mean (KM)	0.0761
k hat (KM)		k star (KM)	5.137
nu hat (KM) theta hat (KM)		nu star (KM) theta star (KM)	0.857
80% gamma percentile (KM)		90% gamma percentile (KM)	0.857
95% gamma percentile (KM)		90% gamma percentile (KM) 99% gamma percentile (KM)	1.503
55 % gamma percentile (KW)	0.597	33 % gamma percentile (KM)	1.505
Gamm	a Kaplan-Me	ier (KM) Statistics	
Approximate Chi Square Value (5.14, α)	•	Adjusted Chi Square Value (5.14, β)	1.078
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	0.5
Lognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.931	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.838	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.208	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.28	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data app	ear Lognorm	nal at 10% Significance Level	
Note GOF tests	nay be unreli	iable for small sample sizes	
		sing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-5.881
SD in Original Scale		SD in Log Scale	2.776
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	0.237
95% BCA Bootstrap UCL		95% Bootstrap t UCL	1.238
95% H-UCL (Log ROS)	4.002		

Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-5.554	KM Geo Mean	0.00387
KM SD (logged)	2.564	95% Critical H Value (KM-Log)	5.126
KM Standard Error of Mean (logged)	0.67	95% H-UCL (KM -Log)	1.957
KM SD (logged)		95% Critical H Value (KM-Log)	5.126
KM Standard Error of Mean (logged)			
DL/2 Normal	DL/2 S	DL/2 Log-Transformed	
Mean in Original Scale	0.123	Mean in Log Scale	-4.68
		_	2.676
SD in Original Scale		SD in Log Scale	
95% t UCL (Assumes normality)	0.247	95% H-Stat UCL led for comparisons and historical reasons	8.05
		tion Free UCL Statistics stributed at 5% Significance Level	
	Suaaested	UCL to Use	
95% KM Adjusted Gamma UCL	0.5		
· · · ·			
The calculated UCLs are based on assumpti	ons that the	data were collected in a random and unbiased manner.	
Please verify the d	lata were co	llected from random locations.	
If the data were collected	using judgn	nental or other non-random methods,	
Recommendations are based upon data size	, data distrit	rovided to help the user to select the most appropriate 95% UCL pution, and skewness using results from simulation studies. ets; for additional insight the user may want to consult a statisticia	
C (soil benzidine 92-87-5)			
		Statistics	10
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable	C (soil ben	zidine 92-87-5) was not processed!	
C (soil benzo(a)anthracene 56-55-3)			
	General	Statistics	
Tatal Number of Observations		Statistics Number of Distinct Observations	17
Total Number of Observations	20	Number of Distinct Observations	17
Total Number of Observations Number of Detects Number of Distinct Detects			17 12 9

Minimum Detect	0.07	Minimum Non-Detect	0.192
Maximum Detect	1.8	Maximum Non-Detect	0.102
Variance Detects	0.476	Percent Non-Detects	60%
Mean Detects	0.588	SD Detects	0.69
Median Detects	0.3	CV Detects	1.174
Skewness Detects	1.174	Kurtosis Detects	-0.187
Mean of Logged Detects	-1.286	SD of Logged Detects	1.379
	1.200		1.070
Nom	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.775	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.749	Detected Data appear Normal at 1% Significance Lev	el
Lilliefors Test Statistic	0.256	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.333	Detected Data appear Normal at 1% Significance Lev	el
Detected Data a	appear Norm	al at 1% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics usin	g Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.285	KM Standard Error of Mean	0.114
90KM SD	0.477	95% KM (BCA) UCL	0.482
95% KM (t) UCL	0.482	95% KM (Percentile Bootstrap) UCL	0.48
95% KM (z) UCL	0.473	95% KM Bootstrap t UCL	0.808
90% KM Chebyshev UCL	0.628	95% KM Chebyshev UCL	0.783
97.5% KM Chebyshev UCL	0.998	99% KM Chebyshev UCL	1.422
	I	1	
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.623	Anderson-Darling GOF Test	
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.276	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.304	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
	<u></u>		
		Detected Data Only	
k hat (MLE)	0.788	k star (bias corrected MLE)	0.576
Theta hat (MLE)	0.746	Theta star (bias corrected MLE)	1.02
nu hat (MLE)	12.61	nu star (bias corrected)	9.217
Mean (detects)	0.588		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		% NDs with many tied observations at multiple DLs	
		is <1.0, especially when the sample size is small (e.g., <15-20)	
		ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.262
Maximum	1.8	Median	0.072
SD	0.502	CV	1.918
			0.399
			0.656
This is especi For gamma distributed detected data, BTVs a Minimum Maximum	ally true whe and UCLs m 0.01 1.8	Mean Median	0.07 1.9 0.3

15.97 7.496 0.558 0.477 0.114 0.336 13.44 0.848 0.828 2.353 5.807 0.66
0.558 0.477 0.114 0.336 13.44 0.848 0.828 2.353 5.807 0.66
0.558 0.477 0.114 0.336 13.44 0.848 0.828 2.353 5.807 0.66
0.477 0.114 0.336 13.44 0.848 0.828 2.353 5.807 0.66
0.114 0.336 13.44 0.848 0.828 2.353 5.807 0.66
0.114 0.336 13.44 0.848 0.828 2.353 5.807 0.66
0.336 13.44 0.848 0.828 2.353 5.807 0.66
13.44 0.848 0.828 2.353 5.807 0.66
0.848 0.828 2.353 5.807 0.66
0.828 2.353 5.807 0.66
2.353 5.807 0.66
5.807 0.66
0.66
0.66
0.66
əl
əl
el
evel
-1.916
1.025
0.485
0.854
0.133
2.665
0.418
2.665
-1.889
0.979
0.438
0.438
0.438
0.438
· · · · ·

	Suggested	UCL to Use	
95% KM (t) UCL	0.482		
		· · · · · ·	
The calculated UCLs are based on assumption	ons that the	data were collected in a random and unbiased manner.	
-		llected from random locations.	
If the data were collected	using judgm	nental or other non-random methods,	
then contact a s	statistician to	o correctly calculate UCLs.	
		rovided to help the user to select the most appropriate 95% UCI	
		oution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data se	ets; for additional insight the user may want to consult a statistici	an.
C (soil benzo(a)pyrene 50-32-8)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	7	Number of Non-Detects	13
Number of Distinct Detects	6	Number of Distinct Non-Detects	10
Minimum Detect	0.065	Minimum Non-Detect	0.19
Maximum Detect	1.5	Maximum Non-Detect	0.22
Variance Detects	0.275	Percent Non-Detects	65%
Mean Detects	0.429	SD Detects	0.525
Median Detects	0.25	CV Detects	1.223
Skewness Detects	1.785	Kurtosis Detects	3.043
Mean of Logged Detects	-1.484	SD of Logged Detects	1.235
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.765	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.73	Detected Data appear Normal at 1% Significance Lev	vel
Lilliefors Test Statistic	0.289	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.35	Detected Data appear Normal at 1% Significance Lev	vel
Detected Data a	ppear Norm	nal at 1% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics using	g Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.196	KM Standard Error of Mean	0.0809
90KM SD	0.334	95% KM (BCA) UCL	0.356
95% KM (t) UCL	0.336	95% KM (Percentile Bootstrap) UCL	0.341
95% KM (z) UCL	0.329	95% KM Bootstrap t UCL	0.662
90% KM Chebyshev UCL	0.439	95% KM Chebyshev UCL	0.549
97.5% KM Chebyshev UCL	0.701	99% KM Chebyshev UCL	1.001
		etected Observations Only	
A-D Test Statistic	0.414	Anderson-Darling GOF Test	
5% A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.233	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.321	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appear	Gamma Dis	stributed at 5% Significance Level	

Note GOF tests r	nay be unre	liable for small sample sizes	
0	O t - 4 ¹ - 4 ¹	Data and Data Only	
		Detected Data Only	0.010
k hat (MLE)	0.915	k star (bias corrected MLE)	0.618
Theta hat (MLE)	0.469	Theta star (bias corrected MLE)	0.694
nu hat (MLE)	12.81	nu star (bias corrected)	8.653
Mean (detects)	0.429		
Gamma ROS	Statistics us	ing Imputed Non-Detects	
GROS may not be used when data set	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.166
Maximum	1.5	Median	0.0375
SD	0.356	CV	2.15
k hat (MLE)	0.453	k star (bias corrected MLE)	0.418
Theta hat (MLE)	0.365	Theta star (bias corrected MLE)	0.396
nu hat (MLE)	18.12	nu star (bias corrected)	16.74
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (16.74, α)	8.486	Adjusted Chi Square Value (16.74, β)	8.023
95% Gamma Approximate UCL	0.327	95% Gamma Adjusted UCL	0.345
	0.027		0.010
Estimates of Ga	amma Paran	neters using KM Estimates	
Mean (KM)	0.196	SD (KM)	0.334
Variance (KM)	0.112	SE of Mean (KM)	0.0809
k hat (KM)	0.345	k star (KM)	0.326
nu hat (KM)	13.78	nu star (KM)	13.05
theta hat (KM)	0.57	theta star (KM)	0.602
80% gamma percentile (KM)	0.307	90% gamma percentile (KM)	0.573
95% gamma percentile (KM)	0.874	99% gamma percentile (KM)	1.648
	0.074		1.040
Gamm	a Kanlan-M4	eier (KM) Statistics	
Approximate Chi Square Value (13.05, α)	5.925	Adjusted Chi Square Value (13.05, β)	5.549
95% KM Approximate Gamma UCL	0.432	95% KM Adjusted Gamma UCL	0.462
	0.402		0.402
L ognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.903	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.838	Detected Data appear Lognormal at 10% Significance L	مريما
Lilliefors Test Statistic	0.838	Lilliefors GOF Test	0,001
10% Lilliefors Critical Value	0.221	Detected Data appear Lognormal at 10% Significance L	ovel
		nal at 10% Significance Level	6v 6 1
		liable for small sample sizes	
		וומטוים ועו פווומוו פמוווףום פוצפט	
	Statiation !	Ising Imputed Non Detects	
Mean in Original Scale	0.201	Jsing Imputed Non-Detects	2.2
		Mean in Log Scale	-2.2
SD in Original Scale	0.342	SD in Log Scale 95% Percentile Bootstrap UCL	0.912
95% t UCL (assumes normality of ROS data)	0.333	95% Percentile Bootstrap UCL	0.336

95% BCA Bootstrap UCL	0.406	95% Bootstrap t UCL	0.72
95% H-UCL (Log ROS)	0.284		0.72
	0.201		
Statistics using KM estimates of	n Loaaed D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-2.243	KM Geo Mean	0.106
KM SD (logged)	0.881	95% Critical H Value (KM-Log)	2.467
KM Standard Error of Mean (logged)	0.219	95% H-UCL (KM -Log)	0.258
KM SD (logged)	0.881	95% Critical H Value (KM-Log)	2.46
KM Standard Error of Mean (logged)	0.219		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.216	Mean in Log Scale	-2.012
SD in Original Scale	0.336	SD in Log Scale	0.80
95% t UCL (Assumes normality)	0.345	95% H-Stat UCL	0.28
DL/2 is not a recommended met	thod, provid	ed for comparisons and historical reasons	
Nonparamet	tric Distribut	ion Free UCL Statistics	
Detected Data appear	Normal Dis	tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL	0.336		
-		data were collected in a random and unbiased manner.	
Please verify the da	ata were col	lected from random locations.	
Please verify the data were collected u	ata were col using judgm	lected from random locations. ental or other non-random methods,	
Please verify the data were collected u	ata were col using judgm	lected from random locations.	
Please verify the data were collected u If the data were collected u then contact a s	ata were col using judgm statistician to	lected from random locations. ental or other non-random methods, o correctly calculate UCLs.	
Please verify the data If the data were collected to then contact a s Note: Suggestions regarding the selection of a 95%	ata were col using judgm statistician to UCL are pr	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL.	
Please verify the data If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ata were col using judgm statistician to UCL are pr data distrib	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Please verify the data If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ata were col using judgm statistician to UCL are pr data distrib	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL.	
Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo	ata were col using judgm statistician to UCL are pr data distrib	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Please verify the data If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ata were col using judgm statistician to UCL are pr data distrib	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo	ata were col using judgm tatistician to UCL are pr data distrib orld data se	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	
Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo il benzo(b)fluoranthene 205-99-2)	ata were col using judgm statistician to o UCL are pr data distrib orld data se General s	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics	n.
Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo il benzo(b)fluoranthene 205-99-2) Total Number of Observations	tatistician to build are pr data distrib orld data se General s 20	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	n. 16
Please verify the data If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo il benzo(b)fluoranthene 205-99-2) Total Number of Observations Number of Detects	ata were col using judgm statistician to UCL are pr data distrib orld data se General S 20 9	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects	n. 16 11
Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo I benzo(b)fluoranthene 205-99-2) Total Number of Observations Number of Detects Number of Distinct Detects	ata were col using judgm statistician to OUCL are pr data distrib orld data se General 3 20 9 8	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	n. 16 11 8
Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo II benzo(b)fluoranthene 205-99-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	Ata were col using judgm statistician to UCL are pr data distrib orld data se General S 20 9 8 0.069	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detects	n. 16 11 8 0.19
Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo II benzo(b)fluoranthene 205-99-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	ata were col using judgm statistician to 0 UCL are pr data distrib orld data se 20 9 8 0.069 2.8	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	n. 16 11 8 0.19 0.22
Please verify the data were collected of the data were collected of then contact a set of the	Ata were col using judgm statistician to o UCL are pr data distrib orld data se 20 9 8 0.069 2.8 0.961	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	n. 16 11 8 0.19 0.22 55%
Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo I benzo(b)fluoranthene 205-99-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects Mean Detects	Ata were col using judgm statistician to o UCL are pr data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	n. 16 11 8 0.19 0.22 55% 0.98
Please verify the data If the data were collected us then contact a second se	Ata were col using judgm statistician to data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721 0.13	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	n. 16 11 8 0.19 0.22 55% 0.98 1.35
Please verify the data If the data were collected of then contact a second se	Ata were col using judgm statistician to o UCL are pr data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721 0.13 1.607	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects CV Detects	n. 16 11 8 0.19 0.22 55% 0.98 1.35 1.62
Please verify the data If the data were collected us then contact a second se	Ata were col using judgm statistician to data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721 0.13	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	n. 16 11 8 0.19 55% 0.98 1.35 1.62
Please verify the data were collected of the data were collected of the contact a set of the	Ata were col using judgm statistician to o UCL are pr data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721 0.13 1.607 -1.2	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	n. 16 11 8 0.19 0.22 55% 0.98 1.35 1.62
Please verify the dat If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo I benzo(b)fluoranthene 205-99-2) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	Ata were col using judgm statistician to data distrib orld data se data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721 0.13 1.607 -1.2	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	n. 16 11 8 0.19 0.22 55% 0.98 1.35 1.62
Please verify the data were collected of the data were collected of the contact a set of the	Ata were col using judgm statistician to o UCL are pr data distrib orld data se 20 9 8 0.069 2.8 0.961 0.721 0.13 1.607 -1.2	lected from random locations. ental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	n. 16 11 8 0.19 0.22 55% 0.98

Lilliefors Test Statistic	0.282	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.316	Detected Data appear Normal at 1% Significance Leve	el
		e Normal at 1% Significance Level	
Note GOF tests n	nay be unre	liable for small sample sizes	
	-	itical Values and other Nonparametric UCLs	
KM Mean	0.381	KM Standard Error of Mean	0.164
90KM SD	0.692	95% KM (BCA) UCL	0.671
95% KM (t) UCL	0.665	95% KM (Percentile Bootstrap) UCL	0.66
95% KM (z) UCL	0.651	95% KM Bootstrap t UCL	1.303
90% KM Chebyshev UCL	0.874	95% KM Chebyshev UCL	1.097
97.5% KM Chebyshev UCL	1.407	99% KM Chebyshev UCL	2.016
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.74	Anderson-Darling GOF Test	
5% A-D Critical Value	0.756	Detected data appear Gamma Distributed at 5% Significance	e l evel
K-S Test Statistic	0.308	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.29	Detected Data Not Gamma Distributed at 5% Significance	Level
		Distribution at 5% Significance Level	20101
		liable for small sample sizes	
	•	· · · · · · · · · · · · · · · · · · ·	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.693	k star (bias corrected MLE)	0.536
Theta hat (MLE)	1.041	Theta star (bias corrected MLE)	1.345
nu hat (MLE)	12.47	nu star (bias corrected)	9.649
Mean (detects)	0.721		
Gamma ROS	Statistics us	ing Imputed Non-Detects	
GROS may not be used when data se	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is a	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS r	nethod may	yield incorrect values of UCLs and BTVs	
This is especia	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.352
Maximum	2.8	Median	0.101
SD	0.724	CV	2.054
k hat (MLE)	0.407	k star (bias corrected MLE)	0.379
Theta hat (MLE)	0.867	Theta star (bias corrected MLE)	0.93
nu hat (MLE)	16.26	nu star (bias corrected)	15.15
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (15.15, α)	7.369	Adjusted Chi Square Value (15.15, β)	6.943
95% Gamma Approximate UCL	0.725	95% Gamma Adjusted UCL	0.769
Entimeter of Oc	mmo Derer	notora using KM Estimatos	
Estimates of Ga Mean (KM)	0.381	neters using KM Estimates SD (KM)	0.692
Variance (KM)	0.381	SD (KM) SE of Mean (KM)	0.092
k hat (KM)	0.48	k star (KM)	0.164
nu hat (KM)	12.08	nu star (KM)	11.6
theta hat (KM)	12.06	theta star (KM)	1.312
	1.20	trieta staf (KM)	1.312

80% gamma percentile (KM)	0.579	90% gamma percentile (KM)	1.127
95% gamma percentile (KM)		99% gamma percentile (KM)	3.412
	1.70		0.412
Gamm	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (11.60, α)	4.968	Adjusted Chi Square Value (11.60, β)	4.628
95% KM Approximate Gamma UCL	0.889	95% KM Adjusted Gamma UCL	0.954
	-	· · · · · ·	
_			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 10% Significance Lo	evel
Lilliefors Test Statistic	0.28	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.252	Detected Data Not Lognormal at 10% Significance Lev	/el
		ognormal at 10% Significance Level	
	nay be unre		
Lognormal ROS	S Statistics l	Jsing Imputed Non-Detects	
Mean in Original Scale	0.394	Mean in Log Scale	-1.712
SD in Original Scale	0.706	SD in Log Scale	1.064
95% t UCL (assumes normality of ROS data)	0.667	95% Percentile Bootstrap UCL	0.669
95% BCA Bootstrap UCL	0.771	95% Bootstrap t UCL	1.348
95% H-UCL (Log ROS)	0.619		
Statistics using KM estimates of	on Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	0.164
KM SD (logged)	1.059	95% Critical H Value (KM-Log)	2.721
KM Standard Error of Mean (logged)	0.26	95% H-UCL (KM -Log)	0.556
KM SD (logged)		95% Critical H Value (KM-Log)	2.721
KM Standard Error of Mean (logged)	0.26		
	2 2/ 10	tatistics	
DL/2 Normal	0020	DL/2 Log-Transformed	
Mean in Original Scale	0.38	Mean in Log Scale	-1.8
SD in Original Scale		SD in Log Scale	1.071
95% t UCL (Assumes normality)		95% H-Stat UCL	0.574
DL/2 is not a recommended me	ethod, provid	led for comparisons and historical reasons	
Nonparame	etric Distribut	tion Free UCL Statistics	
Detected Data appear Appro	ximate Norr	nal Distributed at 1% Significance Level	
	O		
95% KM (t) UCL	0.665	UCL to Use	
	0.000		
The calculated UCLs are based on assumption	ons that the	data were collected in a random and unbiased manner.	
Please verify the d	ata were co	llected from random locations.	
If the data were collected	using judgm	nental or other non-random methods,	
then contact a	statistician to	o correctly calculate UCLs.	
		stribution passing only one of the GOF tests,	
it is suggested to use a UCL bas	sed upon a c	listribution passing both GOF tests in ProUCL	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

C (soil | benzo(g,h,i)perylene | 191-24-2)

	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	4	Number of Non-Detects	16
Number of Distinct Detects	4	Number of Distinct Non-Detects	12
Minimum Detect	0.14	Minimum Non-Detect	0.187
Maximum Detect	0.64	Maximum Non-Detect	0.22
Variance Detects	0.0522	Percent Non-Detects	80%
Mean Detects	0.383	SD Detects	0.228
Median Detects	0.375	CV Detects	0.597
Skewness Detects	0.118	Kurtosis Detects	-3.265
Mean of Logged Detects	-1.123	SD of Logged Detects	0.689
·		· · · · · · · · · · · · · · · · · · ·	
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.95	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Lev	rel
Lilliefors Test Statistic	0.219	Lilliefors GOF Test	

 1% Lilliefors Critical Value
 0.413
 Detected Data appear Normal at 1% Significance Level

Detected Data appear Normal at 1% Significance Level

Note GOF tests may be unreliable for small sample sizes

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonpa	parametric UCLs
---	-----------------

KM Mean	0.189	KM Standard Error of Mean	0.0339
90KM SD	0.131	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.247	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.244	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.29	95% KM Chebyshev UCL	0.336
97.5% KM Chebyshev UCL	0.4	99% KM Chebyshev UCL	0.526

Gamma GOF 1	ests on Def	ected Observations Only
A-D Test Statistic	0.276	Anderson-Darling GOF Test
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.254	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level

Note GOF tests may be unreliable for small sample sizes

Gamma Statistics on Detected Data Only

0.978	k star (bias corrected MLE)	3.245	k hat (MLE)
0.391	Theta star (bias corrected MLE)	0.118	Theta hat (MLE)
7.823	nu star (bias corrected)	25.96	nu hat (MLE)
		0.383	Mean (detects)

	ng Imputed Non-Detects	Statistics us	Gamma ROS S
	NDs with many tied observations at multiple DLs	t has > 50%	GROS may not be used when data se
	s <1.0, especially when the sample size is small (e.g., <15-20)	mall such a	GROS may not be used when kstar of detects is s
	vield incorrect values of UCLs and BTVs	ethod may	For such situations, GROS m
	n the sample size is small.		
	y be computed using gamma distribution on KM estimates		
0.153	Mean	0.01	Minimum
0.0941	Median	0.64	Maximum
1.007	CV	0.154	SD
1.331	k star (bias corrected MLE)	1.527	k hat (MLE)
0.115	Theta star (bias corrected MLE)	0.1	Theta hat (MLE)
53.24	nu star (bias corrected)	61.06	nu hat (MLE)
		0.038	Adjusted Level of Significance (β)
36.43	Adjusted Chi Square Value (53.24, β)	37.48	Approximate Chi Square Value (53.24, α)
N/A	95% Gamma Adjusted UCL	0.218	95% Gamma Approximate UCL
	eters using KM Estimates	mma Paran	Estimates of Ga
0.131	SD (KM)	0.189	Mean (KM)
0.0339	SE of Mean (KM)	0.0172	Variance (KM)
1.786	k star (KM)	2.062	k hat (KM)
71.44	nu star (KM)	82.48	nu hat (KM)
0.106	theta star (KM)	0.0914	theta hat (KM)
0.377	90% gamma percentile (KM)	0.286	80% gamma percentile (KM)
0.658	99% gamma percentile (KM)	0.464	95% gamma percentile (KM)
	ior ///AI) Statiation	Konlon Ma	Commo
51.72	ier (KM) Statistics Adjusted Chi Square Value (71.44, β)	52.98	Approximate Chi Square Value (71.44, α)
0.26	95% KM Adjusted Gamma UCL	0.254	95% KM Approximate Gamma UCL
	tected Observations Only		
	Shapiro Wilk GOF Test	0.947	Shapiro Wilk Test Statistic
evel	Detected Data appear Lognormal at 10% Significance L	0.792	10% Shapiro Wilk Critical Value
	Lilliefors GOF Test	0.234	Lilliefors Test Statistic
evel	Detected Data appear Lognormal at 10% Significance L	0.346	10% Lilliefors Critical Value
	al at 10% Significance Level able for small sample sizes		
	sing Imputed Non-Detects	Statistics U	Lognormal ROS
-1.868	Mean in Log Scale	0.181	Mean in Original Scale
0.506	SD in Log Scale	0.14	SD in Original Scale
0.236	95% Percentile Bootstrap UCL	0.235	95% t UCL (assumes normality of ROS data)
0.364	95% Bootstrap t UCL	0.253	95% BCA Bootstrap UCL
		0.222	95% H-UCL (Log ROS)
	ata and Assuming Lognormal Distribution	l ogged De	Statistice using KM petimetee or
0.166	KM Geo Mean	-1.797	KM Mean (logged)
1.955	95% Critical H Value (KM-Log)	0.43	KM SD (logged)
0.22	95% H-UCL (KM -Log)	0.111	KM Standard Error of Mean (logged)
1.955	95% Critical H Value (KM-Log)	0.43	KM SD (logged)

KM Standard Erway of Maan (lagrad)	0 1 1 1		
KM Standard Error of Mean (logged)	0.111		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.156	Mean in Log Scale	-2.06
SD in Original Scale	0.147	SD in Log Scale	0.5
95% t UCL (Assumes normality)	0.213	95% H-Stat UCL	0.1
DL/2 is not a recommended me	thod, provide	ed for comparisons and historical reasons	
-		on Free UCL Statistics	
Detected Data appear	Normal Dist	tributed at 1% Significance Level	
	Suggested l	UCL to Use	
95% KM (t) UCL	0.247		
Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statisticia	an.
pil benzo(k)fluoranthene 207-08-9)			
	General S	Statistics	
Total Number of Observations	20	Number of Distinct Observations	14
Number of Detects	4	Number of Non-Detects	16
Number of Distinct Detects	3	Number of Distinct Non-Detects	12
Minimum Detect	0.2	Minimum Non-Detect	0.1
Maximum Detect	1	Maximum Non-Detect	0.1
Variance Detects	0.177	Percent Non-Detects	80%
Mean Detects	0.177	SD Detects	0.4
Median Detects	0.50	CV Detects	0.4
Skewness Detects	0.32	Kurtosis Detects	-5.2
Mean of Logged Detects	-0.848	SD of Logged Detects	0.8
Norm	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.813	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.304	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Leve	el
Detected Data a	ppear Norma	al at 1% Significance Level	
Note GOF tests n	nay be unreli	iable for small sample sizes	
Koplon Mojor /KM) Statiation unior	a Normal Cri	tical Values and other Nennerometric LICLs	
	0.262	tical Values and other Nonparametric UCLs KM Standard Error of Mean	0.01
KM Mean			0.05
90KM SD	0.221	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.361	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.356	95% KM Bootstrap t UCL	N/A
	0.400		
90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.433 0.618	95% KM Chebyshev UCL 99% KM Chebyshev UCL	0.5

Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.599	Anderson-Darling GOF Test	
5% A-D Critical Value	0.661	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.34	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.398	Detected data appear Gamma Distributed at 5% Significance	e l evel
		stributed at 5% Significance Level	0 20001
		liable for small sample sizes	
	nay be unre		
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	2.013	k star (bias corrected MLE)	0.67
Theta hat (MLE)	0.278	Theta star (bias corrected MLE)	0.836
nu hat (MLE)	16.1	nu star (bias corrected)	5.359
Mean (detects)	0.56		0.000
	0.00		
Gamma BOS	Statistics us	sing Imputed Non-Detects	
		% NDs with many tied observations at multiple DLs	
		is <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum		1	0.12
	0.01	Mean Median	0.12
Maximum			
SD	0.281	CV	2.341
k hat (MLE)	0.382	k star (bias corrected MLE)	0.358
Theta hat (MLE)	0.314	Theta star (bias corrected MLE)	0.335
nu hat (MLE)	15.29	nu star (bias corrected)	14.33
Adjusted Level of Significance (β)	0.038		0.000
Approximate Chi Square Value (14.33, α)	6.801	Adjusted Chi Square Value (14.33, β)	6.393
95% Gamma Approximate UCL	0.253	95% Gamma Adjusted UCL	N/A
		neters using KM Estimates	
Mean (KM)	0.262	SD (KM)	0.221
Variance (KM)	0.0488	SE of Mean (KM)	0.057
k hat (KM)	1.408	k star (KM)	1.23
nu hat (KM)	56.3	nu star (KM)	49.19
theta hat (KM)	0.186	theta star (KM)	0.213
80% gamma percentile (KM)		90% gamma percentile (KM)	0.573
95% gamma percentile (KM)	0.73	99% gamma percentile (KM)	1.089
	•	eier (KM) Statistics	
Approximate Chi Square Value (49.19, α)		Adjusted Chi Square Value (49.19, β)	33.09
95% KM Approximate Gamma UCL	0.378	95% KM Adjusted Gamma UCL	0.389
		etected Observations Only	
Lognormal GO	F Test on De		
Lognormal GO Shapiro Wilk Test Statistic	6 Test on De	Shapiro Wilk GOF Test	
_		-	el
Shapiro Wilk Test Statistic	0.778	Shapiro Wilk GOF Test	el
Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.778 0.792	Shapiro Wilk GOF Test Detected Data Not Lognormal at 10% Significance Lev	

SD in Original Scale0.276SD in Log Scale95% t UCL (assumes normality of ROS data)0.23995% Percentile Bootstrap UCL95% BCA Bootstrap UCL0.27995% Bootstrap t UCL95% H-UCL (Log ROS)0.2670Statistics using KM estimates on Logged Data and Assuming Lognormal DistributionKM Geo MeanKM Mean (logged)0.47595% Critical H Value (KM-Log)KM Standard Error of Mean (logged)0.123DL/2 StatisticsDL/2 NormalDL/2 Log-Transformed	g Scale 1.3 ap UCL 0.2 o t UCL 0.5
SD in Original Scale0.276SD in Log Scale95% t UCL (assumes normality of ROS data)0.23995% Percentile Bootstrap UCL95% BCA Bootstrap UCL0.27995% Bootstrap t UCL95% H-UCL (Log ROS)0.2670Statistics using KM estimates on Logged Data and Assuming Lognormal DistributionKM Geo MeanKM Mean (logged)-1.509KM SD (logged)0.47595% Critical H Value (KM-Log)KM Standard Error of Mean (logged)0.123KM Standard Error of Mean (logged)0.123StatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatisticsStatistics	g Scale 1.3 ap UCL 0.2 o t UCL 0.5
95% t UCL (assumes normality of ROS data) 0.239 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 0.279 95% Bootstrap t UCL 95% H-UCL (Log ROS) 0.267 0 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Geo Mean KM Mean (logged) -1.509 KM Geo Mean KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log)	ap UCL 0.2 o t UCL 0.5 o Mean 0.2 M-Log) 1.9 M-Log) 0.3 M-Log) 1.9 g Scale -2.0
95% H-UCL (Log ROS) 0.267 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) -1.509 KM Geo Mean KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% H-UCL (KM -Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 0 KM Standard Error of Mean (logged) 0.123 0 VEV2 Statistics VEV2 Statistics VEV2 Statistics DL/2 Normal 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	o Mean 0.2 M-Log) 1.9 M-Log) 0.3 M-Log) 1.9
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution KM Mean (logged) -1.509 KM Geo Mean KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% H-UCL (KM -Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 0 L/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	M-Log) 1.9 M-Log) 0.3 M-Log) 1.9 g Scale -2.0
KM Mean (logged) -1.509 KM Geo Mean KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% H-UCL (KM -Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 95% Critical H Value (KM-Log) L L L L DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	M-Log) 1.9 M-Log) 0.3 M-Log) 1.9 g Scale -2.0
KM SD (logged)0.47595% Critical H Value (KM-Log)KM Standard Error of Mean (logged)0.12395% H-UCL (KM -Log)KM SD (logged)0.47595% Critical H Value (KM-Log)KM Standard Error of Mean (logged)0.12395% Critical H Value (KM-Log)DL/2 StatisticsDL/2 NormalMean in Original Scale0.192SD in Original Scale0.252SD in Log Scale	M-Log) 1.9 M-Log) 0.3 M-Log) 1.9 g Scale -2.0
KM Standard Error of Mean (logged) 0.123 95% H-UCL (KM -Log) KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 0.123 DL/2 Statistics DL/2 Normal Mean in Original Scale 0.192 SD in Original Scale 0.252 SD in Log Scale	M -Log) 0.3 M-Log) 1.9 g Scale -2.0
KM SD (logged) 0.475 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.123 0.123 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	M-Log) 1.9
KM Standard Error of Mean (logged) 0.123 DL/2 Statistics DL/2 Normal DL/2 Normal DL/2 Normal Mean in Original Scale 0.192 SD in Original Scale 0.252	g Scale -2.0
DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	
DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	
Mean in Original Scale 0.192 Mean in Log Scale SD in Original Scale 0.252 SD in Log Scale	
SD in Original Scale 0.252 SD in Log Scale	
	Scale 0.6
95% t UCL (Assumes normality) 0.289 95% H-Stat UCL	
	at UCL 0.2
Suggested UCL to Use 95% KM (t) UCL 0.361	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	
	5% UCL.
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	
	es.
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	es.
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician il benzoic acid 65-85-0) General Statistics	es. statistician.
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician II benzoic acid 65-85-0) General Statistics Total Number of Observations 20 Number of Distinct Observations	es. statistician. vations 9
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician il benzoic acid 65-85-0) General Statistics	es. statistician. vations 9 Detects 19

	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	20
		Number of Missing Observations	0
Minimum	0.31	Mean	0.754
Maximum	2	Median	0.664
SD	0.375	Std. Error of Mean	0.0839
Coefficient of Variation	0.497	Skewness	2.417
		GOF Test	
Shapiro Wilk Test Statistic	0.715	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.299	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.223	Data Not Normal at 1% Significance Level	
Data Not	Normal at 1	% Significance Level	
As	suming Nori	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.9	95% Adjusted-CLT UCL (Chen-1995)	0.941
		95% Modified-t UCL (Johnson-1978)	0.907
A-D Test Statistic	1.214	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.744	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.245	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.194	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamn	na Distribute	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	6.105	k star (bias corrected MLE)	5.223
Theta hat (MLE)	0.124	Theta star (bias corrected MLE)	0.144
nu hat (MLE)	244.2	nu star (bias corrected)	208.9
MLE Mean (bias corrected)	0.754	MLE Sd (bias corrected)	0.33
		Approximate Chi Square Value (0.05)	176.5
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	174.1
	-	nma Distribution	
95% Approximate Gamma UCL	0.893	95% Adjusted Gamma UCL	0.905
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.215	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
		10% Significance Level	
	-	*	
		al Statistics	
Minimum of Logged Data	-1.171	Mean of logged Data	-0.366
Maximum of Logged Data	0.693	SD of logged Data	0.396

	mal Distribution	
CL 0.894	90% Chebyshev (MVUE) UCL	0.95
CL 1.042	97.5% Chebyshev (MVUE) UCL	1.17
CL 1.421		
metric Distributio	on Free UCL Statistics	
		0.044
	-	0.948
	-	1.08
		0.89
		1.12
CL 1.278	99% Chebyshev(Mean, Sd) UCL	1.589
Suggested U	ICL to Use	
CL 0.9		
	I	
5% UCL are prov	vided to help the user to select the most appropriate 95% UCL.	
ze, data distribut	tion, and skewness using results from simulation studies.	
World data sets	s; for additional insight the user may want to consult a statisticial	n.
ns 20 xts 0	Number of Distinct Observations Number of Non-Detects	15 20
ts 0 ts 0	Number of Non-Detects Number of Distinct Non-Detects	20 15
· · · · · ·		
site specific valu	les to estimate environmental parameters (e.g., EPC, BTV).	
bis(2-chloroetho	oxy)methane 111-91-1) was not processed!	
General S	tatistics	
	Number of Distinct Observations	15
		20
	Number of Distinct Non-Detects	15
		-
cts (NDs), theref	ore all statistics and estimates should also be NDs!	
	s are also NDs lying below the largest detection limit!	
nd other statistic	is are also MDS lying below the largest detection limit:	
	les to estimate environmental parameters (e.g., EPC, BTV).	
	CL 1.421 metric Distribution port follow a Display parametric Distribution parametric Distribution	2L 1.042 97.5% Chebyshev (MVUE) UCL 2L 1.421 metric Distribution Free UCL Statistics point follow a Discemble Distribution parametric Distribution Free UCLs 2L 0.882 95% BCA Bootstrap-UCL 2L 0.889 95% Percentile Bootstrap UCL 2L 1.74 95% Percentile Bootstrap UCL 2L 1.006 95% Chebyshev(Mean, Sd) UCL 2L 1.074 95% Chebyshev(Mean, Sd) UCL 2L 1.006 95% Chebyshev(Mean, Sd) UCL 2L 1.278 99% Chebyshev(Mean, Sd) UCL Suggested UCL to Use CL 0.9 Number of Distinct Observations Number of Distinct Non-Detects CL 0 Number of Distinct Non-Detects CL 0 Number of Distinct Observations N

	General S	itatistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	2	Number of Non-Detects	18
Number of Distinct Detects	2	Number of Distinct Non-Detects	14
Minimum Detect	0.12	Minimum Non-Detect	0.38
Maximum Detect	0.39	Maximum Non-Detect	0.44
Variance Detects	0.0365	Percent Non-Detects	90%
Mean Detects	0.255	SD Detects	0.19
Median Detects	0.255	CV Detects	0.74
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.531	SD of Logged Detects	0.83
-		nly 2 Detected Values. ul or reliable statistics and estimates.	
Norma	al GOF Test	on Detects Only	
Not Eno	ugh Data to	Perform GOF Test	
Kaplan-Meier (KM) Statistics using	g Normal Crit	ical Values and other Nonparametric UCLs	
KM Mean	0.154	KM Standard Error of Mean	0.04
90KM SD	0.0893	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.231	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.227	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.288	95% KM Chebyshev UCL	0.34
97.5% KM Chebyshev UCL	0.433	99% KM Chebyshev UCL	0.5
Gamma GOF ⁻	Tests on Dete	ected Observations Only	
Not Eno	ugh Data to	Perform GOF Test	
Gamma S	Statistics on I	Detected Data Only	
k hat (MLE)	3.198	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.0797	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	12.79	nu star (bias corrected)	N/A
Mean (detects)	0.255		
Estimates of Ga	ımma Param	eters using KM Estimates	
Mean (KM)	0.154	SD (KM)	0.08
Variance (KM)	0.00797	SE of Mean (KM)	0.04
k hat (KM)	2.965	k star (KM)	2.5
nu hat (KM)	118.6	nu star (KM)	102.1
theta hat (KM)	0.0519	theta star (KM)	0.06
80% gamma percentile (KM)	0.224	90% gamma percentile (KM)	0.28
95% gamma percentile (KM)	0.338	99% gamma percentile (KM)	0.40
	1		

Recor However, sim coil bromobenzene	mmendations are based upon data size, aulations results will not cover all Real Wo e 108-86-1) Total Number of Observations Number of Detects Number of Distinct Detects	data distribu orld data sets General S 11 0 0 (NDs), theref	ovided to help the user to select the most appropriate 95% UCL. tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistician statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Statistics fore all statistics and estimates should also be NDs! cs are also NDs lying below the largest detection limit!	
Recor However, sim	estions regarding the selection of a 95% mmendations are based upon data size, nulations results will not cover all Real Wo e 108-86-1) Total Number of Observations Number of Detects Number of Distinct Detects	UCL are produced data distribution of the second data sets of the second data	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistician statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	n. 8 11
Recor However, sim	estions regarding the selection of a 95% mmendations are based upon data size, julations results will not cover all Real Wo e 108-86-1) Total Number of Observations Number of Detects	UCL are pro data distribu orld data sets General S 11 0	ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistician statistics Number of Distinct Observations Number of Non-Detects	n. 8 11
Recor However, sim	estions regarding the selection of a 95% mmendations are based upon data size, nulations results will not cover all Real Wo e 108-86-1) Total Number of Observations	UCL are pro data distribu orld data sets General S 11	ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistician statistics Number of Distinct Observations	n. 8
Recor However, sim	estions regarding the selection of a 95% mmendations are based upon data size, julations results will not cover all Real Wo e 108-86-1)	UCL are pro data distribu orld data sets General S	ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistician statistics	n.
Recor However, sim	estions regarding the selection of a 95% mmendations are based upon data size, nulations results will not cover all Real Wo	UCL are pro data distribu orld data sets	ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistician	
Recor	estions regarding the selection of a 95% mmendations are based upon data size,	UCL are pro	tion, and skewness using results from simulation studies.	
Recor	estions regarding the selection of a 95% mmendations are based upon data size,	UCL are pro	tion, and skewness using results from simulation studies.	
Note: Sugg			ovided to help the user to select the most appropriate 95% UCL.	
	95% KM (t) UCL	0.231		
		Suggested L	JCL to Use	
			on Free UCL Statistics scernible Distribution	
	95% t UCL (Assumes normality)	0.224	95% H-Stat UCL	0.22
	SD in Original Scale	0.0476	SD in Log Scale	0.1
	Mean in Original Scale	0.205	Mean in Log Scale	-1.60
	DL/2 Normal		DL/2 Log-Transformed	
		DL/2 Sta	atistics	
	Note: KM UCLs may be biased low v	vith this data	set. Other substitution method recommended	
	KM Standard Error of Mean (logged)	0.195		
	KM SD (logged)	0.39	95% Critical H Value (KM-Log)	1.9
	KM Standard Error of Mean (logged)	0.39	95% H-UCL (KM -Log)	0.1
	KM Mean (logged) KM SD (logged)	0.39	95% Critical H Value (KM-Log)	1.9
	Statistics using KM estimates of KM Mean (logged)	n Logged Da -1.973	ta and Assuming Lognormal Distribution KM Geo Mean	0.1
	95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.182	95% Bootstrap t UCL	0.20
95% t	UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.169	95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.1
0501	SD in Original Scale	0.0643	SD in Log Scale	0.3
	Mean in Original Scale	0.144	Mean in Log Scale	-1.99
			sing Imputed Non-Detects	
	Not Eno	ugh Data to I	Perform GOF Test	
	Lognormal GOF	Test on De	tected Observations Only	
	95% KM Approximate Gamma UCL	0.197	95% KM Adjusted Gamma UCL	0.2
Арр	proximate Chi Square Value (102.13, α)	79.82	Adjusted Chi Square Value (102.13, β)	78.2

The data set for variable C (soil | bromobenzene | 108-86-1) was not processed!

C (soil | bromochloromethane | 74-97-5)

	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects ((NDs), ther	refore all statistics and estimates should also be NDs!	
-		tics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	bromochi	oromethane 74-97-5) was not processed!	
C (soil bromodichloromethane 75-27-4)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Specifically, sample mean, UCLs, UPLs, and c	other statis	refore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	bromodich	loromethane 75-27-4) was not processed!	
C (soil bromoform 75-25-2)	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects ((NDs), ther	refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil bron	noform 75-25-2) was not processed!	
C (soil bromomethane 74-83-9)			
	General	Statistics	

Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (s	soil bromo	methane 74-83-9) was not processed!	
(soil butylbenzylphthalate 85-68-7)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
	0		15
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	ics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil (soil cadmium 7440-43-9)	l butylbenz	ylphthalate 85-68-7) was not processed!	
· · · · · · · · · · · · · · · · · · ·			
(soil cadmium 7440-43-9)	General	Statistics	15
(soil cadmium 7440-43-9) Total Number of Observations	General 20	Statistics Number of Distinct Observations	15
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects	General 20 8	Statistics Number of Distinct Observations Number of Non-Detects	12
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects	General 20 8 7	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	12 9
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General 20 8 7 0.21	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	12 9 0.187
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General 20 8 7 0.21 0.52	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	12 9 0.187 0.5
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	General 20 8 7 0.21 0.52 0.00851	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	12 9 0.187 0.5 60%
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	General 20 8 7 0.21 0.52 0.00851 0.351	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	12 9 0.187 0.5 60% 0.0922
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	General 20 8 7 0.21 0.52 0.00851 0.351 0.34	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	12 9 0.187 0.5 60% 0.0922 0.263
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	General 20 8 7 0.21 0.52 0.00851 0.351 0.34 0.506	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects	12 9 0.187 0.5 60% 0.0922 0.263 1.028
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	General 20 8 7 0.21 0.52 0.00851 0.351 0.34	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	12 9 0.187 0.5 60% 0.0922 0.263
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General 20 8 7 0.21 0.52 0.00851 0.351 0.34 0.34 0.506 -1.078	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects	12 9 0.187 0.5 60% 0.0922 0.263 1.028
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General 20 8 7 0.21 0.52 0.00851 0.351 0.34 0.34 0.506 -1.078	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	12 9 0.187 0.5 60% 0.0922 0.263 1.028
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General 20 8 7 0.21 0.52 0.00851 0.351 0.351 0.34 0.506 -1.078	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects t on Detects Only	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Morm Shapiro Wilk Test Statistic	General 20 8 7 0.21 0.52 0.00851 0.351 0.34 0.506 -1.078 al GOF Tes 0.971	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects t on Detects Only Shapiro Wilk GOF Test	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	General 20 8 7 0.21 0.52 0.00851 0.351 0.351 0.34 0.506 -1.078 al GOF Tes 0.971 0.749	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Level	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	General 20 8 7 0.21 0.52 0.00851 0.351 0.351 0.34 0.506 -1.078 al GOF Tes 0.971 0.749 0.172 0.333 appear Norm	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	General 20 8 7 0.21 0.52 0.00851 0.351 0.351 0.34 0.506 -1.078 al GOF Tes 0.971 0.749 0.172 0.333 appear Norm	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	General 20 8 7 0.21 0.52 0.00851 0.351 0.351 0.34 0.506 -1.078 mal GOF Tes 0.971 0.749 0.172 0.333 appear Norm	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268
(soil cadmium 7440-43-9) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	General 20 8 7 0.21 0.52 0.00851 0.351 0.351 0.34 0.506 -1.078 mal GOF Tes 0.971 0.749 0.172 0.333 appear Norm	Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve	12 9 0.187 0.5 60% 0.0922 0.263 1.028 0.268

90KM SD	0.0927	95% KM (BCA) UCL	0.332
95% KM (t) UCL	0.333	95% KM (Percentile Bootstrap) UCL	0.33
95% KM (z) UCL	0.331	95% KM Bootstrap t UCL	0.331
90% KM Chebyshev UCL	0.368	95% KM Chebyshev UCL	0.405
97.5% KM Chebyshev UCL	0.456	99% KM Chebyshev UCL	0.556
	<u> </u>		
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.197	Anderson-Darling GOF Test	
5% A-D Critical Value	0.716	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.143	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.294	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
Note GOF tests	may be unrel	iable for small sample sizes	
		Detected Data Only	
k hat (MLE)	16.44	k star (bias corrected MLE)	10.36
Theta hat (MLE)	0.0213	Theta star (bias corrected MLE)	0.0339
nu hat (MLE)		nu star (bias corrected)	165.7
Mean (detects)	0.351		
Gamma ROS	Statistics us	ing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	in the sample size is small.	
	-	ay be computed using gamma distribution on KM estimates	
Minimum	0.179	Mean	0.283
Maximum	0.173	Median	0.263
SD	0.0872	CV	0.308
k hat (MLE)		k star (bias corrected MLE)	10.39
Theta hat (MLE)	0.0232	Theta star (bias corrected MLE)	0.0272
nu hat (MLE)		nu star (bias corrected MEE)	415.8
Adjusted Level of Significance (β)	0.038		410.0
Approximate Chi Square Value (415.75, α)		Adjusted Chi Square Value (415.75, β)	366
95% Gamma Approximate UCL	0.318	95% Gamma Adjusted UCL	0.321
	0.0.10		0.02.
Estimates of G	amma Paran	neters using KM Estimates	
Mean (KM)		SD (KM)	0.0927
Variance (KM)	0.00859	SE of Mean (KM)	0.0271
k hat (KM)	9.551	k star (KM)	8.152
nu hat (KM)	382.1	nu star (KM)	326.1
theta hat (KM)	0.03	theta star (KM)	0.0351
80% gamma percentile (KM)	0.366	90% gamma percentile (KM)	0.42
95% gamma percentile (KM)	0.469	99% gamma percentile (KM)	0.57
		eier (KM) Statistics	
Approximate Chi Square Value (326.08, α)		Adjusted Chi Square Value (326.08, β)	282.2
95% KM Approximate Gamma UCL	0.327	95% KM Adjusted Gamma UCL	0.331
1			

Lognormal GOF	- Test on De	Recied Observations Only		
Shapiro Wilk Test Statistic	0.977	Shapiro Wilk GOF Test		
10% Shapiro Wilk Critical Value	0.851	Detected Data appear Lognormal at 10% Significance Le	evel	
Lilliefors Test Statistic	0.15	Lilliefors GOF Test		
10% Lilliefors Critical Value	0.265	Detected Data appear Lognormal at 10% Significance Le	evel	
	-	nal at 10% Significance Level		
Note GOF tests n	nay be unreli	iable for small sample sizes		
Lognormal ROS	Statistics U	sing Imputed Non-Detects		
Mean in Original Scale	0.286	Mean in Log Scale	-1.28	
SD in Original Scale	0.0833	SD in Log Scale	0.26	
95% t UCL (assumes normality of ROS data)	0.318	95% Percentile Bootstrap UCL	0.31	
95% BCA Bootstrap UCL	0.322	95% Bootstrap t UCL	0.32	
95% H-UCL (Log ROS)	0.32			
Statistics using KM estimates o	n Logged D:	ata and Assuming Lognormal Distribution		
KM Mean (logged)	-1.301	KM Geo Mean	0.27	
KM SD (logged)	0.319	95% Critical H Value (KM-Log)	1.86	
KM Standard Error of Mean (logged)	0.0977	95% H-UCL (KM -Log)	0.32	
KM SD (logged)	0.319	95% Critical H Value (KM-Log)	1.86	
KM Standard Error of Mean (logged)	0.0977			
	I			
DL/2 Normal	DL/2 Sta	DL/2 Log-Transformed		
Mean in Original Scale	0.244	Mean in Log Scale	-1.51	
SD in Original Scale	0.112	SD in Log Scale	0.46	
95% t UCL (Assumes normality)	0.287	95% H-Stat UCL	0.30	
	thod, provide	ed for comparisons and historical reasons		
Nonparame	tric Distributi	on Free UCL Statistics		
		ributed at 1% Significance Level		
	Suggested L			
95% KM (t) UCL	0.333			
		ovided to help the user to select the most appropriate 95% UCL.		
	date distal	ution and skewness using results from simulation studies		
Recommendations are based upon data size,		-		
•		s; for additional insight the user may want to consult a statisticia	n.	
However, simulations results will not cover all Real W		-	n.	
•		-	n.	
However, simulations results will not cover all Real Will lot cover all Real Will lot cover all Real Will carbazole 86-74-8)	orld data set General S	ts; for additional insight the user may want to consult a statisticia		
However, simulations results will not cover all Real Will I (carbazole 86-74-8) Total Number of Observations	orld data set General S 20	Statistics Number of Distinct Observations	16	
However, simulations results will not cover all Real W il carbazole 86-74-8) Total Number of Observations Number of Detects	General S 20 4	Statistics Number of Distinct Observations Number of Non-Detects	16 16	
However, simulations results will not cover all Real W il carbazole 86-74-8) Total Number of Observations Number of Detects Number of Distinct Detects	General S 20 4 4	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects	16 16 12	
However, simulations results will not cover all Real W il carbazole 86-74-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General S 20 4 4 0.23	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	16 16 12 0.18	
However, simulations results will not cover all Real W I carbazole 86-74-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General S 20 4 4 0.23 0.46	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	16 16 12 0.18 0.22	
However, simulations results will not cover all Real W il carbazole 86-74-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General S 20 4 4 0.23	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	16 16 12 0.18	

s 0.329 s 0.318
5 0.518
s 0.313
evel
evel
n 0.0171
N/A
N/A
N/A
0.287
0.383
ince Level
ince Level
) 3.496
) 0.0908
) 27.97
-
)
n 0.0715
n 0.01
/ 1.858
) 0.455
) 0.157
+
9.032
, L N/A

Estimates of Ga	amma Param	neters using KM Estimates	
Mean (KM)	0.213	SD (KM)	0.0661
Variance (KM)	0.00437	SE of Mean (KM)	0.0171
k hat (KM)	10.36	k star (KM)	8.839
nu hat (KM)	414.4	nu star (KM)	353.6
theta hat (KM)	0.0205	theta star (KM)	0.0241
80% gamma percentile (KM)	0.27	90% gamma percentile (KM)	0.308
95% gamma percentile (KM)	0.343	99% gamma percentile (KM)	0.414
Gamm	a Kanlan-Me	er (KM) Statistics	
Approximate Chi Square Value (353.56, α)		Adjusted Chi Square Value (353.56, β)	307.8
95% KM Approximate Gamma UCL	0.242	95% KM Adjusted Gamma UCL	0.244
-		etected Observations Only	
Shapiro Wilk Test Statistic	0.929	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.24	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance L	evel
		nal at 10% Significance Level	
Note GOF tests r	nay be unrel	iable for small sample sizes	
-	Statistics U	sing Imputed Non-Detects	
Mean in Original Scale	0.119	Mean in Log Scale	-2.401
SD in Original Scale	0.111	SD in Log Scale	0.676
95% t UCL (assumes normality of ROS data)	0.162	95% Percentile Bootstrap UCL	0.161
95% BCA Bootstrap UCL	0.172	95% Bootstrap t UCL	0.19
95% H-UCL (Log ROS)	0.16		
Statistics using KM estimates of	n Logged Da	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-1.58	KM Geo Mean	0.206
KM SD (logged)	0.232	95% Critical H Value (KM-Log)	1.805
KM Standard Error of Mean (logged)	0.0598	95% H-UCL (KM -Log)	0.233
KM SD (logged)	0.232	95% Critical H Value (KM-Log)	1.805
KM Standard Error of Mean (logged)	0.0598	· · · · ·	
	DL/2 St	atistics	
DL/2 Normal	00230	DL/2 Log-Transformed	
Mean in Original Scale	0.143	Mean in Log Scale	-2.081
SD in Original Scale	0.0986	SD in Log Scale	0.478
95% t UCL (Assumes normality)	0.181	95% H-Stat UCL	0.470
		ed for comparisons and historical reasons	0.174
Nonparame	tric Distributi	on Free UCL Statistics	
Detected Data appear	Normal Dist	ributed at 1% Significance Level	
	Sunneeted I	ICL to Use	
95% KM (t) UCL	Suggested U	JCL to Use	

Recommendations are based upon data size, data distribution, and skewness using results from simulation studie However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a s soil carbon disulfide 75-15-0) General Statistics Total Number of Observations 11 Number of Distinct Observations Number of Detects 0 Number of Non-D	
soil carbon disulfide 75-15-0) General Statistics Total Number of Observations 11 Number of Distinct Observ Number of Detects 0 Number of Non-D	tatistician.
General Statistics Total Number of Observations 11 Number of Distinct Observations Number of Detects 0 Number of Non-D	
Total Number of Observations 11 Number of Distinct Observ Number of Detects 0 Number of Non-D	
Total Number of Observations 11 Number of Distinct Observ Number of Detects 0 Number of Non-D	
Number of Detects 0 Number of Non-D	
Number of Distinct Detects 0 Number of Distinct Non-D	etects 10
Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, B	TV).
The data set for variable C (soil carbon disulfide 75-15-0) was not processed!	
soil carbon tetrachloride 56-23-5)	
General Statistics	
Total Number of Observations 11 Number of Distinct Observ	ations 8
Number of Detects 0 Number of Non-D	etects 11
Number of Distinct Detects 0 Number of Distinct Non-D	etects 8
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, B	TV).
The data set for variable C (soil carbon tetrachloride 56-23-5) was not processed!	
soil chlorobenzene 108-90-7)	
General Statistics	
Total Number of Observations 11 Number of Distinct Observ	ations 8
Number of Detects 0 Number of Non-D	etects 11
Number of Distinct Detects 0 Number of Distinct Non-D	etects 8
Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, B	TV).
The data set for variable C (soil chlorobenzene 108-90-7) was not processed!	
(soil chloroethane 75-00-3)	

Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects		Number of Non-Detects	11
Number of Distinct Detects	-	Number of Distinct Non-Detects	
	0	Number of Distinct Non-Detects	8
	(1.100))		
		efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil chlore	ethane 75-00-3) was not processed!	
C (soil chloroform 67-66-3)			
	General	Statistics	
Total Number of Observations	i.	Number of Distinct Observations	11
Number of Detects		Number of Non-Detects	11
Number of Distinct Detects	-	Number of Distinct Non-Detects	11
	0		11
Manuface All shares and have Data star		-fore all statistics and estimates should also be MD-1	
-		efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable (C (soil chlo	roform 67-66-3) was not processed!	
C (soil chloromethane 74-87-3)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
	•		
Warning: All observations are Non-Detects	(NDe) ther	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C ((soil chloroi	methane 74-87-3) was not processed!	
C (soil chromium (total) 7440-47-3)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	17
		Number of Missing Observations	0
Minimum	11.43	Mean	86.49
Mavimum	1400	Modian	16 67
Maximum	1400	Median Std. Error of Moan	16.67
Maximum SD Coefficient of Variation	309.2	Median Std. Error of Mean Skewness	16.67 69.14 4.471

	Normal G		
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.526	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.223	Data Not Normal at 1% Significance Level	
Data Not	Normal at 19	% Significance Level	
As	suming Norm	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	206	95% Adjusted-CLT UCL (Chen-1995)	274.1
		95% Modified-t UCL (Johnson-1978)	217.6
	Gamma G	OF Test	
A-D Test Statistic	6.326	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.812	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.506	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.206	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gam	na Distributed	d at 5% Significance Level	
	Gamma S	- Andresian	
k bot (MLE)	0.457	k star (bias corrected MLE)	0.422
k hat (MLE)			205.1
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)	18.28	nu star (bias corrected)	16.87
MLE Mean (bias corrected)	86.49	MLE Sd (bias corrected)	133.2
	0.000	Approximate Chi Square Value (0.05)	8.578
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	8.112
Ase	suming Gamm	na Distribution	
95% Approximate Gamma UCL	170.1	95% Adjusted Gamma UCL	179.8
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.429	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.354	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not Lo	ognormal at 1	0% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	-	Mean of logged Data	3.05
Maximum of Logged Data		SD of logged Data	1.011
		mal Distribution	
95% H-UCL	65.09	90% Chebyshev (MVUE) UCL	59.75
95% Chebyshev (MVUE) UCL	71.44	97.5% Chebyshev (MVUE) UCL	87.67
99% Chebyshev (MVUE) UCL	119.5		
Nonparame	etric Distribution	on Free UCL Statistics	
Data do n	ot follow a Dis	scernible Distribution	

Nonpar	ametric Dist	tribution Free UCLs	
95% CLT UCL	200.2	95% BCA Bootstrap UCL	294.4
95% Standard Bootstrap UCL	197.1	95% Bootstrap-t UCL	6873
95% Hall's Bootstrap UCL	2986	95% Percentile Bootstrap UCL	224.5
90% Chebyshev(Mean, Sd) UCL	293.9	95% Chebyshev(Mean, Sd) UCL	387.9
97.5% Chebyshev(Mean, Sd) UCL	518.3	99% Chebyshev(Mean, Sd) UCL	774.4
	0		
05% Studentis t LOI	206	UCL to Use	
95% Student's-t UCL	200		
The calculated UCLs are based on assumption	ons that the	data were collected in a random and unbiased manner.	
Please verify the d	ata were co	llected from random locations.	
If the data were collected	using judgn	nental or other non-random methods,	
then contact as	statistician to	o correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCI	
		pution, and skewness using results from simulation studies.	
		ets; for additional insight the user may want to consult a statistici	an.
			-
C (soil chrysene 218-01-9)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	9	Number of Non-Detects	11
Number of Distinct Detects	8	Number of Distinct Non-Detects	8
Minimum Detect	0.063	Minimum Non-Detect	0.192
Maximum Detect	2.9	Maximum Non-Detect	0.22
Variance Detects	0.972	Percent Non-Detects	55%
Mean Detects	0.757	SD Detects	0.986
Median Detects	0.16	CV Detects	1.302
Skewness Detects	1.548	Kurtosis Detects	1.831
Mean of Logged Detects	-1.127	SD of Logged Detects	1.411
Name		t en Detecto Och	
Shapiro Wilk Test Statistic	0.754	t on Detects Only Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.754	Detected Data Not Normal at 1% Significance Leve	.1
Lilliefors Test Statistic	0.764	Lilliefors GOF Test	•1
1% Lilliefors Critical Value	0.289	Detected Data appear Normal at 1% Significance Lev	
		e Normal at 1% Significance Level	VCI
NOTE GOF TESTS I	nay be unre	liable for small sample sizes	
Kanlan-Meier (KM) Statistics usin	a Normal Cr	ritical Values and other Nonparametric UCLs	
KM Mean	0.403	KM Standard Error of Mean	0.167
90KM SD	0.403	95% KM (BCA) UCL	0.167
95% KM (t) UCL	0.691	95% KM (Percentile Bootstrap) UCL	0.683
95% KM (z) UCL		95% KM Bootstrap t UCL	
90% KM Chebyshev UCL	0.903	95% KM Chebyshev UCL	1.129
97.5% KM Chebyshev UCL	1.443	99% KM Chebyshev UCL	2.061

Gamma GOF 1	Fests on Det	ected Observations Only		
A-D Test Statistic	0.679	Anderson-Darling GOF Test		
5% A-D Critical Value	0.754	Detected data appear Gamma Distributed at 5% Significance L		
K-S Test Statistic	0.287	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.29	Detected data appear Gamma Distributed at 5% Significance	e Level	
Detected data appear	Gamma Dist	ributed at 5% Significance Level		
Note GOF tests m	nay be unreli	able for small sample sizes		
Gamma S	Statistics on	Detected Data Only		
k hat (MLE)	0.711	k star (bias corrected MLE)	0.548	
Theta hat (MLE)	1.065	Theta star (bias corrected MLE)	1.382	
nu hat (MLE)	12.79	nu star (bias corrected)	9.863	
Mean (detects)	0.757			
Gamma ROS :	Statistics usi	ng Imputed Non-Detects		
		NDs with many tied observations at multiple DLs		
		s <1.0, especially when the sample size is small (e.g., <15-20)		
		yield incorrect values of UCLs and BTVs		
		n the sample size is small.		
		y be computed using gamma distribution on KM estimates		
Minimum	0.01	Mean	0.373	
Maximum	2.9	Median	0.37	
	-	CV	1.97	
SD	0.735 0.407		0.379	
k hat (MLE)		k star (bias corrected MLE)		
Theta hat (MLE)	0.916	Theta star (bias corrected MLE)	0.983	
nu hat (MLE)	16.27	nu star (bias corrected)	15.16	
Adjusted Level of Significance (β)	0.038		0.04	
Approximate Chi Square Value (15.16, α)	7.374	Adjusted Chi Square Value (15.16, β)	6.94	
95% Gamma Approximate UCL	0.766	95% Gamma Adjusted UCL	0.81	
Estimates of Ga		eters using KM Estimates		
Mean (KM)	0.403	SD (KM)	0.70	
Variance (KM)	0.492	SE of Mean (KM)	0.167	
k hat (KM)	0.329	k star (KM)	0.31	
nu hat (KM)	13.18	nu star (KM)	12.53	
theta hat (KM)	1.222	theta star (KM)	1.28	
	0.624	90% gamma percentile (KM)	1.18	
80% gamma percentile (KM)	0.02.			
80% gamma percentile (KM) 95% gamma percentile (KM)	1.816	99% gamma percentile (KM)	3.45	
95% gamma percentile (KM)	1.816	99% gamma percentile (KM) ier (KM) Statistics	3.45	
95% gamma percentile (KM)	1.816			
95% gamma percentile (KM) Gamma	1.816 a Kaplan-Me	ier (KM) Statistics	5.21	
95% gamma percentile (KM) Gamma Approximate Chi Square Value (12.53, α) 95% KM Approximate Gamma UCL	1.816 a Kaplan-Me 5.58 0.904	ier (KM) Statistics Adjusted Chi Square Value (12.53, β)	5.21	
95% gamma percentile (KM) Gamma Approximate Chi Square Value (12.53, α) 95% KM Approximate Gamma UCL	1.816 a Kaplan-Me 5.58 0.904	ier (KM) Statistics Adjusted Chi Square Value (12.53, β) 95% KM Adjusted Gamma UCL	5.21	
95% gamma percentile (KM) Gamma Approximate Chi Square Value (12.53, α) 95% KM Approximate Gamma UCL Lognormal GOF	1.816 a Kaplan-Me 5.58 0.904 Test on De	ier (KM) Statistics Adjusted Chi Square Value (12.53, β) 95% KM Adjusted Gamma UCL	5.21 [°] 0.96	
95% gamma percentile (KM) Gamma Approximate Chi Square Value (12.53, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic	1.816 a Kaplan-Me 5.58 0.904 F Test on De 0.883	ier (KM) Statistics Adjusted Chi Square Value (12.53, β) 95% KM Adjusted Gamma UCL tected Observations Only Shapiro Wilk GOF Test	3.457 5.217 0.967	

		nal at 10% Significance Level liable for small sample sizes	
		Jsing Imputed Non-Detects	
Mean in Original Scale	0.414	Mean in Log Scale	-1.647
SD in Original Scale	0.715	SD in Log Scale	1.07
95% t UCL (assumes normality of ROS data)	0.691	95% Percentile Bootstrap UCL	0.69
95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.793	95% Bootstrap t UCL	1
· · · ·			
_		ata and Assuming Lognormal Distribution	
KM Mean (logged)	-1.733	KM Geo Mean	0.17
KM SD (logged)	1.072	95% Critical H Value (KM-Log)	2.74
KM Standard Error of Mean (logged)	0.272	95% H-UCL (KM -Log)	0.61
KM SD (logged)	1.072	95% Critical H Value (KM-Log)	2.74
KM Standard Error of Mean (logged)	0.272		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.396	Mean in Log Scale	-1.767
SD in Original Scale	0.722	SD in Log Scale	1.092
95% t UCL (Assumes normality)	0.675	95% H-Stat UCL	0.62
DL/2 is not a recommended me	thod. provid	ed for comparisons and historical reasons	
	.		
95% KM (t) UCL	0.691	UCL to Use	
-		data were collected in a random and unbiased manner.	
-		lected from random locations.	
		nental or other non-random methods,	
then contact a s	statistician to	o correctly calculate UCLs.	
When a data set follows an app	rovimate di	stribution passing only one of the GOF tests,	
	i unitate ul		
it is suggested to use a UCL bas		listribution passing both GOF tests in ProUCL	
	ed upon a c		
Note: Suggestions regarding the selection of a 95%	ed upon a c	istribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ed upon a c UCL are p data distrib	istribution passing both GOF tests in ProUCL rovided to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	ed upon a c UCL are p data distrib	istribution passing both GOF tests in ProUCL rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ed upon a c UCL are p data distrit orld data se	listribution passing both GOF tests in ProUCL rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil cis-1,2-dichloroethene 156-59-2)	ed upon a c UCL are p data distrib orld data se General	listribution passing both GOF tests in ProUCL rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia Statistics	an.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil cis-1,2-dichloroethene 156-59-2) Total Number of Observations	ed upon a c UCL are p data distrib orld data se General 11	istribution passing both GOF tests in ProUCL rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	an. 8
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil cis-1,2-dichloroethene 156-59-2)	ed upon a c UCL are p data distrib orld data se General	listribution passing both GOF tests in ProUCL rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia Statistics	an.

		ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	cis-1,2-dich	loroethene 156-59-2) was not processed!	
oil cobalt 7440-48-4)			
	General	Otatiotics	
Total Number of Observations	20	Number of Distinct Observations	19
	20	Number of Missing Observations	0
Minimum	4.2	Mean	9.06
Maximum	18	Median	8.45
SD	3.38	Std. Error of Mean	0.75
Coefficient of Variation	0.373	Skewness	0.97
	Normal G	GOF Test	
Shapiro Wilk Test Statistic	0.934	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.147	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.223	Data appear Normal at 1% Significance Level	
	suming Norn	nal Distribution	
95% Normal UCL	10.07	95% UCLs (Adjusted for Skewness)	10.4
95% Student's-t UCL	10.37	95% Adjusted-CLT UCL (Chen-1995)	10.4
		95% Modified-t UCL (Johnson-1978)	10.4
	Gamma (GOF Test	
A-D Test Statistic	0.234	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significand	ce Leve
K-S Test Statistic	0.132	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.194	Detected data appear Gamma Distributed at 5% Significand	ce Leve
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	8.148	k star (bias corrected MLE)	6.95
Theta hat (MLE)	1.113	Theta star (bias corrected MLE)	1.30
nu hat (MLE)	325.9	nu star (bias corrected)	278.4
MLE Mean (bias corrected)	9.066	MLE Sd (bias corrected)	3.43
		Approximate Chi Square Value (0.05)	240.7
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	238
		ma Distribution	
Ass	uming Gam		
Ass 95% Approximate Gamma UCL	10.48	95% Adjusted Gamma UCL	10.6

Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.986	Shapiro Wilk Lognormal GOF Test	
	0.92	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.122	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data appear Lognormal at 10% Significance Level	
Data appear	Lognormal at 10	% Significance Level	
	Lognormal St	ntintino	
Minimum of Logged Data	Lognormal St 1.435	Mean of logged Data	2.142
Maximum of Logged Data Maximum of Logged Data		SD of logged Data	0.362
	2.09	SD 01 logged Data	0.30
Assu	uming Lognorma	al Distribution	
95% H-UCL	10.64	90% Chebyshev (MVUE) UCL	11.3
95% Chebyshev (MVUE) UCL	12.32	97.5% Chebyshev (MVUE) UCL	13.73
99% Chebyshev (MVUE) UCL	16.5		
Nerrore	tria Distribution	Free UCL Statistics	
		cernible Distribution	
Nonpa	rametric Distribu	tion Free UCLs	
95% CLT UCL	10.31	95% BCA Bootstrap UCL	10.4
95% Standard Bootstrap UCL	10.28	95% Bootstrap-t UCL	10.62
95% Hall's Bootstrap UCL	10.71	95% Percentile Bootstrap UCL	10.32
90% Chebyshev(Mean, Sd) UCL	11.33	95% Chebyshev(Mean, Sd) UCL	12.3
97.5% Chebyshev(Mean, Sd) UCL	13.79	99% Chebyshev(Mean, Sd) UCL	16.5
	Suggested UC	L to Use	
95% Student's-t UCL	Suggested UC	L to Use	
	10.37		
Note: Suggestions regarding the selection of a 95%	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	10.37 6 UCL are provid	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	10.37 6 UCL are provid , data distributio /orld data sets; f	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8)	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics	n.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8)	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia	n. 19 0
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations	n. 19 0 70.3
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean	n. 19 0 70.3 16.0
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20 11 1000	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median	n. 19 0 70.3 16.0 48.9
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20 11 1000 219.1	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	n. 19 0 70.3 16.0 48.9
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20 11 1000 219.1	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	n. 19 0 70.3 16.0 48.9
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20 11 1000 219.1 3.117 Normal GOF	ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	n. 19 0 70.3 16.0 48.9
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20 11 1000 219.1 3.117 Normal GOF 0.27	ded to help the user to select the most appropriate 95% UCL. In, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Test Shapiro Wilk GOF Test	n. 19 0 70.3 16.0 48.9
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	10.37 10.37 6 UCL are provid , data distributio /orld data sets; f 20 11 1000 219.1 3.117 Normal GOF 0.27 0.868	ded to help the user to select the most appropriate 95% UCL. In, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Test Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level	n. 19 0
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W soil copper 7440-50-8) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	10.37 6 UCL are provid , data distributio /orld data sets; f General Stat 20 11 1000 219.1 3.117 Normal GOF 0.27	ded to help the user to select the most appropriate 95% UCL. In, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticia tistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Test Shapiro Wilk GOF Test	n. 19 0 70.3 16.0 48.9

As	suming Normal	Distribution	
95% Normal UCL	-	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	155	95% Adjusted-CLT UCL (Chen-1995)	203
		95% Modified-t UCL (Johnson-1978)	163.1
	Gamma GOI	- Test	
A-D Test Statistic	4.797	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.796	Data Not Gamma Distributed at 5% Significance Leve	ما
K-S Test Statistic	0.379	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.204	Data Not Gamma Distributed at 5% Significance Leve	ما
		t 5% Significance Level	
	0		
k hat (MLE)	Gamma Stat	k star (bias corrected MLE)	0.52
Theta hat (MLE)	122.8	Theta star (bias corrected MLE)	135.2
nu hat (MLE)	22.9	nu star (bias corrected MLL)	20.8
MLE Mean (bias corrected)	70.3	MLE Sd (bias corrected)	97.49
	70.0	Approximate Chi Square Value (0.05)	11.44
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	10.89
	suming Gamma		
95% Approximate Gamma UCL	127.8	95% Adjusted Gamma UCL	134.2
	Lognormal GC	DF Test	
Shapiro Wilk Test Statistic	0.603	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.235	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not Lo	ognormal at 10%	6 Significance Level	
	Lognormal Sta	atistics	
Minimum of Logged Data	2.398	Mean of logged Data	3.166
Maximum of Logged Data	6.908	SD of logged Data	0.97
95% H-UCL	67.59	90% Chebyshev (MVUE) UCL	63.39
95% Chebyshev (MVUE) UCL	75.45	97.5% Chebyshev (MVUE) UCL	92.2
99% Chebyshev (MVUE) UCL	125.1		
-		Free UCL Statistics	
Data do no	ot follow a Disce	mible Distribution	
Nonpar	ametric Distribu	tion Free UCLs	
95% CLT UCL	150.9	95% BCA Bootstrap UCL	218.9
	148.7	95% Bootstrap-t UCL	1579
95% Standard Bootstrap UCL	140.7		
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	821.8	95% Percentile Bootstrap UCL	167.7
-		95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	

	Suggested	UCL to Use	
95% Student's-t UCL	155		
The calculated UCLs are based on assumption	ns that the	data were collected in a random and unbiased manner.	
Please verify the da	ata were co	llected from random locations.	
If the data were collected	using judgm	nental or other non-random methods,	
then contact a s	tatistician to	o correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UC	L.
Recommendations are based upon data size,	data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data se	ets; for additional insight the user may want to consult a statistic	ian.
C (soil cumene 98-82-8)			
		Statistics	
Total Number of Observations	11	Number of Distinct Observations	-
Number of Detects	2	Number of Non-Detects	-
Number of Distinct Detects	2	Number of Distinct Non-Detects	-
Minimum Detect	0.14	Minimum Non-Detect	
Maximum Detect	0.49	Maximum Non-Detect	0.0019
Variance Detects	0.0613	Percent Non-Detects	81.82%
Mean Detects	0.315	SD Detects	0.247
Median Detects	0.315	CV Detects	0.786
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.34	SD of Logged Detects	0.886
_		only 2 Detected Values.	
	ne meaning	ful or reliable statistics and estimates.	
Norm	al GOF Tas	t on Detects Only	
		Perform GOF Test	
Kaplan-Meier (KM) Statistics using	ı Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.0579	KM Standard Error of Mean	0.0607
90KM SD	0.142	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.168	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.158	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.24	95% KM Chebyshev UCL	0.322
97.5% KM Chebyshev UCL	0.437	99% KM Chebyshev UCL	0.662
		,	
Gamma GOF	Fests on De	etected Observations Only	
		Perform GOF Test	
	-		
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	2.865	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.11	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	11.46	nu star (bias corrected)	N/A

	0.015		
Mean (detects)	0.315		
Estimates of Ga	mma Parameters	s using KM Estimates	
Mean (KM)	0.0579	SD (KM)	0.142
Variance (KM)	0.0203	SE of Mean (KM)	0.060
k hat (KM)	0.165	k star (KM)	0.18
nu hat (KM)	3.634	nu star (KM)	3.97
theta hat (KM)	0.35	theta star (KM)	0.32
80% gamma percentile (KM)	0.072	90% gamma percentile (KM)	0.17
95% gamma percentile (KM)	0.306	99% gamma percentile (KM)	0.67
	0.000		0.07
Gamma	a Kaplan-Meier (k	(M) Statistics	
	· · ·	Adjusted Level of Significance (β)	0.02
Approximate Chi Square Value (3.98, α)	0.712	Adjusted Chi Square Value (3.98, β)	0.52
95% KM Approximate Gamma UCL	0.323	95% KM Adjusted Gamma UCL	0.44
			-
Lognormal GOF	Test on Detecte	d Observations Only	
Not Eno	ugh Data to Perfo	orm GOF Test	
Lognormal ROS	Statistics Using	Imputed Non-Detects	
Mean in Original Scale	0.0591	Mean in Log Scale	-5.65
SD in Original Scale	0.149	SD in Log Scale	2.36
95% t UCL (assumes normality of ROS data)	0.14	95% Percentile Bootstrap UCL	0.13
95% BCA Bootstrap UCL	0.192	95% Bootstrap t UCL	3.98
95% H-UCL (Log ROS)	4.985		
Statistics using KM estimates of	n Logged Data ar	nd Assuming Lognormal Distribution	
KM Mean (logged)	-6.176	KM Geo Mean	0.002
KM SD (logged)	2.295	95% Critical H Value (KM-Log)	5.83
KM Standard Error of Mean (logged)	0.979	95% H-UCL (KM -Log)	1.99
KM SD (logged)	2.295	95% Critical H Value (KM-Log)	5.83
KM Standard Error of Mean (logged)	0.979		
	DL/2 Statistic	cs	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0579	Mean in Log Scale	-6.08
SD in Original Scale	0.149	SD in Log Scale	2.37
95% t UCL (Assumes normality)	0.14	95% H-Stat UCL	3.57
DL/2 is not a recommended met	hod, provided for	comparisons and historical reasons	
-		ree UCL Statistics	
Data do no	t follow a Discerr	ible Distribution	
	Suggested UCL t	o Use	
	0.168		
95% KM (t) UCL			
Note: Suggestions regarding the selection of a 95%		d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies.	•

	General S	Statistics	
Total Number of Observations	16	Number of Distinct Observations	15
Number of Detects	4	Number of Non-Detects	12
Number of Distinct Detects	4	Number of Distinct Non-Detects	11
Minimum Detect	0.66	Minimum Non-Detect	0.32
Maximum Detect	2.2	Maximum Non-Detect	0.65
Variance Detects	0.462	Percent Non-Detects	75%
Mean Detects	1.291	SD Detects	0.68
Median Detects	1.153	CV Detects	0.52
Skewness Detects	0.94	Kurtosis Detects	-0.006
Mean of Logged Detects	0.152	SD of Logged Detects	0.5
Norma		on Detects Only	
Shapiro Wilk Test Statistic	0.94	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Lev	/el
Lilliefors Test Statistic	0.215	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Lev	/el
Detected Data ap	pear Norma	al at 1% Significance Level	
Note GOF tests m	ay be unreli	able for small sample sizes	
Kaplan-Meier (KM) Statistics using	Normal Crit	ical Values and other Nonparametric UCLs	
KM Mean	0.568	KM Standard Error of Mean	0.1
90KM SD	0.511	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.826	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.81	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.01	95% KM Chebyshev UCL	1.2
97.5% KM Chebyshev UCL	1.489	99% KM Chebyshev UCL	2.0
Gamma GOF T	ests on Det	ected Observations Only	
A-D Test Statistic	0.234	Anderson-Darling GOF Test	
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significant	ce Lev
K-S Test Statistic	0.225	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significant	ce Lev
Detected data appear C	Gamma Dist	ributed at 5% Significance Level	
Note GOF tests m	ay be unreli	able for small sample sizes	
Gamma S	tatistics on	Detected Data Only	
k hat (MLE)	5.005	k star (bias corrected MLE)	1.4
Theta hat (MLE)	0.258	Theta star (bias corrected MLE)	0.9
nu hat (MLE) Mean (detects)	40.04 1.291	nu star (bias corrected)	11.3
		ng Imputed Non-Detects NDs with many tied observations at multiple DLs	

		en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.33
Maximum	2.2	Median	0.01
SD	0.649	CV	1.964
k hat (MLE)	0.299	k star (bias corrected MLE)	0.285
Theta hat (MLE)	1.105	Theta star (bias corrected MLE)	1.161
nu hat (MLE)	9.566	nu star (bias corrected)	9.106
Adjusted Level of Significance (β)	0.0335		0.005
Approximate Chi Square Value (9.11, α)	3.391	Adjusted Chi Square Value (9.11, β)	3.005
95% Gamma Approximate UCL	0.887	95% Gamma Adjusted UCL	N/A
Estimates of Ga	amma Parar	neters using KM Estimates	
Mean (KM)	0.568	SD (KM)	0.511
Variance (KM)	0.261	SE of Mean (KM)	0.147
k hat (KM)	1.235	k star (KM)	1.045
nu hat (KM)	39.52	nu star (KM)	33.45
theta hat (KM)	0.46	theta star (KM)	0.543
80% gamma percentile (KM)	0.91	90% gamma percentile (KM)	1.293
95% gamma percentile (KM)	1.675	99% gamma percentile (KM)	2.558
		eier (KM) Statistics	20.12
Approximate Chi Square Value (33.45, α)	21.22 0.895	Adjusted Chi Square Value (33.45, β) 95% KM Adjusted Gamma UCL	0.944
95% KM Approximate Gamma UCL	0.895		0.944
Lognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.983	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.185	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance L	evel.
	-	mal at 10% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
Lognormal ROS	Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	0.412	Mean in Log Scale	-1.571
SD in Original Scale	0.606	SD in Log Scale	1.07
95% t UCL (assumes normality of ROS data)	0.678	95% Percentile Bootstrap UCL	0.671
95% BCA Bootstrap UCL	0.751	95% Bootstrap t UCL	0.962
95% H-UCL (Log ROS)	0.802	· · ·	
		ata and Assuming Lognormal Distribution KM Geo Mean	0.449
KM Mean (logged) KM SD (logged)	-0.801 0.595	95% Critical H Value (KM-Log)	2.155
KM SD (logged) KM Standard Error of Mean (logged)	0.595	95% Chucai H Value (KM-Log) 95% H-UCL (KM -Log)	0.746
KW Standard Error of Mean (logged) KM SD (logged)	0.172	95% Critical H Value (KM-Log)	2.155
KM Standard Error of Mean (logged)	0.595	3370 Childai H Value (KW-LUY)	2.100
		1	
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	

Maar in Original Ocale	0.400	Maan in Law Ocale	1.070
Mean in Original Scale		Mean in Log Scale	-1.076
SD in Original Scale		SD in Log Scale	0.804
95% t UCL (Assumes normality)		95% H-Stat UCL	0.778
DL/2 is not a recommended me	etnoa, provia	ed for comparisons and historical reasons	
Nonnorm	trie Distribut	ion Free LICL Statistics	
-		tion Free UCL Statistics	
Detected Data appea	r Normal Dis	tributed at 1% Significance Level	
	Suggested		
		UCL to Use	
95% KM (t) UCL	0.826		
Note: Suggestions regarding the selection of a 05%		rovided to help the user to select the most appropriate 95% UCL	
		bution, and skewness using results from simulation studies.	
		ets; for additional insight the user may want to consult a statisticia	20
		is, for additional insight the user may want to consult a statistica	
C (soil dibenz(a,h)anthracene 53-70-3)			
	<u> </u>	0.44	
		Statistics	
Total Number of Observations		Number of Distinct Observations	14
Number of Detects		Number of Non-Detects	18
Number of Distinct Detects	2	Number of Distinct Non-Detects	13
Minimum Detect	-	Minimum Non-Detect	0.187
Maximum Detect		Maximum Non-Detect	0.26
Variance Detects		Percent Non-Detects	90%
Mean Detects		SD Detects	0.0212
Median Detects		CV Detects	0.0943
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.494	SD of Logged Detects	0.0944
		only 2 Detected Values.	
I his is not enough to comp	oute meaning	ful or reliable statistics and estimates.	
	10057		
		t on Detects Only	
Not En	ougn Data to	Perform GOF Test	
	-	itical Values and other Nonparametric UCLs	0.00404
KM Mean	0.191	KM Standard Error of Mean	0.00421
90KM SD		95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.198	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.203	95% KM Chebyshev UCL	0.209
97.5% KM Chebyshev UCL	0.217	99% KM Chebyshev UCL	0.233
	-		
		tected Observations Only	
Not En	ough Data to	Perform GOF Test	
		Detected Data Only	
k hat (MLE)	224.7	k star (bias corrected MLE)	N/A

TI . I . (1.11 P)	0.001		N1/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A N/A
nu hat (MLE)		nu star (bias corrected)	IN/A
Mean (detects)	0.225		
Estimates of G	amma Parar	neters using KM Estimates	
Mean (KM)		SD (KM)	0.0128
Variance (KM)		SE of Mean (KM)	0.00421
k hat (KM)		k star (KM)	188.4
nu hat (KM)		nu star (KM)	7535
theta hat (KM)		theta star (KM)	0.00101
80% gamma percentile (KM)	0.202	90% gamma percentile (KM)	0.209
95% gamma percentile (KM)		99% gamma percentile (KM)	0.225
Gamm	na Kaplan-M	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.038
Approximate Chi Square Value (N/A, α)	7334	Adjusted Chi Square Value (N/A, β)	7318
95% KM Approximate Gamma UCL	0.196	95% KM Adjusted Gamma UCL	0.196
		1	
Lognormal GC	F Test on D	etected Observations Only	
Not En	ough Data to	Perform GOF Test	
Lognormal RO	S Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	0.153	Mean in Log Scale	-1.888
SD in Original Scale	0.0272	SD in Log Scale	0.155
95% t UCL (assumes normality of ROS data)	0.164	95% Percentile Bootstrap UCL	0.164
95% BCA Bootstrap UCL	0.167	95% Bootstrap t UCL	0.175
95% H-UCL (Log ROS)	0.163		
	1	· · · · · ·	
Statistics using KM estimates	on Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-1.658	KM Geo Mean	0.19
KM SD (logged)		95% Critical H Value (KM-Log)	N/A
KM Standard Error of Mean (logged)	0.0201	95% H-UCL (KM -Log)	N/A
KM SD (logged)	0.0611	95% Critical H Value (KM-Log)	N/A
KM Standard Error of Mean (logged)	0.0201		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale		Mean in Log Scale	-2.211
SD in Original Scale		SD in Log Scale	0.256
95% t UCL (Assumes normality)		95% H-Stat UCL	0.126
DL/2 is not a recommended me	ethod, provid	led for comparisons and historical reasons	
NI		sion Free LICL Statistics	
		tion Free UCL Statistics	
	or follow a D	iscemible Distribution	
	Suggested		
		UCL to Use	
95% KM (t) UCL	0.198		
New Owner of the Providence of the Comp	(110)		
Note: Suggestions regarding the selection of a 95%	% UCL are p	rovided to help the user to select the most appropriate 95% UCI	

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

C (soil | dibenzofuran | 132-64-9)

C (soil dibenzofuran 132-64-9)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	19
Number of Detects	7	Number of Non-Detects	13
Number of Distinct Detects	7	Number of Distinct Non-Detects	12
Minimum Detect	0.077	Minimum Non-Detect	0.382
Maximum Detect	3.6	Maximum Non-Detect	0.44
Variance Detects	2.119	Percent Non-Detects	65%
Mean Detects	1.077	SD Detects	1.456
Median Detects	0.27	CV Detects	1.352
Skewness Detects	1.279	Kurtosis Detects	-0.123
Mean of Logged Detects	-0.941	SD of Logged Detects	1.608
Norma	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.74	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.73	Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.319	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.35	Detected Data appear Normal at 1% Significance Leve	el
Detected Data a	ppear Norm	al at 1% Significance Level	
Note GOF tests n	n <mark>ay be unre</mark> l	iable for small sample sizes	
KM Mean	0.466	tical Values and other Nonparametric UCLs KM Standard Error of Mean	0.224
90KM SD	0.917	95% KM (BCA) UCL	0.865
95% KM (t) UCL	0.852	95% KM (Percentile Bootstrap) UCL	0.839
95% KM (z) UCL	0.833	95% KM Bootstrap t UCL	2.012
90% KM Chebyshev UCL	1.136	95% KM Chebyshev UCL	1.44
97.5% KM Chebyshev UCL	1.862	99% KM Chebyshev UCL	2.69
Gamma GOF ⁻	Tests on Det	tected Observations Only	
A-D Test Statistic	0.583	Anderson-Darling GOF Test	
5% A-D Critical Value	0.745	Detected data appear Gamma Distributed at 5% Significanc	e Level
K-S Test Statistic	0.238	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.325	Detected data appear Gamma Distributed at 5% Significanc	e Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
Note GOF tests n	n <mark>ay be unrel</mark>	iable for small sample sizes	
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	0.608	k star (bias corrected MLE)	0.443
Theta hat (MLE)	1.771	Theta star (bias corrected MLE)	2.432
nu hat (MLE)	8.51	nu star (bias corrected)	6.196
Mean (detects)	1.077		
Gamma ROS	Statistics us	ing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	

GROS			<1.0, especially when the sample size is small (e.g., <15-20)	
			ield incorrect values of UCLs and BTVs	
		-	the sample size is small.	
For	-		be computed using gamma distribution on KM estimates	
	Minimum	0.01	Mean	0.39
	Maximum	3.6	Median	0.01
	SD	0.967	CV	2.44
	k hat (MLE)	0.307	k star (bias corrected MLE)	0.29
	Theta hat (MLE)	1.286	Theta star (bias corrected MLE)	1.34
	nu hat (MLE)	12.3	nu star (bias corrected)	11.7
	Adjusted Level of Significance (β)	0.038		
	Approximate Chi Square Value (11.79, α)	5.088	Adjusted Chi Square Value (11.79, β)	4.74
	95% Gamma Approximate UCL	0.916	95% Gamma Adjusted UCL	0.98
	Estimates of Ga	mma Parame	eters using KM Estimates	
	Mean (KM)	0.466	SD (KM)	0.91
	Variance (KM)	0.400	SE of Mean (KM)	0.31
		0.258	· · · · · · · · · · · · · · · · · · ·	0.22
	k hat (KM) nu hat (KM)	10.31	k star (KM)	10.23
			nu star (KM)	
	theta hat (KM)	1.806	theta star (KM)	1.84
	80% gamma percentile (KM)	0.678	90% gamma percentile (KM)	1.39
	95% gamma percentile (KM)	2.247	99% gamma percentile (KM)	4.50
	Gamma	Kanlan-Meir	er (KM) Statistics	
	Gammo			
		-		3.70
	Approximate Chi Square Value (10.10, α)	4.004	Adjusted Chi Square Value (10.10, β)	3.70
		-		3.70 1.26
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL	4.004	Adjusted Chi Square Value (10.10, β)	
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL	4.004	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL	
,	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic	4.004 1.174 Test on Dete 0.868	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test	1.26
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF	4.004 1.174	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only	1.26
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic	4.004 1.174 Test on Deta 0.868 0.838	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L	1.26 evel
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.28	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test	1.26 evel
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.23 0.28 ear Lognorma	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L	1.26 evel
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.23 0.28 ear Lognorman ay be unrelia	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes	1.26 evel
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.23 0.28 ear Lognorma ray be unrelia Statistics Us	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes sing Imputed Non-Detects	1.26 evel
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appo Note GOF tests m Lognormal ROS Mean in Original Scale	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.23 0.28 ear Lognorma ay be unrelia Statistics Us 0.467	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes ing Imputed Non-Detects Mean in Log Scale	1.20 evel evel -1.62
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.23 0.28 ear Lognorma ray be unrelia Statistics Us	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes sing Imputed Non-Detects	1.20 evel evel -1.62
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appo Note GOF tests m Lognormal ROS Mean in Original Scale	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.23 0.28 ear Lognorma ay be unrelia Statistics Us 0.467	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes ing Imputed Non-Detects Mean in Log Scale	1.20 evel evel -1.62 1.05
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.23 0.28 ear Lognormation ay be unrelia Statistics Us 0.467 0.938	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes Mean in Log Scale SD in Log Scale	1.26 evel
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale 6 t UCL (assumes normality of ROS data)	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.23 0.28 ear Lognorma ay be unrelia Statistics Us 0.467 0.938 0.83	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	1.20 evel evel -1.62 1.05 0.83
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale 6 t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.23 0.28 ear Lognorma ay be unrelia Statistics Us 0.467 0.938 0.83 0.83 0.965 0.664	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes sing Imputed Non-Detects Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	1.20 evel evel -1.62 1.05 0.83
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale SD in Original Scale (5 t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates or	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.23 0.28 ear Lognorma statistics Us 0.467 0.938 0.83 0.965 0.664 h Logged Dat	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL	1.26 evel -1.62 1.05 0.83 2.67
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale (5 t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates or KM Mean (logged)	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.23 0.28 ear Lognorma ay be unrelia Statistics Us 0.467 0.938 0.83 0.83 0.965 0.664 -1.709	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes ing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL able for Mean in Log Scale	1.20 evel evel -1.62 1.05 0.83 2.67
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale SD in Original Scale (st UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates or KM Mean (logged) KM SD (logged)	4.004 1.174 Test on Dete 0.868 0.838 0.23 0.28 Bar Lognorma Statistics Us 0.467 0.938 0.965 0.664 Logged Dat -1.709 1.115	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes sing Imputed Non-Detects Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL xta and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	1.26 evel evel -1.62 1.05 0.83 2.67 0.18 2.80
	Approximate Chi Square Value (10.10, α) 95% KM Approximate Gamma UCL Lognormal GOF Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data appe Note GOF tests m Lognormal ROS Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale (5 t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates or KM Mean (logged)	4.004 1.174 Test on Deta 0.868 0.838 0.23 0.23 0.28 ear Lognorma ay be unrelia Statistics Us 0.467 0.938 0.83 0.83 0.965 0.664 -1.709	Adjusted Chi Square Value (10.10, β) 95% KM Adjusted Gamma UCL ected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level able for small sample sizes ing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL able for Mean in Log Scale	1.20 evel evel -1.62 1.05 0.83 2.67

	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.508	Mean in Log Scale	-1.37
SD in Original Scale	0.923	SD in Log Scale	0.96
95% t UCL (Assumes normality)	0.865	95% H-Stat UCL	0.71
DL/2 is not a recommended me	thod, provic	led for comparisons and historical reasons	
Nonparame	tric Distribu	tion Free UCL Statistics	
Detected Data appear	Normal Dis	tributed at 1% Significance Level	
		UCL to Use	
95% KM (t) UCL	0.852		
		· · · · · · · · · · · · · · · · · · ·	
		data were collected in a random and unbiased manner.	
		llected from random locations.	
		nental or other non-random methods,	
	statistician t	o correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%		rovided to help the user to select the most appropriate 95% UCL	
		pution, and skewness using results from simulation studies.	
		ets; for additional insight the user may want to consult a statisticia	an
			211.
C (soil dibromochloromethane 124-48-1)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	dibromochl	oromethane 124-48-1) was not processed!	
C (soil dibromomethane 74-95-3)			
		Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects Number of Distinct Detects	0	Number of Non-Detects Number of Distinct Non-Detects	11 8
	U		0
Warning: All observations are Non-Detects	(NDe) ther	efore all statistics and estimates should also be NDs!	
	<u> </u>	tics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (s	oil dibromo	omethane 74-95-3) was not processed!	
	• • • • • •		

C (soil dichlorodifluoromethane 75-71-8)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	s (NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	dichlorodiflu	uoromethane 75-71-8) was not processed!	
C (soil diethyl ether 60-29-7)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil dieth	yl ether 60-29-7) was not processed!	
C (asil L diath dabthalata 94 66 2)			
C (soil diethylphthalate 84-66-2)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	15
Number of Detects		Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil diethylp	ohthalate 84-66-2) was not processed!	
C (soil diisopropyl ether 108-20-3)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	10
Number of Detects		Number of Non-Detects	11
Number of Distinct Detects		Number of Distinct Non-Detects	10
	-		

Morriss All shoes stars are blas Details		professional attraction and activity and a loss to ND-1	
-		erefore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (s	oil diisopr	opyl ether 108-20-3) was not processed!	
(soil dimethylphthalate 131-11-3)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	oil dimeth	ylphthalate 131-11-3) was not processed!	
Total Number of Observations	20	al Statistics Number of Distinct Observations	15
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs), the	erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	oil <mark>di-n-b</mark> u	tylphthalate 84-74-2) was not processed!	
(soil di-n-octylphthalate 117-84-0)			
	Gener	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Distinct Observations	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
	-		
Warning: All observations are Non-Detects	(NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically complements UCLA UDLA and		stics are also NDs lying below the largest detection limit!	
Specifically, sample mean, UCLS, UPLS, and	other stati		
		values to estimate environmental parameters (e.g., EPC, BTV).	
The Project Team may decide to use alternative site	e specific \		

ethyl benzene 100-41-4)			
	Osmanski		
Total Number of Observations	General S	Number of Distinct Observations	18
Number of Detects	10	Number of Non-Detects	11
Number of Distinct Detects	10	Number of Distinct Non-Detects	8
Minimum Detect	0.019	Minimum Non-Detect 4	
Maximum Detect	1.4	Maximum Non-Detect	0.2
Variance Detects	0.219	Percent Non-Detects	52.
Mean Detects	0.406	SD Detects	0.4
Median Detects	0.165	CV Detects	1.
Skewness Detects	1.261	Kurtosis Detects	0.
Mean of Logged Detects	-1.68	SD of Logged Detects	1.
Norma	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.815	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.781	Detected Data appear Normal at 1% Significance Level	el
Lilliefors Test Statistic	0.293	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.304	Detected Data appear Normal at 1% Significance Level	el
Detected Data a	opear Norm	al at 1% Significance Level	
Kaplan-Meier (KM) Statistics using	Normal Cri	tical Values and other Nonparametric UCLs	
KM Mean	0.197	KM Standard Error of Mean	0.0
90KM SD	0.366	95% KM (BCA) UCL	0.3
95% KM (t) UCL	0.342	95% KM (Percentile Bootstrap) UCL	0.3
95% KM (z) UCL	0.335	95% KM Bootstrap t UCL	0.4
90% KM Chebyshev UCL	0.45	95% KM Chebyshev UCL	0.5
97.5% KM Chebyshev UCL	0.723	99% KM Chebyshev UCL	1.(
Gamma GOF 1	ests on De	tected Observations Only	
A-D Test Statistic	0.347	Anderson-Darling GOF Test	
5% A-D Critical Value	0.756	Detected data appear Gamma Distributed at 5% Significance	ce Le
K-S Test Statistic	0.204	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.276	Detected data appear Gamma Distributed at 5% Significance	e Le
Detected data appear (Gamma Dis	tributed at 5% Significance Level	
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	0.767	k star (bias corrected MLE)	0.0
Theta hat (MLE)	0.529	Theta star (bias corrected MLE)	0.0
nu hat (MLE) Mean (detects)	15.33 0.406	nu star (bias corrected)	12.
		ing Imputed Non-Detects	
GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS m	nethod may	yield incorrect values of UCLs and BTVs	
This is ospecia	lly true who	n the sample size is small.	

Minimum	0.01	Mean	0.199
Maximum	1.4	Median	0.01
SD	0.373	CV	1.881
k hat (MLE)	0.411	k star (bias corrected MLE)	0.384
Theta hat (MLE)	0.483	Theta star (bias corrected MLE)	0.517
nu hat (MLE)	17.25	nu star (bias corrected)	16.12
Adjusted Level of Significance (β)	0.0383		
Approximate Chi Square Value (16.12, α)	8.045	Adjusted Chi Square Value (16.12, β)	7.609
95% Gamma Approximate UCL	0.398	95% Gamma Adjusted UCL	0.421
Estimates of Q			
		eters using KM Estimates	0.366
Mean (KM)	0.197	SD (KM) SE of Mean (KM)	0.366
Variance (KM)		· · · · · · · · · · · · · · · · · · ·	0.0842
k hat (KM)	0.29	k star (KM)	
nu hat (KM)	12.18	nu star (KM)	11.77
theta hat (KM)	0.679	theta star (KM)	0.703
80% gamma percentile (KM)	0.297	90% gamma percentile (KM)	0.585
95% gamma percentile (KM)	0.92	99% gamma percentile (KM)	1.799
Gamm	a Kaplan-Mei	er (KM) Statistics	
Approximate Chi Square Value (11.77, α)	5.076	Adjusted Chi Square Value (11.77, β)	4.742
95% KM Approximate Gamma UCL	0.457	95% KM Adjusted Gamma UCL	0.489
-		tected Observations Only	
Shapiro Wilk Test Statistic	0.954	Shapiro Wilk GOF Test	1
10% Shapiro Wilk Critical Value	0.869	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.139	Lilliefors GOF Test	1
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance L al at 10% Significance Level	evei
	Jear Loghonn		
Lognormal ROS	Statistics Us	sing Imputed Non-Detects	
Mean in Original Scale	0.197	Mean in Log Scale	-3.52
SD in Original Scale	0.374	SD in Log Scale	2.105
95% t UCL (assumes normality of ROS data)	0.338	95% Percentile Bootstrap UCL	0.338
95% BCA Bootstrap UCL	0.374	95% Bootstrap t UCL	0.444
95% H-UCL (Log ROS)	2.078		
	<u> </u>		
_		ta and Assuming Lognormal Distribution	0.00054
KM Mean (logged)	-4.652	KM Geo Mean	0.00954
KM SD (logged)	3.138	95% Critical H Value (KM-Log)	6.156
KM Standard Error of Mean (logged)	0.747	95% H-UCL (KM -Log)	98.54
KM SD (logged) KM Standard Error of Mean (logged)	3.138 0.747	95% Critical H Value (KM-Log)	6.156
	DL/2 Sta	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.204	Mean in Log Scale	-4.093
SD in Original Scale	0.372	SD in Log Scale	2.931
95% t UCL (Assumes normality)	0.344	95% H-Stat UCL	54.13

	noa, proviaea to	or comparisons and historical reasons	
-		Free UCL Statistics	
Detected Data appear	Normal Distribu	ted at 1% Significance Level	
	Suggested UCL	to Use	
95% KM (t) UCL	0.342		
The calculated UCLs are based on assumptio	ns that the data	were collected in a random and unbiased manner.	
Please verify the da	ta were collecte	ed from random locations.	
If the data were collected u	using judgmenta	al or other non-random methods,	
then contact a st	tatistician to cor	rectly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%		ed to help the user to select the most appropriate 95% UCL.	
		n, and skewness using results from simulation studies.	
· · · · · · · · · · · · · · · · · · ·		or additional insight the user may want to consult a statisticia	n
C (soil ethyl tert-butyl ether 637-92-3)			
	General Stati		
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and c	other statistics a	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit!	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site	other statistics a specific values	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site	other statistics a specific values	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit!	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and c The Project Team may decide to use alternative site The data set for variable C (soil	other statistics a specific values	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and c The Project Team may decide to use alternative site The data set for variable C (soil	other statistics a specific values ethyl tert-butyl	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed!	
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil C (soil fluoranthene 206-44-0)	other statistics a specific values ethyl tert-butyl General Stati	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics	10
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil C (soil fluoranthene 206-44-0) Total Number of Observations	ethyl tert-butyl General Stati 20	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations	16
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil) C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects	other statistics a specific values ethyl tert-butyl General Stati 20 9	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects	11
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and c The Project Team may decide to use alternative site The data set for variable C (soil c (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects	other statistics a specific values ethyl tert-butyl General Stati 20 9 9 9	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	11 8
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and o The Project Team may decide to use alternative site The data set for variable C (soil C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	other statistics a specific values ethyl tert-butyl General Stati 20 9 0.0825	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	11 8 0.192
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and c The Project Team may decide to use alternative site The data set for variable C (soil c (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	Specific values specific values ethyl tert-butyl General Stati 20 9 0.0825 3	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	11 8 0.192 0.22
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil c (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	Other statistics a specific values ethyl tert-butyl General Stati 20 9 0.0825 3 1.412	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	11 8 0.192 0.22 55%
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil (soil fluoranthene 206-44-0) C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	Content statistics a specific values ethyl tert-butyl General Stati 20 9 0.0825 3 1.412 1.043	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	11 8 0.192 0.22 55% 1.188
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	other statistics a specific values ethyl tert-butyl General Stati 20 9 0.0825 3 1.412 1.043 0.22	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	11 8 0.192 0.22 55% 1.188 1.14
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	Content statistics a specific values ethyl tert-butyl General Stati 20 9 0.0825 3 1.412 1.043	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	11 8 0.192 0.22 55% 1.188
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil (soil fluoranthene 206-44-0) C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General Stati 20 9 0.0825 3 1.412 1.043 0.22 0.805 -0.825	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	11 8 0.192 0.22 55% 1.188 1.14 -1.234
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil C (soil fluoranthene 206-44-0) C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General Stati 20 9 9 0.0825 3 1.412 1.043 0.22 0.805 -0.825 al GOF Test on al GOF Test on	e all statistics and estimates should also be NDs! re also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects SD of Logged Detects	11 8 0.192 0.22 55% 1.188 1.14 -1.234
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and c The Project Team may decide to use alternative site The data set for variable C (soil) C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Normation Shapiro Wilk Test Statistic	General Stati 20 9 9 0 0.0825 3 1.412 1.043 0.22 0.805 -0.825 3 al GOF Test on 0.791	e all statistics and estimates should also be NDs! re also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects	11 8 0.192 0.22 55% 1.188 1.14 -1.234 1.507
Warning: All observations are Non-Detects (Specifically, sample mean, UCLs, UPLs, and of The Project Team may decide to use alternative site The data set for variable C (soil C (soil fluoranthene 206-44-0) C (soil fluoranthene 206-44-0) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General Stati 20 9 9 0.0825 3 1.412 1.043 0.22 0.805 -0.825 al GOF Test on al GOF Test on	e all statistics and estimates should also be NDs! re also NDs lying below the largest detection limit! to estimate environmental parameters (e.g., EPC, BTV). ether 637-92-3) was not processed! stics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects SD of Logged Detects	11 8 0.192 0.22 55% 1.188 1.14 -1.234 1.507

1% Lilliefors Critical Value	0.316	Detected Data appear Normal at 1% Significance Lev	el
Detected Data a	ppear Norm	al at 1% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics using	g Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.533	KM Standard Error of Mean	0.209
90KM SD	0.882	95% KM (BCA) UCL	0.894
95% KM (t) UCL	0.895	95% KM (Percentile Bootstrap) UCL	0.88
95% KM (z) UCL	0.877	95% KM Bootstrap t UCL	1.067
90% KM Chebyshev UCL	1.161	95% KM Chebyshev UCL	1.445
97.5% KM Chebyshev UCL	1.84	99% KM Chebyshev UCL	2.616
Commo COE	Tosts on Do	tected Observations Only	
A-D Test Statistic	0.739	Anderson-Darling GOF Test	
5% A-D Critical Value	0.755	Detected data appear Gamma Distributed at 5% Significance	
K-S Test Statistic	0.733	Kolmogorov-Smirnov GOF	e Level
5% K-S Critical Value	0.29	Detected data appear Gamma Distributed at 5% Significance	e Level
		stributed at 5% Significance Level	
	nay be unre	liable for small sample sizes	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.698	k star (bias corrected MLE)	0.539
Theta hat (MLE)	1.494	Theta star (bias corrected MLE)	1.933
nu hat (MLE)	12.56	nu star (bias corrected)	9.708
Mean (detects)	1.043		0.700
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		% NDs with many tied observations at multiple DLs	
-		is <1.0, especially when the sample size is small (e.g., <15-20)	
-		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.5
Maximum	3	Median	0.11
SD	0.922	CV	1.844
k hat (MLE)	0.374	k star (bias corrected MLE)	0.352
Theta hat (MLE)	1.337	Theta star (bias corrected MLE)	1.423
nu hat (MLE)	14.97	nu star (bias corrected)	14.06
Adjusted Level of Significance (β)	0.038		1-1.00
Adjusted Level of Significance (β) Approximate Chi Square Value (14.06, α)	6.613	Adjusted Chi Square Value (14.06, β)	6.212
Approximate Cni Square Value (14.06, α) 95% Gamma Approximate UCL	1.064	Adjusted Chi Square Value (14.06, β) 95% Gamma Adjusted UCL	1.132
95% Gamma Approximate UCL	1.004	95% Gamma Adjusted UCL	1.132
Estimates of Ga	amma Parar	neters using KM Estimates	
Mean (KM)	0.533	SD (KM)	0.882
Variance (KM)	0.778	SE of Mean (KM)	0.209
k hat (KM)	0.365	k star (KM)	0.343
nu hat (KM)	14.59	nu star (KM)	13.74
theta hat (KM)	1.46	theta star (KM)	1.551
80% gamma percentile (KM)	0.841	90% gamma percentile (KM)	1.543
	5.011		

95% gamma percentile (KM)	2.331	99% gamma percentile (KM)	4.347
	-	pier (KM) Statistics	
Approximate Chi Square Value (13.74, α)	6.393	Adjusted Chi Square Value (13.74, β)	6
95% KM Approximate Gamma UCL	1.145	95% KM Adjusted Gamma UCL	1.22
Lognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.859	Detected Data Not Lognormal at 10% Significance Lev	/el
Lilliefors Test Statistic	0.232	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.252	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data appear Ap		ognormal at 10% Significance Level	
		iable for small sample sizes	
		· · · · · · · · · · · · · · · · · · ·	
Lognormal ROS	Statistics U	Ising Imputed Non-Detects	
Mean in Original Scale	0.543	Mean in Log Scale	-1.514
SD in Original Scale	0.9	SD in Log Scale	1.202
95% t UCL (assumes normality of ROS data)	0.891	95% Percentile Bootstrap UCL	0.882
95% BCA Bootstrap UCL	0.961	95% Bootstrap t UCL	1.088
95% H-UCL (Log ROS)	1.019		
Statistics using KM estimates of	on Logged Da	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-1.574	KM Geo Mean	0.207
KM SD (logged)	1.183	95% Critical H Value (KM-Log)	2.91
KM Standard Error of Mean (logged)	0.293	95% H-UCL (KM -Log)	0.92
KM SD (logged)	1.183	95% Critical H Value (KM-Log)	2.91
KM Standard Error of Mean (logged)	0.293		
	DL/2 St	atistics	
DL/2 Normal	002.0	DL/2 Log-Transformed	
Mean in Original Scale	0.525	Mean in Log Scale	-1.631
SD in Original Scale	0.908	SD in Log Scale	1.232
95% t UCL (Assumes normality)	0.876	95% H-Stat UCL	0.972
		ed for comparisons and historical reasons	0.072
		· ·	
Nonparame	tric Distributi	ion Free UCL Statistics	
Detected Data appear	Normal Dist	tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL	0.895		
		data were collected in a random and unbiased manner.	
		lected from random locations.	
		ental or other non-random methods,	
then contact a s	statistician to	o correctly calculate UCLs.	
Nata Operation and the Lot of 000			
		ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticia	an.

Number of Detects 4 Number of Distinct Detects 1 Number of Distinct Detects 4 Number of Distinct Non-Detects 1 Minimum Detect 0.11 Minimum Non-Detect 0 Maximum Non-Detect 0.8 Maximum Non-Detect 0 Wanne Detects 0.363 SD Detects 0 Median Detects 0.363 SD Detects 0 Skewness Detects 1.534 Kurtosis Detects 0 Mean of Logged Detects 1.271 SD of Logged Detects 0 Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Lilliefors Critical Value 0.487 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level 0.413 Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes KM Mean 0.161 KM Standard Error of Mean 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (BCA) UCL N 90%K MC hebyshev UCL 0.221 95% KM Chebyshev UCL 0.223 <t< th=""><th></th><th>Conoral</th><th>Natiation</th><th></th></t<>		Conoral	Natiation		
Number of Detects 4 Number of Non-Detects 1 Number of Distinct Detects 4 Number of Distinct Non-Detects 1 Minimum Detect 0.11 Minimum Non-Detects 0 Maximum Detect 0.032 Maximum Non-Detects 8 Variance Detects 0.0363 SD Detects 0 Mealan Detects 0.27 CV Detects 0 Skewness Detects 1.534 Kurtosis Detects 2 Mean of Logged Detects -1.271 SD of Logged Detects -1 Normal GOF Test on Detects Only Stapiro Wilk Critical Value 0.687 Detected Deta appear Normal at 1% Significance Level Lilliefors Test Statistic 0.306 Lilliefors GOF Test Lilliefors GOF Test 1% Lilliefors Critical Value 0.413 Detected Deta appear Normal at 1% Significance Level Lilliefors GOF Test Note GOF tests may be unreliable for small sample sizes SKM (0.20, UCL 0.22 95% KM (0.20, UCL No 95% KM (1) UCL 0.23 95% KM (Chebysher UCL 0.411 95% KM (Chebysher UCL 0.411 95% KM (Chebysher UCL	Total Number of Observations			15	
Number of Distinct Detects 4 Number of Distinct Non-Detects 1 Minimum Detect 0.11 Minimum Non-Detects 0 Wariance Detects 0.0924 Percent Non-Detects 8 Mean Detects 0.363 SD Detects 1 Mean Detects 0.27 CV Detects 0 Skewness Detects 1.534 Kurtosis Detects 0 Mean of Logged Detects 1.271 SD of Logged Detects 0 Normal GOF Test on Detects Only Shapiro Wilk GOF Test E 0 Shapiro Wilk Test Statistic 0.366 Lilliefors GOF Test 0 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level 0 Ulliefors Critical Value 0.431 Detected Data appear Normal at 1% Significance Level 0 Note GOF Tests may be unreliable for small sample sizes 0 0 0 0 Shapiro Wilk Critical Value 0.151 KM Standard Error of Mean 0 0 95% KM (bOL UL 0.23 95% KM (BCA) UL I No 0 95% KM (bebyshev UC UL 0.241 95% KM (Chebyshev UC I <				15	
Minimum Detect 0.11 Minimum Non-Detect 0.8 Maximum Non-Detect 0.8 Maximum Non-Detect 0.924 Variance Detects 0.924 Percent Non-Detects 8 Mean Detects 0.363 SD Detects 0.6 Median Detects 0.27 CV Detects 0.7 Mean of Logged Detects -1.271 SD of Logged Detects 0.6 Normal GOF Test on Detects Only Shapiro Wilk GOF Test 0.869 Shapiro Wilk GOF Test 1% Shapiro Wilk Test Statistic 0.869 Detected Data appear Normal at 1% Significance Level Lilliefors Critical Value 0.413 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Note GOF Test smay be unreliable for small sample sizes 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (Percentile Bootstrap) UCL N 95% KM (2) UCL 0.226 95% KM Chebyshev UCL 0.21 90% KM Chebyshev UCL 0.221 95% KM Chebyshev UCL 0.221 95% KM Chebyshev UCL 0.221 97.5% KM Chebyshev UCL 0.227 Kolmogorov-Sm				10	
Maximum Detect 0.8 Maximum Non-Detects 0 Variance Detects 0.0924 Percent Non-Detects 8 Mean Detects 0.363 SD Detects 0 Mean Detects 0.27 CV Detects 0 Mean of Logged Detects 1.534 Kurtosis Detects 0 Mean of Logged Detects -1.271 SD of Logged Detects 0 Shapiro Wilk Cort Statistic 0.869 Shapiro Wilk GOF Test 0 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level 0.813 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level 0.161 KM Standard Error of Mean 0 Note GOF tests may be unreliable for small sample sizes 0.155 95% KM (CA) UCL N 95% KM (b(2) UCL 0.226 95% KM (CA) UCL N 95% KM (c) UCL 0.226 95% KM Chebyshev UCL 0.261 Anderson-Darling GOF Test 0 95% KM (c) UCL 0.227 Anderson-Darling GOF Test 0.277 Anderson-Darling GOF Test 0 95%				0.18	
Variance Detects 0.0924 Percent Non-Detects 8 Mean Detects 0.363 SD Detects 0 Median Detects 0.27 CV Detects 0 Skewness Detects 1.534 Kurtosis Detects 0 Mean of Logged Detects -1.271 SD of Logged Detects 0 Normal GOF Test on Detects Only Shapiro Wilk Coff Test 0.869 Shapiro Wilk GOF Test 1% Shapiro Wilk Test Statistic 0.869 Detected Data appear Normal at 1% Significance Level Lillefors GOF Test 1% Lilliefors Test Statistic 0.306 Lillefors GOF Test Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes 0 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (CA) UCL N 95% KM (CA) UCL N 90% KM Chebyshev UCL 0.226 95% KM Chebyshev UCL 0.21 95% KM Chebyshev UCL 0.227 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.227 Kolmogorov-Sminov GOF 6.39% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0.22				0.10	
Mean Detects 0.363 SD Detects 0 Median Detects 0.27 CV Detects 0 Skewness Detects 1.534 Kurtosis Detects 2 Mean of Logged Detects -1.271 SD of Logged Detects 0 Normal GOF Test on Detects Only Shapiro Wilk Cest Statistic 0.869 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Lilliefors GOF Test 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Note GOF tests may be unreliable for small sample sizes 0 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90% KM 0, UCL 0.23 95% KM (BCA) UCL N N N N N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 0 0 N 0 90% KM Chebyshev UCL 0.287 Anderson-Darling GOF Test 0 0 0 0 0 <				80%	
Median Detects 0.27 CV Detects 0.0 Skewness Detects 1.534 Kurtosis Detects 2 Mean of Logged Detects -1.271 SD of Logged Detects 0 Shapiro Wilk Test Statistic 0.669 Shapiro Wilk CoP Test 0 1% Shapiro Wilk Test Statistic 0.667 Detected Data appear Normal at 1% Significance Level Ullifefors GOF Test 1% Lilliefors Test Statistic 0.306 Lilliefors GOF Test 0.413 Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Volte GOF test may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Note GOF tests may be unreliable for small sample sizes 0.161 KM Standard Error of Mean 0.161 90KM SD 0.155 95% KM (BCA) UCL N N 95% KM (BCA) UCL N 90% KM Chebyshev UCL 0.281 95% KM (BCA) UCL N N 90% KM Chebyshev UCL 0.281 95% KM (Chebyshev UCL 0.261 97.5% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0.271 97.5% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0.271 97.5% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0.271 AD Test S				0.30	
Skewness Detects 1.534 Kurtosis Detects 2 Mean of Logged Detects -1.271 SD of Logged Detects 0 Shapiro Wilk Corp Test on Detects Only Shapiro Wilk GOF Test 0.869 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Uilliefors GOF Test 1% Lilliefors Test Statistic 0.306 Lilliefors GOF Test Uilliefors GOF Test 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (9cA) UCL N 90%K MC hebyshev UCL 0.281 95% KM Chebyshev UCL N 90% KM Chebyshev UCL 0.411 98% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 98% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.461 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.257 Anderson-Darling GOF Test 0 641				0.83	
Mean of Logged Detects -1.271 SD of Logged Detects Image: Control of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.869 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90K KM D0L 0.23 95% KM (BCA) UCL N 95% KM (2) UCL 0.226 95% KM (BCA) UCL N 90% KM Chebyshev UCL 0.411 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.257 Anderson-Daring GOF Test S% AD Critical Value 0.38 Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Significance Level Camma GOF Test statistic 0.227 Kolmogorov-Smimov GOF 5% K-S Critical Value 0.38 Detected data appear Gamma Distributed at 5% Significa		-		2.54	
Shapiro Wilk Test Statistic 0.869 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Lilliefors Test Statistic 0.306 Lilliefors GOF Test 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 90KM SD 0.155 95% KM (Percentile Bootstrap) UCL N 90% KM Chebyshev UCL 0.226 95% KM (Chebyshev UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 90% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 90% KM Chebyshev UCL 0.257 Anderson-Darling GOF Test 0 Shaper Statistic 0.227 Kolmogorov-Smimov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample si				0.82	
1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Lilliefors Test Statistic 0.306 Lilliefors GOF Test 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF Tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (t) UCL 0.226 95% KM (Bootstrap t UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.257 Anderson-Darling GOF Test 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Note GOF tests may be unrel	Norma	al GOF Test	on Detects Only		
Lilliefors Test Statistic 0.306 Lilliefors GOF Test 1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (z) UCL 0.226 95% KM (BCA) UCL N 95% KM (z) UCL 0.226 95% KM Chebyshev UCL N 90% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL N Gamma GOF Tests on Detected Observations Only Anderson-Darling GOF Test Significance L Kol Robyshev UCL 0.257 Anderson-Darling GOF Test Significance Level Kol Robogrov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level <td col<="" td=""><td>Shapiro Wilk Test Statistic</td><td>0.869</td><td>Shapiro Wilk GOF Test</td><td></td></td>	<td>Shapiro Wilk Test Statistic</td> <td>0.869</td> <td>Shapiro Wilk GOF Test</td> <td></td>	Shapiro Wilk Test Statistic	0.869	Shapiro Wilk GOF Test	
1% Lilliefors Critical Value 0.413 Detected Data appear Normal at 1% Significance Level Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (t) UCL 0.23 95% KM (Percentile Bootstrap) UCL N 95% KM (z) UCL 0.26 95% KM Chebyshev UCL 0 90% KM Chebyshev UCL 0.411 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 Gamma GOF Tests on Detected Observations Only K-S Test Statistic 0.257 Anderson-Darling GOF Test A-D Test Statistic 0.227 Kolmogorov-Smirnov GOF K-S Test Statistic 0.227 K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF S% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Camm	1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Leve	el	
Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (t) UCL 0.23 95% KM (Percentile Bootstrap) UCL N 95% KM (z) UCL 0.226 95% KM Chebyshev UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 90% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.227 Anderson-Darling GOF Test 5% K-S Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance L 0.66 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance L 0.67 K-S Tritical Value 0.398 Detected d	Lilliefors Test Statistic	0.306	Lilliefors GOF Test		
Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (t) UCL 0.23 95% KM (Percentile Bootstrap) UCL N 95% KM (z) UCL 0.26 95% KM Chebyshev UCL 0 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 Gamma GOF Tests on Detected Observations Only K K K A-D Test Statistic 0.257 Anderson-Darling GOF Test K 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L K K-S Test Statistic 0.227 Kolmogorov-Smimov GOF K 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Evel Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE)	1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Leve	el	
Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (t) UCL 0.23 95% KM (Percentile Bootstrap) UCL N 95% KM (z) UCL 0.226 95% KM (Debyshev UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Critical Value 0.257 Anderson-Darling GOF Test 0 5% A-D Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L 0 0.5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes K tat (MLE) 2.103 <	Detected Data a	ppear Norma	al at 1% Significance Level		
KM Mean 0.161 KM Standard Error of Mean 0 90KM SD 0.155 95% KM (BCA) UCL N 95% KM (t) UCL 0.23 95% KM (Percentile Bootstrap) UCL N 95% KM (z) UCL 0.226 95% KM Bootstrap t UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 98 Detected Observations Only 5% Significance L 5% Significance L 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance L			·		
90KM SD0.15595% KM (BCA) UCLN95% KM (t) UCL0.2395% KM (Percentile Bootstrap) UCLN95% KM (z) UCL0.22695% KM Bootstrap t UCLN90% KM Chebyshev UCL0.28195% KM Chebyshev UCL097.5% KM Chebyshev UCL0.41199% KM Chebyshev UCL097.5% KM Chebyshev UCL0.41199% KM Chebyshev UCL0Gamma GOF Tests on Detected Observations OnlyK-S Totical Value0.66Detected data appear Gamma Distributed at 5% Significance L5% A-D Critical Value0.398Detected data appear Gamma Distributed at 5% Significance L5% K-S Critical Value0.398Detected data appear Gamma Distributed at 5% Significance LDetected data appear Gamma Distributed at 5% Significance LevelNote GOF tests may be unreliable for small sample sizesGamma Statistics on Detected Data Onlyk hat (MLE)2.103k star (bias corrected MLE)00.172Theta star (bias corrected MLE)00.172Note Gorrected MLE)0.172Theta star (bias corrected MLE)0.172			-		
95% KM (t) UCL 0.23 95% KM (Percentile Bootstrap) UCL N 95% KM (z) UCL 0.226 95% KM Bootstrap t UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KA Chebyshev UCL 0.257 Anderson-Darling GOF Test 0 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L 0 K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 0 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level 0				0.04	
95% KM (z) UCL 0.226 95% KM Bootstrap t UCL N 90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 98 0.257 Anderson-Darling GOF Test 0 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L 0 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L 0 Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes 0 Gamma Statistics on Detected Data Only K star (bias corrected MLE) 0 0 K hat (MLE) 2.103 K star (bias corrected MLE) 0 0 10 mu hat (MLE) 16.82 nu star (bias corrected MLE) 9 9				N/A	
90% KM Chebyshev UCL 0.281 95% KM Chebyshev UCL 0 97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.257 Anderson-Darling GOF Test 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 k star (bias corrected MLE) 0 M hat (MLE) 0.172 Theta star (bias corrected MLE) 0				N/A	
97.5% KM Chebyshev UCL 0.411 99% KM Chebyshev UCL 0 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.257 Anderson-Darling GOF Test 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 k star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected MLE) 9				0.3	
Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.257 Anderson-Darling GOF Test 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 k star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected MLE) 9	•			0.5	
A-D Test Statistic 0.257 Anderson-Darling GOF Test 5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes K star (bias corrected MLE) Q K hat (MLE) 2.103 k star (bias corrected MLE) Q Theta hat (MLE) 0.172 Theta star (bias corrected MLE) Q nu hat (MLE) 16.82 nu star (bias corrected MLE) S	·			0.0	
5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance L K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only K hat (MLE) 2.103 k star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected) 5	Gamma GOF 1	Fests on Det	ected Observations Only		
K-S Test Statistic 0.227 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance L Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 K star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected) 5	A-D Test Statistic	0.257	Anderson-Darling GOF Test		
5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 K star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected) 5	5% A-D Critical Value	0.66		e Leve	
Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 k star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected) 5	K-S Test Statistic	0.227	Kolmogorov-Smirnov GOF		
Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 2.103 k star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected) 5				e Leve	
Gamma Statistics on Detected Data Only k hat (MLE) 2.103 k star (bias corrected MLE) 0 Theta hat (MLE) 0.172 Theta star (bias corrected MLE) 0 nu hat (MLE) 16.82 nu star (bias corrected) 5			-		
k hat (MLE)2.103k star (bias corrected MLE)0Theta hat (MLE)0.172Theta star (bias corrected MLE)0nu hat (MLE)16.82nu star (bias corrected)5	Note GOF tests m	nay be unreli	able for small sample sizes		
Theta hat (MLE) 0.172 Theta star (bias corrected MLE) nu hat (MLE) 16.82 nu star (bias corrected)	Gamma S	Statistics on	Detected Data Only		
nu hat (MLE) 16.82 nu star (bias corrected)	k hat (MLE)	2.103	k star (bias corrected MLE)	0.6	
	Theta hat (MLE)	0.172	Theta star (bias corrected MLE)	0.5	
			nu star (bias corrected)	5.5	
Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	0	04-4'-4'	n a lasa sta d Nan. Data ata		

This is especia	ally true whe	n the sample size is small.	
For gamma distributed detected data, BTVs ar	nd UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.0991
Maximum	0.8	Median	0.0188
SD	0.184	CV	1.858
k hat (MLE)	0.637	k star (bias corrected MLE)	0.575
Theta hat (MLE)	0.156	Theta star (bias corrected MLE)	0.172
nu hat (MLE)	25.49	nu star (bias corrected)	23
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (23.00, α)	13.09	Adjusted Chi Square Value (23.00, β)	12.5
95% Gamma Approximate UCL	0.174	95% Gamma Adjusted UCL	N/A
Estimates of Ga	mma Param	eters using KM Estimates	
Mean (KM)	0.161	SD (KM)	0.155
Variance (KM)	0.0241	SE of Mean (KM)	0.0401
k hat (KM)	1.07	k star (KM)	0.943
nu hat (KM)	42.82	nu star (KM)	37.73
theta hat (KM)	0.15	theta star (KM)	0.17
80% gamma percentile (KM)	0.259	90% gamma percentile (KM)	0.375
95% gamma percentile (KM)	0.491	99% gamma percentile (KM)	0.761
Gamma	a Kaplan-Me	ier (KM) Statistics	
Approximate Chi Square Value (37.73, α)	24.66	Adjusted Chi Square Value (37.73, β)	23.83
95% KM Approximate Gamma UCL	0.246	95% KM Adjusted Gamma UCL	0.254
_	0.992	tected Observations Only	
Shapiro Wilk Test Statistic	0.992	Shapiro Wilk GOF Test	aval
10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.792	Detected Data appear Lognormal at 10% Significance L Lilliefors GOF Test	evei
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance L	ovol
		nal at 10% Significance Level	evei
		able for small sample sizes	
-		sing Imputed Non-Detects	
Mean in Original Scale	0.151	Mean in Log Scale	-2.138
SD in Original Scale	0.164	SD in Log Scale	0.594
95% t UCL (assumes normality of ROS data)	0.214	95% Percentile Bootstrap UCL	0.216
95% BCA Bootstrap UCL	0.255	95% Bootstrap t UCL	0.384
95% H-UCL (Log ROS)	0.188		
Statistics using KM estimates of	n Logged Da	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-2.02	KM Geo Mean	0.133
KM SD (logged)	0.493	95% Critical H Value (KM-Log)	2.012
KM Standard Error of Mean (logged)	0.127	95% H-UCL (KM -Log)	0.188
KM SD (logged)	0.493	95% Critical H Value (KM-Log)	2.012
KM Standard Error of Mean (logged)	0.127		
	DL/2 St	atistics	

Mean in Original Scale	0.152	Mean in Log Scale	-2.098
SD in Original Scale	0.162	SD in Log Scale	0.538
95% t UCL (Assumes normality)	0.215	95% H-Stat UCL	0.183
DL/2 is not a recommended me	thod, provid	ed for comparisons and historical reasons	
Nonparame	tric Distribut	tion Free UCL Statistics	
Detected Data appear	· Normal Dis	tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL	0.23		
		· · · · · · · · · · · · · · · · · · ·	
Note: Suggestions regarding the selection of a 95%	6 UCL are p	rovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statisticia	an.
C (soil hexachlorobenzene 118-74-1)			
		Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
		· · · · · · · · · · · · · · · · · · ·	
		efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
I he Project Team may decide to use alternative site	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
	I nexachior	obenzene 118-74-1) was not processed!	
C (apil L havaphlarahutadiana L 97 69 2)			
C (soil hexachlorobutadiene 87-68-3)			
	Conorol	Statistics	
Total Number of Observations	20	Number of Distinct Observations	18
Number of Detects	20	Number of Distinct Observations	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	18
	0		10
Warning: All absonutions are Non Detecto	(NDo) ther	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
	e specific va		
The data set for variable C (soi	l l heyachlor	obutadiene 87-68-3) was not processed!	
C (soil hexachlorocyclopentadiene 77-47-4)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	20	Number of Distinct Observations	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15

		as to astimate anyironmental parameters (a.g. EDC BT\/)	
The Project Team may decide to use alternative sit	e specific value	es lo estimate environmental parameters (e.g., EFO, DTV).	
The data set for variable C (soil h	exachlorocyclo	opentadiene 77-47-4) was not processed!	
C (soil hexachloroethane 67-72-1)			
	General St	atistics	
Total Number of Observations	1	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
	<u> </u>	I	
		ore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statistics	are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific value	es to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (s	oil hexachlord	bethane 67-72-1) was not processed!	
c (soil indeno(1,2,3-cd)pyrene 193-39-5)			
	Conorol St	atiatica	
Total Number of Observations	General St		16
Total Number of Observations	20	Number of Distinct Observations	16
Number of Detects	20 4	Number of Distinct Observations Number of Non-Detects	16
	20 4 4	Number of Distinct Observations	16 12
Number of Detects Number of Distinct Detects	20 4 4 0.15	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	16 12
Number of Detects Number of Distinct Detects Minimum Detect	20 4 4 0.15 0.73	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	16 12 0.187
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	20 4 4 0.15 0.73 0.0905	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	16 12 0.187 0.22 80%
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	20 4 4 0.15 0.73 0.0905 0.418	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	16 12 0.187 0.22 80% 0.301
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	20 4 4 0.15 0.73 0.0905 0.418 0.395	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects	16 12 0.187 0.22 80% 0.301 0.721
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects	16 12 0.187 0.22 80% 0.301 0.721 -5.322
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	20 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	16 12 0.187 0.22 80% 0.301 0.721 -5.322
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	16 12 0.187 0.22 80% 0.301 0.721 -5.322
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic	20 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687 0.295	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 nal GOF Test o 0.828 0.687 0.295 0.413	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects In Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687 0.295 0.413 appear Normal	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test Detected Data appear Normal at 1% Significance Lev	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687 0.295 0.413 appear Normal	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects In Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test Detected Data appear Normal at 1% Significance Lev at 1% Significance Level	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Note GOF tests	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test o 0.828 0.687 0.295 0.413 appear Normal may be unrelia	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects In Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test Detected Data appear Normal at 1% Significance Lev at 1% Significance Level	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data at Note GOF tests Kaplan-Meier (KM) Statistics usin	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687 0.295 0.413 appear Normal may be unrelia appear Critic 0.212	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test Detected Data appear Normal at 1% Significance Lev at 1% Significance Level ble for small sample sizes	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data at Note GOF tests Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687 0.295 0.413 appear Normal may be unrelia may be unrelia g Normal Critico 0.212 0.156	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test Detected Data appear Normal at 1% Significance Lev at 1% Significance Level ble for small sample sizes cal Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835 //el
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data at Note GOF tests Kaplan-Meier (KM) Statistics usin	20 4 4 0.15 0.73 0.0905 0.418 0.395 0.111 -1.115 mal GOF Test of 0.828 0.687 0.295 0.413 appear Normal may be unrelia appear Normal may be unrelia g Normal Critic 0.212 0.156 0.282	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test Detected Data appear Normal at 1% Significance Lev at 1% Significance Level ble for small sample sizes cal Values and other Nonparametric UCLs KM Standard Error of Mean	16 12 0.187 0.22 80% 0.301 0.721 -5.322 0.835 //el

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

90% KM Chebyshev UCL	0.334	95% KM Chebyshev UCL	0.389
97.5% KM Chebyshev UCL	0.466	99% KM Chebyshev UCL	0.618
			0.0.0
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.542	Anderson-Darling GOF Test	
5% A-D Critical Value	0.66	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.323	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.398	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appear	Gamma Dis	stributed at 5% Significance Level	
Note GOF tests r	nay be unre	liable for small sample sizes	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	2.219	k star (bias corrected MLE)	0.721
Theta hat (MLE)	0.188	Theta star (bias corrected MLE)	0.579
nu hat (MLE)	17.75	nu star (bias corrected)	5.77
Mean (detects)	0.418		
		11	
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data so	et has > 50%	% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such a	is <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS r	nethod may	yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum	0.0656	Mean	0.218
Maximum	0.73	Median	0.165
SD	0.165	CV	0.758
k hat (MLE)	3.062	k star (bias corrected MLE)	2.636
Theta hat (MLE)	0.0711	Theta star (bias corrected MLE)	0.0825
nu hat (MLE)	122.5	nu star (bias corrected)	105.5
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (105.46, α)	82.76	Adjusted Chi Square Value (105.46, β)	81.17
95% Gamma Approximate UCL	0.277	95% Gamma Adjusted UCL	N/A
	0.277		10// (
Entimator of Oc	mme Doror	neters using KM Estimates	
Mean (KM)	0.212	SD (KM)	0.156
	0.212		0.0408
Variance (KM)	1.844	SE of Mean (KM)	1.6
k hat (KM)		k star (KM)	
nu hat (KM)	73.75	nu star (KM)	64.02
theta hat (KM)	0.115	theta star (KM)	0.132
80% gamma percentile (KM)	0.325	90% gamma percentile (KM)	0.434
95% gamma percentile (KM)	0.539	99% gamma percentile (KM)	0.776
		eier (KM) Statistics	/ - · ·
Approximate Chi Square Value (64.02, α)	46.61	Adjusted Chi Square Value (64.02, β)	45.44
95% KM Approximate Gamma UCL	0.29	95% KM Adjusted Gamma UCL	0.298
_		etected Observations Only	
Shapiro Wilk Test Statistic	0.814	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance L	evel

	0.284	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data app	pear Lognorma	al at 10% Significance Level	
Note GOF tests	may be unrelia	ble for small sample sizes	
Lognormal RO	S Statistics Usi	ing Imputed Non-Detects	
Mean in Original Scale	0.222	Mean in Log Scale	-1.646
SD in Original Scale	0.16	SD in Log Scale	0.472
95% t UCL (assumes normality of ROS data)	0.283	95% Percentile Bootstrap UCL	0.283
95% BCA Bootstrap UCL	0.305	95% Bootstrap t UCL	0.466
95% H-UCL (Log ROS)	0.267		
Statistics using KM estimates of	on Logged Dat	a and Assuming Lognormal Distribution	
KM Mean (logged)	-1.691	KM Geo Mean	0.184
KM SD (logged)	0.436	95% Critical H Value (KM-Log)	1.96
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	0.247
KM SD (logged)	0.436	95% Critical H Value (KM-Log)	1.96
KM Standard Error of Mean (logged)			
	DL/2 Stat	tistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.163	Mean in Log Scale	-2.067
SD in Original Scale	0.177	SD in Log Scale	0.592
95% t UCL (Assumes normality)	0.232	95% H-Stat UCL	0.201
	thod, provided	d for comparisons and historical reasons	
Nonparame	tric Distributio	n Free UCL Statistics	
-			
Detected Data appeal	r Normal Distri	buted at 1% Significance Level	
	Suggested U		
95% KM (t) UCL			
95% KM (t) UCL	Suggested U	CL to Use	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95%	Suggested U 0.282	CL to Use vided to help the user to select the most appropriate 95% UCL	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	Suggested U 0.282 6 UCL are prov , data distribut	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies.	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	Suggested U 0.282 6 UCL are prov , data distribut	CL to Use vided to help the user to select the most appropriate 95% UCL	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	Suggested U 0.282 6 UCL are prov , data distribut	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies.	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	Suggested U 0.282 6 UCL are prov , data distribut	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies.	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	Suggested U 0.282 6 UCL are prov , data distribut	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies.	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	Suggested U 0.282 6 UCL are prov , data distribut	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistici	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	Suggested U 0.282 6 UCL are prov , data distribut /orld data sets	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistici	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (soil iron 7439-89-6)	Suggested U 0.282 6 UCL are prov , data distribut /orld data sets General St	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistici tatistics	an.
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (soil iron 7439-89-6)	Suggested U 0.282 6 UCL are prov , data distribut /orld data sets General St 20	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistic tatistics Number of Distinct Observations Number of Missing Observations	an. 17
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (soil iron 7439-89-6) Total Number of Observations	Suggested U 0.282 6 UCL are prov 6 UCL are prov 7 data distribut 7 orld data sets 6 data sets 7 data distribut 7 orld data sets 7 data distribut 7 data distribut 7 data distribut 7 orld data sets 7 data distribut 7	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistici tatistics Number of Distinct Observations Number of Missing Observations Mean	an. 17 0
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (soil iron 7439-89-6) Total Number of Observations Minimum Maximum	Suggested U 0.282 6 UCL are prov 6 UCL are prov 7 data distribut 7 orld data sets 6 data sets 7 data distribut 7 orld data sets 7 data distribut 7 data distribut 7 data distribut 7 orld data sets 7 data distribut 7	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistici tatistics Number of Distinct Observations Number of Missing Observations Mean	an. 17 0 39083 24583
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W c (soil iron 7439-89-6) Total Number of Observations Minimum Maximum	Suggested U 0.282 6 UCL are prov , data distribut /orld data sets Ceneral St 20 11000 330000	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistic tatistics Number of Distinct Observations Number of Missing Observations Mean Median	an. 17 0 39083 24583 15392
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (soil iron 7439-89-6) Total Number of Observations Minimum Maximum SD	Suggested U 0.282 6 UCL are prov 6 UCL are prov 7 data distribut 7 orld data sets 7 data distribut 7 data distrib	CL to Use vided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies. ; for additional insight the user may want to consult a statistici tatistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	an. 17 0 39083 24583

10/ Chaming Mills Critical Makes	0.868	Data Nat Narmal at 10/ Cignificance Lough	
1% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data Not Normal at 1% Significance Level Lilliefors GOF Test	
1% Lilliefors Critical Value			
		Data Not Normal at 1% Significance Level % Significance Level	
	suming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	65698		80562
		95% Modified-t UCL (Johnson-1978)	68219
	Gamma	GOF Test	
A-D Test Statistic		Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.761	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.364	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.198	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gam	na Distribute	d at 5% Significance Level	
	0		
k bet (MLE)			1.181
k hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	33093
Theta hat (MLE)			
nu hat (MLE)	54.01	nu star (bias corrected)	47.24
MLE Mean (bias corrected)	39083		35964
Advected Level of Ober Service	0.020	Approximate Chi Square Value (0.05)	32.47
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	31.5
As	suming Gam	ma Distribution	
95% Approximate Gamma UCL	56867	95% Adjusted Gamma UCL	58614
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	-	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.266	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not L	ognormal at	10% Significance Level	
	Lognormo	Statistica	
Minimum of Longood Date	-	I Statistics	10.10
Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	10.16 0.686
	12.71	SD 01 logged Data	0.000
Ass	uming Logno	rmal Distribution	
95% H-UCL	46382	90% Chebyshev (MVUE) UCL	48048
95% Chebyshev (MVUE) UCL	55208	97.5% Chebyshev (MVUE) UCL	65146
99% Chebyshev (MVUE) UCL	84668		
Nonparame	etric Distribut	ion Free UCL Statistics	
·		iscernible Distribution	
Nonpa 95% CLT UCL		ribution Free UCLs 95% BCA Bootstrap UCL	85650
95% CLI UCL	04401	95% BCA BOOISTRAD UCL	00000

	00704		
95% Standard Bootstrap UCL		95% Bootstrap-t UCL	
95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	
90% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL	
97.5% Chebyshev(Mean, Sd) UCL	135206	99% Chebyshev(Mean, Sd) UCL	192231
	Suggested		
	65698		
35% Student 3-t OCL	00000		
The calculated UCLs are based on assumption	ons that the	data were collected in a random and unbiased manner.	
		lected from random locations.	
-		nental or other non-random methods,	
		o correctly calculate UCLs.	
		· · · · · · · · · · · · · · · · · · ·	
Note: Suggestions regarding the selection of a 95%		rovided to help the user to select the most appropriate 95% UCL	
	· · · ·	ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statisticia	<u></u>
	onu uata se		d11.
C (soil isophorone 78-59-1)			
	General	Chatlation	
Total Number of Observations		Number of Distinct Observations	15
	20		15
Number of Detects	0	Number of Non-Detects	20
	<u>^</u>		4 5
Specifically, sample mean, UCLs, UPLs, and	other statist	Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	(NDs), there other statist	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit!	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	(NDs), there other statist	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	(NDs), there other statist	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C	(NDs), there other statist	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C	(NDs), there other statist	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed!	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C	(NDs), there other statist e specific val	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed!	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C	(NDs), there other statist e specific val c (soil isoph	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed!	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C	(NDs), there other statist e specific val c (soil isoph	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Number of Distinct Observations	18
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations	(NDs), there other statist a specific val c (soil isoph General s 20	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Number of Distinct Observations Number of Missing Observations	18 0
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum	(NDs), there other statist e specific val c (soil isoph General S 20 7.2	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Number of Distinct Observations Number of Missing Observations Mean	18 0 15.76 12.73
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum	(NDs), there other statist a specific val c (soil isoph c (soil isoph 20 7.2 64.63	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median	18 0 15.76
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum SD	(NDs), there other statistic e specific val c (soil isoph c	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean	18 0 15.76 12.73 2.758
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum SD Coefficient of Variation	(NDs), there other statistic e specific val c (soil isoph c	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	18 0 15.76 12.73 2.758
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum SD Coefficient of Variation	(NDs), there other statistic e specific val c (soil isoph c	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). horone 78-59-1) was not processed! Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Std. Error of Mean Stkewness	18 0 15.76 12.73 2.758
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum SD Coefficient of Variation	(NDs), there other statistic e specific val c (soil isoph c	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level	18 0 15.76 12.73 2.758
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum SD Coefficient of Variation	(NDs), there other statistic e specific val c (soil isoph c	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). horone 78-59-1) was not processed! Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Std. Error of Mean Std. Error of Mean Skewness	18 0 15.76 12.73 2.758
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (soil lead 7439-92-1) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	(NDs), there other statist e specific val c (soil isoph c (s	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). norone 78-59-1) was not processed! Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level	18 0 15.76 12.73 2.758

95% Normal UCL	suming Normal I	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	20.53	95% Adjusted-CLT UCL (Chen-1995)	22.68
	20.00	95% Modified-t UCL (Johnson-1978)	20.9
		L	
	Gamma GOF		
A-D Test Statistic	1.737	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.746	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.296	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.195	Data Not Gamma Distributed at 5% Significance Level 5% Significance Level	el
	Gamma Stat	istics	
k hat (MLE)	3.605	k star (bias corrected MLE)	3.09
Theta hat (MLE)	4.371	Theta star (bias corrected MLE)	5.08
nu hat (MLE)	144.2	nu star (bias corrected)	123.9
MLE Mean (bias corrected)	15.76	MLE Sd (bias corrected)	8.9
		Approximate Chi Square Value (0.05)	99.2
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	97.4
A		Distribution	
Ass 95% Approximate Gamma UCL	uming Gamma	Distribution 95% Adjusted Gamma UCL	20.0
	19.09		20.0
	Lognormal GC	E Toet	
Shapiro Wilk Test Statistic	0.828	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.244	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
		Significance Level	
	Lognormal Sta		
Minimum of Logged Data	1.974	Mean of logged Data	2.6
Maximum of Logged Data	4.169	SD of logged Data	0.4
Assu	iming Lognorma	Distribution	
Assu 95% H-UCL	ming Lognorma	Distribution 90% Chebyshev (MVUE) UCL	20.2
95% H-UCL	19.01	90% Chebyshev (MVUE) UCL	
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	19.01 22.48 31.83	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame	19.01 22.48 31.83	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame	19.01 22.48 31.83	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	20.2
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data do no	19.01 22.48 31.83	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution	
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data do no	19.01 22.48 31.83 tric Distribution I ot follow a Disce	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution	25.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data do no Nonpar	19.01 22.48 31.83 tric Distribution I ot follow a Disce	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution	25.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data do no Nonpara 95% CLT UCL	19.01 22.48 31.83 tric Distribution I ot follow a Disce ametric Distribut 20.3	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution tion Free UCLs 95% BCA Bootstrap UCL	25.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data do no Nonpar 95% CLT UCL 95% Standard Bootstrap UCL	19.01 22.48 31.83 tric Distribution I ot follow a Disce ametric Distribut 20.3 20.2	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution tion Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL	

	Suggested UCI	. to Use	
95% Student's-t UCL	20.53		
Network Commenting the selection of a OFO			
		led to help the user to select the most appropriate 95% UCL.	•
		n, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data sets; f	or additional insight the user may want to consult a statisticia	an.
I manganese 7439-96-5)			
	General Stat	istics	
Total Number of Observations	20	Number of Distinct Observations	20
		Number of Missing Observations	0
Minimum	61	Mean	292.1
Maximum	2700	Median	130
SD	580	Std. Error of Mean	129.7
Coefficient of Variation	1.986	Skewness	4.1
	Normal GOF	Test	
Shapiro Wilk Test Statistic	0.377	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.42	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.223	Data Not Normal at 1% Significance Level	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	516.3	95% Adjusted-CLT UCL (Chen-1995)	634.6
		95% Modified-t UCL (Johnson-1978)	536.5
	Gamma GOF	Test	
A-D Test Statistic	2.666	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.769	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.305	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.2	Data Not Gamma Distributed at 5% Significance Leve	əl
Data Not Gamm	na Distributed at	5% Significance Level	
	Gamma Stat	istics	
	0.978	k star (bias corrected MLE)	0.8
k hat (MLE)	0.978		
k hat (MLE) Theta hat (MLE)	298.8	Theta star (bias corrected MLE)	337.9
		Theta star (bias corrected MLE) nu star (bias corrected)	
Theta hat (MLE)	298.8		34.5
Theta hat (MLE) nu hat (MLE)	298.8 39.1	nu star (bias corrected)	34.5 314.2
Theta hat (MLE) nu hat (MLE)	298.8 39.1	nu star (bias corrected) MLE Sd (bias corrected)	34.5 314.2 22.1
Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	298.8 39.1 292.1 0.038	nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	34.5 314.2 22.1
Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	298.8 39.1 292.1	nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	337.9 34.5 314.2 22.1 21.3 473.3
Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	298.8 39.1 292.1 0.038	nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value Distribution	34.5 314.2 22.1 21.3

	0.803	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.2	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not Lo	gnormal at 10%	Significance Level	
	Lognormal Stat	tistics	
Minimum of Logged Data	4.111	Mean of logged Data	5.085
Maximum of Logged Data	7.901	SD of logged Data	0.854
۵۶۵	ming Lognormal	Distribution	
95% H-UCL	374.7	90% Chebyshev (MVUE) UCL	369.6
95% Chebyshev (MVUE) UCL	434.1	97.5% Chebyshev (MVUE) UCL	523.6
99% Chebyshev (MVUE) UCL	699.4		020.0
-		ree UCL Statistics nible Distribution	
-	ametric Distributi		005.0
95% CLT UCL	505.4	95% BCA Bootstrap UCL	685.2
95% Standard Bootstrap UCL	499	95% Bootstrap-t UCL	1892
95% Hall's Bootstrap UCL	1464	95% Percentile Bootstrap UCL	538.5
90% Chebyshev(Mean, Sd) UCL	681.1	95% Chebyshev(Mean, Sd) UCL	857.3
97.5% Chebyshev(Mean, Sd) UCL	1102	99% Chebyshev(Mean, Sd) UCL	1582
	Suggested UCL	to Use	
95% Student's-t UCL	Suggested UCL 516.3	to Use	
95% Student's-t UCL	516.3		
95% Student's-t UCL The calculated UCLs are based on assumptio	516.3	were collected in a random and unbiased manner.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da	516.3 Ins that the data	were collected in a random and unbiased manner. d from random locations.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the data If the data were collected o	516.3 Ins that the data ata were collecte using judgmenta	were collected in a random and unbiased manner. d from random locations. I or other non-random methods,	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the data If the data were collected o	516.3 Ins that the data ata were collecte using judgmenta	were collected in a random and unbiased manner. d from random locations.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr	were collected in a random and unbiased manner. d from random locations. I or other non-random methods,	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95%	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies.	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. or additional insight the user may want to consult a statisticia	
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected u then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution orld data sets; fo	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician stics Number of Distinct Observations	an. 18
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo c (soil mercury 7439-97-6)	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution orld data sets; fo General Statis	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. ar additional insight the user may want to consult a statistician stics	an.
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo c (soil mercury 7439-97-6)	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution orld data sets; fo General Statis	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician stics Number of Distinct Observations	an. 18 0
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo s (soil mercury 7439-97-6) Total Number of Observations	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution orld data sets; fo General Statis 20	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. ar additional insight the user may want to consult a statisticia stics Number of Distinct Observations Number of Missing Observations	an. 18 0 0.037
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo c (soil mercury 7439-97-6) Total Number of Observations Minimum	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution orld data sets; fo General Statis 20 0.011	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. or additional insight the user may want to consult a statisticia stics Number of Distinct Observations Number of Missing Observations Mean	an. 18 0 0.0370 0.029
95% Student's-t UCL The calculated UCLs are based on assumptio Please verify the da If the data were collected of then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo s (soil mercury 7439-97-6) Total Number of Observations Minimum Maximum	516.3 Ins that the data ata were collecte using judgmenta tatistician to corr UCL are provide data distribution orld data sets; fo General Statis 20 0.011 0.16	were collected in a random and unbiased manner. d from random locations. I or other non-random methods, rectly calculate UCLs. ed to help the user to select the most appropriate 95% UCL a, and skewness using results from simulation studies. ar additional insight the user may want to consult a statistician stics Number of Distinct Observations Number of Missing Observations Mean Median	an. 18 0 0.0370

1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	0.667 0.868 0.269 0.223	Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test	
Lilliefors Test Statistic 1% Lilliefors Critical Value	0.269 0.223		
1% Lilliefors Critical Value	0.223		
		Data Not Normal at 1% Significance Level	
	rmal at 1%	6 Significance Level	
Assum	ning Norm	al Distribution	
95% Normal UCL	-	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0503	95% Adjusted-CLT UCL (Chen-1995)	0.0549
		95% Modified-t UCL (Johnson-1978)	0.0511
	Commo ()		
· · · · · · · · · · · · · · · · · · ·	Gamma G 0.628		
		Anderson-Darling Gamma GOF Test	
	0.751	Detected data appear Gamma Distributed at 5% Significanc	e Level
	0.189	Kolmogorov-Smirnov Gamma GOF Test	- 11
	0.196	Detected data appear Gamma Distributed at 5% Significance	e Level
	imma Dist	ributed at 5% Significance Level	
	Gamma S	itatistics	
k hat (MLE)	2.375	k star (bias corrected MLE)	2.052
Theta hat (MLE)	0.0158	Theta star (bias corrected MLE)	0.0183
nu hat (MLE)	94.98	nu star (bias corrected)	82.07
MLE Mean (bias corrected)	0.0376	MLE Sd (bias corrected)	0.0262
I		Approximate Chi Square Value (0.05)	62.19
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	60.83
		N	
	-	na Distribution 95% Adjusted Gamma UCL	0.0507
95% Approximate Gamma UCL	0.0496	95% Adjusted Gamma UCL	0.0507
Lc	ognormal	GOF Test	
Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.138	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data appear Lognormal at 10% Significance Level	
Data appear Log	normal at	10% Significance Level	
	ognormal	Statistics	
	4.51	Mean of logged Data	-3.506
	1.833	SD of logged Data	0.64
		mal Distribution	
	0.0506	90% Chebyshev (MVUE) UCL	0.0529
	0.0604	97.5% Chebyshev (MVUE) UCL	0.0708
99% Chebyshev (MVUE) UCL	0.0912		
Nonparametric	Distributio	on Free UCL Statistics	
		Discernible Distribution	
Nonparame	etric Distri	ibution Free UCLs	

A-D Test Statistic	0.514	Anderson-Darling GOF Test	
Gamma GOF	lests on Detect	ed Observations Only	
97.5% KM Chebyshev UCL	0.872	99% KM Chebyshev UCL	1.302
90% KM Chebyshev UCL	0.495	95% KM Chebyshev UCL	0.653
95% KM (z) UCL	0.338	95% KM Bootstrap t UCL	N/A
95% KM (t) UCL	0.357	95% KM (Percentile Bootstrap) UCL	N/A
90KM SD	0.314	95% KM (BCA) UCL	N/A
KM Mean	0.147	KM Standard Error of Mean	0.116
Kaplan-Meier (KM) Statistics using	g Normal Critica	I Values and other Nonparametric UCLs	
		le for small sample sizes	
		t 1% Significance Level	
1% Lilliefors Critical Value	0.201	Detected Data appear Normal at 1% Significance Leve	ما
1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.753	Lilliefors GOF Test	el
Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Leve	
	al GOF Test on	-	
		Detects Only	
-		or reliable statistics and estimates.	
	ata set has only	3 Detected Values.	
Mean of Logged Detects	-1.993	SD of Logged Detects	3.04
Skewness Detects	-1.012	Kurtosis Detects	N/A
Median Detects	0.65	CV Detects	0.904
Mean Detects	0.535	SD Detects	0.483
Variance Detects	0.234	Percent Non-Detects	72.73
Maximum Detect	0.95	Maximum Non-Detect	0.0019
Minimum Detect	0.0041	Minimum Non-Detect	0.0013
Number of Distinct Detects	3	Number of Distinct Non-Detects	• 5
Number of Detects	3	Number of Distinct Observations Number of Non-Detects	8
Total Number of Observations	General Stat	istics Number of Distinct Observations	8
	Conord Ot-	liation	
C (soil methyl acetate 79-20-9)			
		in, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia	<u></u>
		ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	•
Note: Suggestions regarding the collection of a 05%		ded to help the user to calent the most appropriate 05% LICL	
95% Adjusted Gamma UCL	Suggested UC 0.0507	L to Use	
97.5% Chebyshev(Mean, Sd) UCL	0.0835	99% Chebyshev(Mean, Sd) UCL	0.111
90% Chebyshev(Mean, Sd) UCL	0.0596	95% Chebyshev(Mean, Sd) UCL	0.069
95% Standard Dootstrap UCL 95% Hall's Bootstrap UCL	0.102	95% Percentile Bootstrap UCL	0.003
95% CLT UCL 95% Standard Bootstrap UCL	0.0497	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	0.056

5% A-D Critical Value	0.654	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.4	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.45	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected Data Not C	amma Distr	ibuted at 5% Significance Level	
		Detected Data Only	
k hat (MLE)	0.469	k star (bias corrected MLE)	N/A
Theta hat (MLE)	1.139	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	2.816	nu star (bias corrected)	N/A
Mean (detects)	0.535		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is especi	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	ind UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.0041	Mean	0.153
Maximum	0.95	Median	0.01
SD	0.327	CV	2.135
k hat (MLE)	0.336	k star (bias corrected MLE)	0.305
Theta hat (MLE)	0.456	Theta star (bias corrected MLE)	0.502
nu hat (MLE)	7.388	nu star (bias corrected)	6.706
Adjusted Level of Significance (β)	0.0278		
Approximate Chi Square Value (6.71, α)	2.011	Adjusted Chi Square Value (6.71, β)	1.619
95% Gamma Approximate UCL	0.511	95% Gamma Adjusted UCL	N/A
Estimates of Ga	amma Parar	neters using KM Estimates	
Mean (KM)	0.147	SD (KM)	0.314
Variance (KM)	0.0989	SE of Mean (KM)	0.116
k hat (KM)	0.218	k star (KM)	0.219
nu hat (KM)	4.793	nu star (KM)	4.819
theta hat (KM)	0.674	theta star (KM)	0.67
80% gamma percentile (KM)	0.202	90% gamma percentile (KM)	0.444
95% gamma percentile (KM)	0.738	99% gamma percentile (KM)	1.537
		eier (KM) Statistics	0.014
Approximate Chi Square Value (4.82, α)	1.07 0.661	Adjusted Chi Square Value (4.82, β) 95% KM Adjusted Gamma UCL	0.814
95% KM Approximate Gamma UCL	100.0	95% KM Adjusted Gamma UCL	0.009
		etected Observations Only	
Shapiro Wilk Test Statistic	0.802	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.789	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.363	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data app	pear Lognor	nal at 10% Significance Level	
Note GOF tests	nay be unre	liable for small sample sizes	
Lognormal ROS	S Statistics L	Jsing Imputed Non-Detects	
Logiomaritov			

Mean in Original Scale	0.146	Mean in Log Scale	-10.39
SD in Original Scale	0.33	SD in Log Scale	5.946
95% t UCL (assumes normality of ROS data)	0.326	95% Percentile Bootstrap UCL	0.319
95% BCA Bootstrap UCL	0.378	95% Bootstrap t UCL	39.08
95% H-UCL (Log ROS)	1.131E+15		
Statistics using KM catimates a		ate and Assuming Lagranmal Distribution	
KM Mean (logged)	-5.358	ata and Assuming Lognormal Distribution KM Geo Mean	0.00471
Kin Mean (logged) KM SD (logged)	2.435	95% Critical H Value (KM-Log)	6.159
KM Standard Error of Mean (logged)	0.899	95% Childar H Valde (KW-Log) 95% H-UCL (KM -Log)	10.46
KW Standard Error of Mean (logged) KM SD (logged)	2.435	95% Critical H Value (KM-Log)	6.159
KM Standard Error of Mean (logged)	0.899		0.159
	0.899		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.146	Mean in Log Scale	-5.689
SD in Original Scale	0.33	SD in Log Scale	2.737
95% t UCL (Assumes normality)	0.327	95% H-Stat UCL	54.76
DL/2 is not a recommended me	thod, provid	ed for comparisons and historical reasons	
Nonparame	tric Dietribut	ion Free UCL Statistics	
		tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL	0.357		
Recommendations are based upon data size	, data distrib	rovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	
C (soil methyl tert-butyl ether 1634-04-4)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	11
	0		
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
	· · ·	ics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	methyl tert-	outyl ether 1634-04-4) was not processed!	
C (soil methylcyclohexane 108-87-2)			
	General		
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	2	Number of Non-Detects	

Number of Distinct Detects	2	Number of Distinct Non-Detects	6	
Minimum Detect	5.3	Minimum Non-Detect		
Maximum Detect	22	Maximum Non-Detect	0.0019	
Variance Detects	139.4	Percent Non-Detects	81.82%	
Mean Detects	13.65	SD Detects	11.81	
Median Detects	13.65	CV Detects	0.865	
Skewness Detects	N/A	Kurtosis Detects	N/A	
Mean of Logged Detects	2.379	SD of Logged Detects	1.006	
	2.379	SD of Logged Delects	1.000	
Warning: D	ata set has o	only 2 Detected Values.		
-		ful or reliable statistics and estimates.		
	•			
Norm	al GOF Tes	t on Detects Only		
Not End	ough Data to	Perform GOF Test		
	-	itical Values and other Nonparametric UCLs		
KM Mean	2.482	KM Standard Error of Mean	2.71	
90KM SD	6.355	95% KM (BCA) UCL	N/A	
95% KM (t) UCL	7.394	95% KM (Percentile Bootstrap) UCL	N/A	
95% KM (z) UCL	6.94	95% KM Bootstrap t UCL	N/A	
90% KM Chebyshev UCL	10.61	95% KM Chebyshev UCL	14.29	
97.5% KM Chebyshev UCL	19.41	99% KM Chebyshev UCL	29.45	
		etected Observations Only		
Not End	ough Data to	Perform GOF Test		
		Detected Data Only		
k hat (MLE)	2.286	k star (bias corrected MLE)	N/A	
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A	
nu hat (MLE)	9.145	nu star (bias corrected)	N/A	
Mean (detects)	13.65			
Entimates of O	ommo Doros	meters using KM Estimates		
Mean (KM)	2.482	SD (KM)	6.355	
Variance (KM)	40.39	SE of Mean (KM)	2.71	
k hat (KM)	40.39 0.153	k star (KM)	0.172	
nu hat (KM)	3.356	nu star (KM)	3.774	
theta hat (KM)	16.27	theta star (KM)	14.47	
80% gamma percentile (KM)		90% gamma percentile (KM)	7.465	
95% gamma percentile (KM)	2.986 13.28	90% gamma percentile (KM) 99% gamma percentile (KM)	29.72	
95 /o gamma percentile (KM)	13.20	55 % gamma percenule (KNI)	23.12	
Camm	a Kanlan-M	eier (KM) Statistics		
		Adjusted Level of Significance (β)	0.0278	
Approximate Chi Square Value (3.77, α)	0.635	Adjusted Chi Square Value (3.77, β)	0.461	
95% KM Approximate Gamma UCL	14.76	95% KM Adjusted Gamma UCL	20.34	
	17.70		20.04	
	F Test on D	etected Observations Only		
-		-		
Not Enough Data to Perform GOF Test				

Lognormal RO	S Statistics I	Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-2.51
SD in Original Scale		SD in Log Scale	2.68
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	6.06
95% BCA Bootstrap UCL		95% Bootstrap t UCL	295.1
95% H-UCL (Log ROS)			
Statistics using KM estimates	on Loaged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	0.004
KM SD (logged)		95% Critical H Value (KM-Log)	9.19
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	
KM SD (logged)		95% Critical H Value (KM-Log)	9.19
KM Standard Error of Mean (logged)			
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.482	Mean in Log Scale	-5.40
SD in Original Scale	6.666	SD in Log Scale	3.8
95% t UCL (Assumes normality)	6.125	95% H-Stat UCL	971043
		ed for comparisons and historical reasons	
	Suggested	UCL to Use	
95% KM (t) UCL		UCL to Use	
	7.394	UCL to Use	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	7.394 % UCL are pr	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	7.394 % UCL are pr	rovided to help the user to select the most appropriate 95% UCI	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	7.394 % UCL are pr	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies.	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	7.394 % UCL are pr e, data distrib Vorld data se	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	7.394 % UCL are pr e, data distrib Vorld data se General	rovided to help the user to select the most appropriate 95% UCI oution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statistici	an.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations	7.394 % UCL are pr e, data distrib Vorld data se General 11	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. its; for additional insight the user may want to consult a statistici Statistics	an.
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects	7.394 % UCL are pr e, data distrib Vorld data se General 11 3	rovided to help the user to select the most appropriate 95% UCI oution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects	an.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects	7.394 % UCL are provided the formation of the formation	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. its; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	9 8 6
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	7.394 7.394 % UCL are provided the second	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. tts; for additional insight the user may want to consult a statistici Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	an. 9 8 6 5.6000
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	7.394 7.394 6 UCL are pro- e, data distrib Vorld data se General 11 3 6.2000E-4 6.9000E-4	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statistici Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	9 8 6 5.6000 1.6
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects	7.394 7.394 6 UCL are pro- e, data distrib Vorld data se General 11 3 6.2000E-4 6.9000E-4 1.4333E-9	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. tts; for additional insight the user may want to consult a statistici Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	9 9 8 6 5.6000 1.6 72.7
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects Mean Detects	7.394 7.394 6 UCL are pro- e, data distrib Vorld data second General 11 3 6.2000E-4 6.9000E-4 1.4333E-9 6.6333E-4	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	an. 9 8 6 5.6000 1.6 72.7 3.7859
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Mean Detects Median Detects	7.394 7.394 6 UCL are pro- e, data distribit Vorld data second General 11 3 6.2000E-4 6.9000E-4 1.4333E-9 6.6333E-4 6.8000E-4	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statistici Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	9 9 8 6 5.6000 1.6 72.7 3.7859 0.05
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects Mean Detects	7.394 7.394 6 UCL are pro- e, data distrib Vorld data second General 11 3 6.2000E-4 6.9000E-4 1.4333E-9 6.6333E-4 6.8000E-4 -1.597	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	9 9 8 6 5.6000 1.6 72.7
Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride 75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	7.394 7.394 6 UCL are pro- e, data distrib Vorld data second Ceneral 11 3 6.2000E-4 6.9000E-4 1.4333E-9 6.6333E-4 6.8000E-4 -1.597 -7.319	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. tts; for additional insight the user may want to consult a statistici Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	an. 9 8 6 5.6000 1.6 72.7 3.7859 0.05 N/A
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W methylene chloride [75-09-2) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	7.394 7.394 6 UCL are pro- e, data distrib Vorld data sec General 11 3 6.2000E-4 6.9000E-4 1.4333E-9 6.6333E-4 6.8000E-4 -1.597 -7.319 Pata set has c	rovided to help the user to select the most appropriate 95% UCI ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	an. 9 8 6 5.6000 1.6 72.7 3.7859 0.05 N/A

	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.855	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.753	Detected Data appear Normal at 1% Significance Lev	/el
Lilliefors Test Statistic	0.337	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.429	Detected Data appear Normal at 1% Significance Lev	/el
Detected Data a	ppear Norma	al at 1% Significance Level	
		iable for small sample sizes	
Kaplan-Meier (KM) Statistics usin	a Normal Crit	tical Values and other Nonparametric UCLs	
	6.3750E-4	KM Standard Error of Mean	3.1930E-
	5.2142E-5	95% KM (BCA) UCL	N/A
95% KM (t) UCL	6.9537E-4	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	
	0.00002		0.00202
Gamma GOE	Tests on Det	ected Observations Only	
A-D Test Statistic	0.461	Anderson-Darling GOF Test	
5% A-D Critical Value	0.635	Detected data appear Gamma Distributed at 5% Significant	
K-S Test Statistic	0.374	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.431	Detected data appear Gamma Distributed at 5% Significant	
		buted at 5% Significance Level	
k hat (MLE)	450.8	k star (bias corrected MLE)	N/A
k hat (MLE)	450.8	k star (bias corrected MLE)	N/A
Theta hat (MLE)	1.4716E-6	Theta star (bias corrected MLE)	N/A N/A
Theta hat (MLE) nu hat (MLE)	1.4716E-6 2705		
Theta hat (MLE)	1.4716E-6 2705	Theta star (bias corrected MLE)	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects)	1.4716E-6 2705 6.6333E-4	Theta star (bias corrected MLE) nu star (bias corrected)	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS	1.4716E-6 2705 6.6333E-4 Statistics usi	Theta star (bias corrected MLE) nu star (bias corrected)	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50%	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especie	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when	Theta star (bias corrected MLE) nu star (bias corrected MLE) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small.	N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates	N/A N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS ro This is especia For gamma distributed detected data, BTVs a Minimum	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4	Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean	N/A N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4 0.01	Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median	N/A N/A 0.007 0.01
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is se For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4 0.01 0.00436	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs in the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV	N/A N/A 0.007 0.01 0.58
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may y ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261	Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	N/A N/A 0.007 0.01 0.58 0.97
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data se GROS may not be used when kstar of detects is se For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects o NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	N/A N/A 0.007 0.01 0.58 0.97 0.007
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may y ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74	Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	N/A N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74 0.0278	Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	N/A N/A 0.007 0.01 0.58 0.97 0.007 21.5
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may y ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects o NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	N/A N/A 0.007 0.01 0.58 0.97 0.007
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74 0.0278	Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	N/A N/A 0.007 0.01 0.58 0.97 0.007 21.5
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is se For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (21.51, α) 95% Gamma Approximate UCL	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may y ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74 0.0278 11.97 0.0134	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	N/A N/A 0.007 0.01 0.58 0.97 0.007 21.5
Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data so GROS may not be used when kstar of detects is so For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (21.51, α) 95% Gamma Approximate UCL	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may y ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74 0.0278 11.97 0.0134	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects o NDs with many tied observations at multiple DLs is <1.0, especially when the sample size is small (e.g., <15-20)	N/A N/A 0.007 0.01 0.58 0.97 0.007 21.5 ⁻ 10.8 ⁻ N/A
Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is se For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (21.51, α) 95% Gamma Approximate UCL	1.4716E-6 2705 6.6333E-4 Statistics usi et has > 50% small such as method may ally true when nd UCLs ma 6.2000E-4 0.01 0.00436 1.261 0.00591 27.74 0.0278 11.97 0.0134 amma Param 6.3750E-4	Theta star (bias corrected MLE) nu star (bias corrected) ing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	N/A N/A N/A 0.007 0.01 0.58 0.97 0.007 21.5 10.8 N/A 5.2142E

	140 5		100.0
k hat (KM)		k star (KM)	108.8
nu hat (KM)		nu star (KM)	
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)	7.4126E-4	99% gamma percentile (KM)	7.8825E-4
Gamn	na Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (N/A, α)	2280	Adjusted Chi Square Value (N/A, β)	2262
95% KM Approximate Gamma UCL	6.6899E-4	95% KM Adjusted Gamma UCL	6.7430E-4
	E Toot on D	etected Observations Only	
		Shapiro Wilk GOF Test	
Shapiro Wilk Test Statistic			
10% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 10% Significance Lilliefors GOF Test	Levei
Lilliefors Test Statistic			
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance	Level
		nal at 10% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
	C Ototiotico I	laing Imputed New Detecto	
_		Ising Imputed Non-Detects	-7.355
Mean in Original Scale SD in Original Scale		Mean in Log Scale SD in Log Scale	0.0557
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% BCA BOOSTAP UCL 95% H-UCL (Log ROS)		95% Boolstrap t OCL	0.00002-4
95% H-UCL (LOG RUS)	N/A		
Statistics using KM estimates	on Loaaed D	ata and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	6.3531E-4
KM SD (logged)		95% Critical H Value (KM-Log)	N/A
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	N/A
KM SD (logged)		95% Critical H Value (KM-Log)	N/A
KM Standard Error of Mean (logged)			
	DL/2 St	tatistics	
DL/2 Normal	0.404	DL/2 Log-Transformed	
Mean in Original Scale		Mean in Log Scale	-5.038
SD in Original Scale		SD in Log Scale	2.51
95% t UCL (Assumes normality)		95% H-Stat UCL ed for comparisons and historical reasons	23.15
	sulou, proviu		
Nonparame	atric Distribut	ion Free UCL Statistics	
-		tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL			
		ceeds the maximum observation	
		ovided to help the user to select the most appropriate 95% UC	L
		ution, and skewness using results from simulation studies.	
Li successo a la constata de la Const	Vorld data as	ts; for additional insight the user may want to consult a statistic	

il naphthalene 91-20-3)			
	General	Statistics	
Total Number of Observations	30	Number of Distinct Observations	28
Number of Detects	23	Number of Non-Detects	7
Number of Distinct Detects	21	Number of Distinct Non-Detects	7
Minimum Detect	0.053	Minimum Non-Detect	0.06
Maximum Detect	11	Maximum Non-Detect	0.2
Variance Detects	8.016	Percent Non-Detects	23.3
Mean Detects	1.605	SD Detects	2.8
Median Detects	0.183	CV Detects	1.7
Skewness Detects	2.438	Kurtosis Detects	5.7
Mean of Logged Detects	-0.884	SD of Logged Detects	1.7
Norma	al GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.612	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.881	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.31	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.209	Detected Data Not Normal at 1% Significance Level	
Detected Data	Not Normal	at 1% Significance Level	
Kaplan-Meier (KM) Statistics using	j Normal Cr i	itical Values and other Nonparametric UCLs	
KM Mean	1.25	KM Standard Error of Mean	0.4
90KM SD	2.509	95% KM (BCA) UCL	2.0
95% KM (t) UCL	2.046	95% KM (Percentile Bootstrap) UCL	2.0
95% KM (z) UCL	2.02	95% KM Bootstrap t UCL	2.9
90% KM Chebyshev UCL	2.655	95% KM Chebyshev UCL	3.2
97.5% KM Chebyshev UCL	4.175	99% KM Chebyshev UCL	5.9
Gamma GOF	Fests on De	tected Observations Only	
A-D Test Statistic	1.383	Anderson-Darling GOF Test	
5% A-D Critical Value	0.811	Detected Data Not Gamma Distributed at 5% Significance	Leve
K-S Test Statistic	0.242	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.193	Detected Data Not Gamma Distributed at 5% Significance	Leve
Detected Data Not G	amma Distr	ibuted at 5% Significance Level	
		Detected Data Only	
k hat (MLE)	0.472	k star (bias corrected MLE)	0.4
Theta hat (MLE)	3.4	Theta star (bias corrected MLE)	3.6
nu hat (MLE) Mean (detects)	21.72	nu star (bias corrected)	20.2
		6 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		on the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates	

Minimum	0.01	Mean	1.233
Maximum	11	Median	0.125
SD	2.56	CV	2.076
k hat (MLE)	0.344	k star (bias corrected MLE)	0.332
Theta hat (MLE)	3.587	Theta star (bias corrected MLE)	3.719
nu hat (MLE)	20.63	nu star (bias corrected)	19.9
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (19.90, α)	10.78	Adjusted Chi Square Value (19.90, β)	10.39
95% Gamma Approximate UCL	2.277	95% Gamma Adjusted UCL	2.362
	amma Parar	neters using KM Estimates	
Mean (KM)	1.25	SD (KM)	2.509
Variance (KM)	6.294	SE of Mean (KM)	0.468
k hat (KM)	0.248	k star (KM)	0.246
nu hat (KM)	14.89	nu star (KM)	14.73
theta hat (KM)	5.036	theta star (KM)	5.089
80% gamma percentile (KM)	1.803	90% gamma percentile (KM)	3.756
95% gamma percentile (KM)	6.082	99% gamma percentile (KM)	12.29
		eier (KM) Statistics	6 771
Approximate Chi Square Value (14.73, α)	7.077	Adjusted Chi Square Value (14.73, β) 95% KM Adjusted Gamma UCL	6.771 2.719
95% KM Approximate Gamma UCL	2.602	95% KM Aujusted Gamma OCL	2.719
	E Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.9	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.928	Detected Data Not Lognormal at 10% Significance Lev	ام
Lilliefors Test Statistic	0.204	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.165	Detected Data Not Lognormal at 10% Significance Lev	/el
		al at 10% Significance Level	
Lognormal ROS	Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	1.248	Mean in Log Scale	-1.327
SD in Original Scale	2.552	SD in Log Scale	1.734
95% t UCL (assumes normality of ROS data)	2.04	95% Percentile Bootstrap UCL	2.071
95% BCA Bootstrap UCL	2.316	95% Bootstrap t UCL	2.9
95% H-UCL (Log ROS)	3.702		
Statistics using KM estimates o	n Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-1.282	KM Geo Mean	0.277
KM SD (logged)	1.644	95% Critical H Value (KM-Log)	3.381
KM Standard Error of Mean (logged)	0.309	95% H-UCL (KM -Log)	3.011
KM SD (logged)	1.644	95% Critical H Value (KM-Log)	3.381
KM Standard Error of Mean (logged)	0.309		
	DI /0.0		
DL/2 Normal	DL/2 S	tatistics DL/2 Log-Transformed	
Mean in Original Scale	1.249	Mean in Log Scale	-1.303
SD in Original Scale	2.552	SD in Log Scale	1.697
95% t UCL (Assumes normality)	2.04	95% H-Stat UCL	3.411
	v T		2

DL/2 is not a recommended met	hod, provide	d for comparisons and historical reasons	
Nonparamet	ric Distributio	on Free UCL Statistics	
-		scernible Distribution	
	Suggested L	JCL to Use	
95% KM (t) UCL	2.046		
	I.	· · · · · · · · · · · · · · · · · · ·	
•		ata were collected in a random and unbiased manner.	
Please verify the da	ta were colle	ected from random locations.	
If the data were collected u	ising judgme	ental or other non-random methods,	
then contact a s	tatistician to	correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
		ition, and skewness using results from simulation studies.	
		s; for additional insight the user may want to consult a statistici	ian.
: (soil n-butylbenzene 104-51-8)			
	General S	statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	2	Number of Non-Detects	9
Number of Distinct Detects	2	Number of Distinct Non-Detects	6
Minimum Detect	0.056	Minimum Non-Detect	5.1000E-4
Maximum Detect	0.43	Maximum Non-Detect	0.0019
Variance Detects	0.0699	Percent Non-Detects	81.82%
Mean Detects	0.243	SD Detects	0.264
Median Detects	0.243	CV Detects	1.088
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.863	SD of Logged Detects	1.441
Waming: Da	ta set has or	nly 2 Detected Values.	
-		ul or reliable statistics and estimates.	
Norma	al GOF Test	on Detects Only	
Not Eno	ugh Data to	Perform GOF Test	
		ical Values and other Nonparametric UCLs	0.050
KM Mean	0.0446	KM Standard Error of Mean	0.0524
90KM SD	0.123	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.14	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.131	95% KM Bootstrap t UCL	N/A 0.273
90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.202	95% KM Chebyshev UCL 99% KM Chebyshev UCL	0.273
97.5% KM Chebyshev UCL	0.372	55% KW Chebysnev UCL	0.000
Gamma GOF 1	ests on Det	ected Observations Only	
		Perform GOF Test	

Gamma	Statistics or	Detected Data Only	
k hat (MLE)	1.255	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.194	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	5.021	nu star (bias corrected)	N/A
Mean (detects)	0.243		
		meters using KM Estimates	
Mean (KM)	0.0446	SD (KM)	0.123
Variance (KM)	0.0151	SE of Mean (KM)	0.0524
k hat (KM)	0.132	k star (KM)	0.156
nu hat (KM)	2.897	nu star (KM)	3.44
theta hat (KM)	0.339	theta star (KM)	0.285
80% gamma percentile (KM)	0.0502	90% gamma percentile (KM)	0.133
95% gamma percentile (KM)	0.243	99% gamma percentile (KM)	0.561
Gamm	a Kaplan-M	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (3.44, α)	0.514	Adjusted Chi Square Value (3.44, β)	0.367
95% KM Approximate Gamma UCL	0.299	95% KM Adjusted Gamma UCL	0.418
Lognormal GO	F Test on D	etected Observations Only	
	-	Derform GOF Test Using Imputed Non-Detects	
Mean in Original Scale	0.0443	Mean in Log Scale	-8.877
SD in Original Scale	0.129	SD in Log Scale	3.842
95% t UCL (assumes normality of ROS data)	0.115	95% Percentile Bootstrap UCL	0.117
95% BCA Bootstrap UCL	0.162	95% Bootstrap t UCL	38.36
95% H-UCL (Log ROS)	22637		
Statistics using KM estimates of	n Logged D	bata and Assuming Lognormal Distribution	
KM Mean (logged)	-6.541	KM Geo Mean	0.00144
KM SD (logged)	2.248	95% Critical H Value (KM-Log)	5.724
KM Standard Error of Mean (logged)	0.958	95% H-UCL (KM -Log)	1.055
KM SD (logged)	2.248	95% Critical H Value (KM-Log)	5.724
KM Standard Error of Mean (logged)	0.958		
		tatistics	
DL/2 Normal	5520	DL/2 Log-Transformed	
Mean in Original Scale	0.0448	Mean in Log Scale	-6.207
SD in Original Scale	0.129	SD in Log Scale	2.227
95% t UCL (Assumes normality)	0.115	95% H-Stat UCL	1.309
	thod, provid	led for comparisons and historical reasons	
		tion Free UCL Statistics Discernible Distribution	
	Suggested	UCL to Use	

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner.

Please verify the data were collected from random locations.

If the data were collected using judgmental or other non-random methods,

then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

C (soil | nickel | 7440-02-0)

General Statistics				
Total Number of Observations	20	Number of Distinct Observations	17	
		Number of Missing Observations	0	
Minimum	8.467	Mean	48.92	
Maximum	730	Median	13.16	
SD	160.3	Std. Error of Mean	35.85	
Coefficient of Variation	3.278	Skewness	4.469	

	Normal C	GOF Test
Shapiro Wilk Test Statistic	0.253	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.868	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.517	Lilliefors GOF Test
1% Lilliefors Critical Value	0.223	Data Not Normal at 1% Significance Level
Data Not	Normal at 1	% Significance Level

As	suming Nori	nal Distribution
95% Normal UCL		95% UCLs (Adjusted for Skewness)
95% Student's-t UCL	110.9	95% Adjusted-CLT UCL (Chen-1995) 146.2
		95% Modified-t UCL (Johnson-1978) 116.9

Gamma GOF Test		
A-D Test Statistic	5.832	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.798	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.469	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.204	Data Not Gamma Distributed at 5% Significance Level
Data Not Gamm	a Distributed at	5% Significance Level

	Gamma	Statistics	
k hat (MLE)	0.545	k star (bias corrected MLE)	0.497
Theta hat (MLE)	89.72	Theta star (bias corrected MLE)	98.47
nu hat (MLE)	21.81	nu star (bias corrected)	19.87
MLE Mean (bias corrected)	48.92	MLE Sd (bias corrected)	69.41
I		Approximate Chi Square Value (0.05)	10.76
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	10.23

Assuming Gamma Distribution

95% Approximate Gamma UCL	90.38	95% Adjusted Gamma UCL	95.0
	Lognormal GOF	Test	
Shapiro Wilk Test Statistic	0.479	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.311	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not Lo	gnormal at 10% S	ignificance Level	
	Lognormal Stati	stics	
Minimum of Logged Data	2.136	Mean of logged Data	2.74
Maximum of Logged Data	6.593	SD of logged Data	0.94
	0.000		0.0
Assu	ming Lognormal [
95% H-UCL	41.83	90% Chebyshev (MVUE) UCL	39.7
95% Chebyshev (MVUE) UCL	47.21	97.5% Chebyshev (MVUE) UCL	57.5
99% Chebyshev (MVUE) UCL	77.73		
Nonparame	tric Distribution Fr	ee UCL Statistics	
-	ot follow a Discern		
Nonpar 95% CLT UCL	ametric Distributio	n Free UCLs 95% BCA Bootstrap UCL	157
95% Standard Bootstrap UCL	107.9	95% Bootstrap UCL	2196
95% Hall's Bootstrap UCL	914.5	95% Bootstrap-t OCL 95% Percentile Bootstrap UCL	120.5
90% Chebyshev(Mean, Sd) UCL	156.5	95% Chebyshev(Mean, Sd) UCL	205.2
97.5% Chebyshev(Mean, Sd) UCL	272.8	99% Chebyshev(Mean, Sd) UCL	405.7
	Suggested UCL t	Jose	
95% Student's-t UCL	Suggested UCL t 110.9	Jose	
95% Student's-t UCL	110.9		
95% Student's-t UCL The calculated UCLs are based on assumption	110.9	rere collected in a random and unbiased manner.	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected	110.9 ons that the data wata were collected using judgmental	ere collected in a random and unbiased manner. from random locations. or other non-random methods,	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected	110.9 ons that the data wata were collected using judgmental	ere collected in a random and unbiased manner. from random locations.	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s	110.9 ons that the data w ata were collected using judgmental statistician to corre	ere collected in a random and unbiased manner. from random locations. or other non-random methods,	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a set Note: Suggestions regarding the selection of a 95%	110.9 ons that the data w ata were collected using judgmental statistician to corre	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs.	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	110.9 ons that the data wate collected using judgmental statistician to correct	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs.	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a second Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	110.9 ons that the data wate collected using judgmental statistician to correct	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs. d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies.	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	110.9 ons that the data wate collected using judgmental statistician to correct	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs. d to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies.	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a second Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	110.9 ons that the data wate collected using judgmental statistician to correct	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs. If to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statisticia	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a second Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	110.9 Ins that the data wata were collected using judgmental statistician to correct UCL are provide data distribution, orld data sets; for	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs. If to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statisticia	
95% Student's-t UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a set Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W I nitrobenzene 98-95-3)	110.9 Ins that the data wata were collected using judgmental statistician to correct UCL are provide data distribution, orld data sets; for General Statist	ere collected in a random and unbiased manner. from random locations. or other non-random methods, ctly calculate UCLs. If to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statisticia	an.

The Project Team may decide to use alternative site	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C	(soil nitro	obenzene 98-95-3) was not processed!	
C (soil n-nitrosodimethylamine 62-75-9)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects	(NDs), the	erefore all statistics and estimates should also be NDs!	
	<u> </u>	stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	n-nitroso	dimethylamine 62-75-9) was not processed!	
C (soil n-nitroso-di-n-propylamine 621-64-7)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
•	· ·	erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for veriable C (seil L	nitropo di	-n-propylamine 621-64-7) was not processed!	
	-nitroso-ai	-n-propylamine 621-64-7) was not processed!	
C (soil n-nitrosodiphenylamine 86-30-6)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
Warning: All observations are Non Detects		erefore all statistics and estimates should also be NDs!	
-		stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil	n-nitroso	diphenylamine 86-30-6) was not processed!	
C (soil n-propylbenzene 103-65-1)			

	General Sta	tistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	2	Number of Non-Detects	9
Number of Distinct Detects	2	Number of Distinct Non-Detects	6
Minimum Detect	0.13	Minimum Non-Detect	3.8333E-4
Maximum Detect	0.7	Maximum Non-Detect	0.0019
Variance Detects	0.162	Percent Non-Detects	81.82%
Mean Detects	0.415	SD Detects	0.403
Median Detects	0.415	CV Detects	0.971
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.198	SD of Logged Detects	1.19
_		/ 2 Detected Values. or reliable statistics and estimates.	
Norma	al GOF Test or	n Detects Only	
Not Eno	ugh Data to Pe	erform GOF Test	
Kaplan-Meier (KM) Statistics using	Normal Critica	al Values and other Nonparametric UCLs	
KM Mean	0.0758	KM Standard Error of Mean	0.0856
90KM SD	0.201	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.231	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.217	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.333	95% KM Chebyshev UCL	0.449
97.5% KM Chebyshev UCL	0.611	99% KM Chebyshev UCL	0.928
		ted Observations Only	
Not Eno	ugh Data to Pe	erform GOF Test	
Gamma	Statistics on De	etected Data Only	
k hat (MLE)	1.715	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.242	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	6.861	nu star (bias corrected)	N/A
Mean (detects)	0.415		
Estimates of Ga	mma Paramet	ers using KM Estimates	
Mean (KM)	0.0758	SD (KM)	0.201
Variance (KM)	0.0403	SE of Mean (KM)	0.0856
k hat (KM)	0.142	k star (KM)	0.164
nu hat (KM)	3.131	nu star (KM)	3.61
theta hat (KM)	0.532	theta star (KM)	0.462
80% gamma percentile (KM)	0.0884	90% gamma percentile (KM)	0.227
95% gamma percentile (KM)	0.409	99% gamma percentile (KM)	0.929
Gamma	a Kaplan-Meier	r (KM) Statistics	
		Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (3.61, α)	0.574	Adjusted Chi Square Value (3.61, β)	0.413
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	0.662

		etected Observations Only	
Not Enc	ough Data to	Perform GOF Test	
L ognormal POS	Statiation II	sing Imputed Non-Detects	
Mean in Original Scale	0.0759	Mean in Log Scale	-6.991
SD in Original Scale	0.211	SD in Log Scale	3.173
95% t UCL (assumes normality of ROS data)	0.191	95% Percentile Bootstrap UCL	0.192
95% BCA Bootstrap UCL	0.267	95% Bootstrap t UCL	20.64
95% H-UCL (Log ROS)	389.3		
		ata and Assuming Lognormal Distribution	0.0010
KM Mean (logged)	-6.654	KM Geo Mean	0.0012
KM SD (logged)	2.597	95% Critical H Value (KM-Log)	6.538
KM Standard Error of Mean (logged)	1.107	95% H-UCL (KM -Log)	8.058
KM SD (logged)	2.597	95% Critical H Value (KM-Log)	6.538
KM Standard Error of Mean (logged)	1.107		
	DL/2 St		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0761	Mean in Log Scale	-6.112
SD in Original Scale	0.211	SD in Log Scale	2.501
95% t UCL (Assumes normality)	0.191	95% H-Stat UCL	7.437
DL/2 is not a recommended me	tnoa, proviae	ed for comparisons and historical reasons	
Nagara			
		on Free UCL Statistics	
		on Free UCL Statistics scemible Distribution	
Data do no	ot follow a Di	scemible Distribution	
Data do no	ot follow a Di Suggested l	scemible Distribution	
Data do no	ot follow a Di	scemible Distribution	
Data do no 95% KM (t) UCL	Suggested I	scemible Distribution JCL to Use	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95%	Suggested U 0.231	scemible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested L 0.231 0 UCL are pro data distribu	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies.	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested L 0.231 0 UCL are pro data distribu	scemible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested L 0.231 0 UCL are pro data distribu	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies.	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested L 0.231 0 UCL are pro data distribu	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies.	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested L 0.231 0 UCL are pro data distribu	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statisticia	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	ot follow a Di Suggested U 0.231 6 UCL are pro data distribu 'orld data set	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statisticia	
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3)	Suggested U 0.231 0 UCL are pro data distribu forld data set General S	Statistics	an.
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3) Total Number of Observations	Suggested U 0.231 0 UCL are pro data distribu forld data set General S 6	Statistics Number of District Observations	an. 6
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3) Total Number of Observations Number of Detects Number of Distinct Detects	Suggested U 0.231 0 UCL are pro data distribut forld data set 6 0 0 0	Statistics Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects	an. 6 6
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	Suggested U 0.231 0 UCL are pro data distribu forld data set 6 0 0 0 (NDs), there	Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects	an. 6 6
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	Suggested U 0.231 0 UCL are pro- data distribution forld data set 6 0 0 0 (NDs), there other statisti	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs! cs are also NDs lying below the largest detection limit!	an. 6 6
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	Suggested U 0.231 0 UCL are pro- data distribution forld data set 6 0 0 0 (NDs), there other statisti	Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects	an. 6 6
Data do no 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W soil pcbs (total) 1336-36-3) Total Number of Observations Number of Detects Number of Distinct Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	Suggested U 0.231 0 UCL are pro- data distribu orld data set 6 0 0 0 (NDs), there other statisti a specific val	scernible Distribution JCL to Use ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statisticia Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs! cs are also NDs lying below the largest detection limit!	an. 6 6

oil p-cymene 99-87-6)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	2	Number of Non-Detects	9
Number of Distinct Detects	2	Number of Distinct Non-Detects	6
Minimum Detect	0.057	Minimum Non-Detect	4.5667E
Maximum Detect	0.3	Maximum Non-Detect	0.001
Variance Detects	0.0295	Percent Non-Detects	81.82
Mean Detects	0.179	SD Detects	0.17
Median Detects	0.179	CV Detects	0.96
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-2.034	SD of Logged Detects	1.17
		only 2 Detected Values. ful or reliable statistics and estimates.	
		t on Detects Only Perform GOF Test	
Kaplan-Meier (KM) Statistics usin	a Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.0328	KM Standard Error of Mean	0.03
90KM SD	0.086	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.0993	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.0932	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.143	95% KM Chebyshev UCL	0.19
97.5% KM Chebyshev UCL	0.262	99% KM Chebyshev UCL	0.3
		etected Observations Only Perform GOF Test	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	1.755	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.102	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	7.02	nu star (bias corrected)	N/A
Mean (detects)	0.179		
Estimates of Ga	amma Parar	neters using KM Estimates	
Mean (KM)	0.0328	SD (KM)	0.08
Variance (KM)	0.0074	SE of Mean (KM)	0.03
k hat (KM)	0.146	k star (KM)	0.10
nu hat (KM)	3.204	nu star (KM)	3.66
theta hat (KM)	0.225	theta star (KM)	0.19
80% gamma percentile (KM)	0.0387	90% gamma percentile (KM)	0.09
95% gamma percentile (KM)	0.177	99% gamma percentile (KM)	0.3
Gamm	a Kaplan-M	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.02

Approximate Chi Square Value (3.66, α)	0.593	Adjusted Chi Square Value (3.66, β)	0.428
95% KM Approximate Gamma UCL	0.203	95% KM Adjusted Gamma UCL	0.28
	E Toot on D	etected Observations Only	
		Perform GOF Test	
Lognormal ROS	S Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	0.0327	Mean in Log Scale	-7.748
SD in Original Scale	0.0903	SD in Log Scale	3.13
95% t UCL (assumes normality of ROS data)	0.082	95% Percentile Bootstrap UCL	0.082
95% BCA Bootstrap UCL	0.114	95% Bootstrap t UCL	8.24
95% H-UCL (Log ROS)	129.5		
Statistics using KM estimates of	on Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	0.001
KM SD (logged)		95% Critical H Value (KM-Log)	5.63
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	0.75
KM SD (logged)		95% Critical H Value (KM-Log)	5.63
KM Standard Error of Mean (logged)			
		tatistics	
DL/2 Normal	0020	DL/2 Log-Transformed	
Mean in Original Scale	0.0331	Mean in Log Scale	-6.248
SD in Original Scale		SD in Log Scale	2.15
95% t UCL (Assumes normality)		95% H-Stat UCL	0.84
DL/2 is not a recommended me	ethod, provid	ed for comparisons and historical reasons	
Nonparame	tric Distribut	ion Free LICL Statistics	
•		ion Free UCL Statistics iscernible Distribution	
•	ot follow a D	iscernible Distribution	
Data do n	ot follow a D Suggested		
•	ot follow a D Suggested	iscernible Distribution	
Data do n 95% KM (t) UCL	ot follow a D Suggested 0.0993	iscernible Distribution	
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95%	ot follow a D Suggested 0.0993 6 UCL are pr	iscernible Distribution UCL to Use	
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	ot follow a D Suggested 0.0993 6 UCL are pr	iscernible Distribution UCL to Use rovided to help the user to select the most appropriate 95% UCL.	
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	ot follow a D Suggested 0.0993 6 UCL are pr	iscernible Distribution UCL to Use rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	ot follow a D Suggested 0.0993 6 UCL are pr data distrib Vorld data se	iscernible Distribution UCL to Use rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pentachloronitrobenzene 82-68-8)	ot follow a D Suggested 0.0993 6 UCL are pr data distrib Vorld data se General	iscernible Distribution UCL to Use Fovided to help the user to select the most appropriate 95% UCL. Ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia Statistics	n.
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pentachloronitrobenzene 82-68-8) Total Number of Observations	ot follow a D Suggested 0.0993 6 UCL are pr data distrib Vorld data se General 20	iscernible Distribution UCL to Use rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	n. 15
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pentachloronitrobenzene 82-68-8) Total Number of Observations Number of Detects	ot follow a D Suggested 0.0993 6 UCL are pr d, data distrib Vorld data se General 20 0	iscernible Distribution UCL to Use Fovided to help the user to select the most appropriate 95% UCL. Ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects	n. 15 20
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pentachloronitrobenzene 82-68-8) Total Number of Observations	ot follow a D Suggested 0.0993 6 UCL are pr d, data distrib Vorld data se General 20 0	iscernible Distribution UCL to Use rovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	n. 15
Data do n 95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pentachloronitrobenzene 82-68-8) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	ot follow a D Suggested 0.0993 6 UCL are pr , data distrib Vorld data se 20 0 0 0 c (NDs), there	iscernible Distribution UCL to Use Fovided to help the user to select the most appropriate 95% UCL. Ution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects	n. 15 20

(soil pentachlorophenol 87-86-5)			
	General S	statistics	
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	15
		1	
-		fore all statistics and estimates should also be NDs!	
· · · · · · · · ·		cs are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific valu	ues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	oil pentachlo	rophenol 87-86-5) was not processed!	
(soil phenanthrene 85-01-8)			
(
	General S	itatistics	
Total Number of Observations	20	Number of Distinct Observations	20
Number of Detects	14	Number of Non-Detects	6
Number of Distinct Detects	14	Number of Distinct Non-Detects	6
Minimum Detect	0.067	Minimum Non-Detect	0.19
Maximum Detect	7	Maximum Non-Detect	0.22
Variance Detects	4.828	Percent Non-Detects	30%
Mean Detects	1.319	SD Detects	2.19
Median Detects	0.202	CV Detects	1.66
Skewness Detects	1.917	Kurtosis Detects	2.84
Mean of Logged Detects	-1.071	SD of Logged Detects	1.69
Norm	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.648	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.825	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.348	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.263	Detected Data Not Normal at 1% Significance Level	
Detected Data	Not Normal	at 1% Significance Level	
	-	ical Values and other Nonparametric UCLs	
KM Mean	0.951	KM Standard Error of Mean	0.4
90KM SD	1.859	95% KM (BCA) UCL	1.7
95% KM (t) UCL	1.697	95% KM (Percentile Bootstrap) UCL	1.6
95% KM (z) UCL	1.66	95% KM Bootstrap t UCL	2.7
90% KM Chebyshev UCL	2.245	95% KM Chebyshev UCL	2.8
97.5% KM Chebyshev UCL	3.644	99% KM Chebyshev UCL	5.2
Gamma GOF	Tests on Det	ected Observations Only	
A-D Test Statistic	1.238	Anderson-Darling GOF Test	
	0.798	Detected Data Not Gamma Distributed at 5% Significance	<u>0</u> \/ <u>0</u>
5% A-D Critical Value			

5% K-S Critical Value	0.242	Detected Data Not Gamma Distributed at 5% Significance	
		ibuted at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
	0.475	k star (bias corrected MLE)	0.421
k hat (MLE)			3.133
Theta hat (MLE)	2.776	Theta star (bias corrected MLE)	
nu hat (MLE)	13.3	nu star (bias corrected)	11.79
Mean (detects)	1.319		
Commo DOD	Otatiatian	ing Jernuted New Detecto	
		sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs	
		is <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		-	
		en the sample size is small.	
	0.01	ay be computed using gamma distribution on KM estimates	0.000
Minimum		Mean	0.926
Maximum	7	Median	0.091
SD	1.919	CV	2.072 0.314
k hat (MLE)	0.33	k star (bias corrected MLE)	
Theta hat (MLE)	2.803	Theta star (bias corrected MLE)	2.948
nu hat (MLE)	13.22	nu star (bias corrected)	12.57
Adjusted Level of Significance (β)	0.038		- 000
Approximate Chi Square Value (12.57, α)	5.602	Adjusted Chi Square Value (12.57, β)	5.238
95% Gamma Approximate UCL	2.077	95% Gamma Adjusted UCL	2.222
	-		
		neters using KM Estimates	4 050
Mean (KM)	0.951	SD (KM)	1.859
Variance (KM)	3.454	SE of Mean (KM)	0.431
k hat (KM)	0.262	k star (KM)	0.256
nu hat (KM)	10.47	nu star (KM)	10.23
theta hat (KM)	3.634	theta star (KM)	3.718
80% gamma percentile (KM)	1.392	90% gamma percentile (KM)	2.849
95% gamma percentile (KM)	4.571	99% gamma percentile (KM)	9.14
0	- 16 14		
	-	eier (KM) Statistics	0 700
Approximate Chi Square Value (10.23, α)	4.086	Adjusted Chi Square Value (10.23, β)	3.783
95% KM Approximate Gamma UCL	2.38	95% KM Adjusted Gamma UCL	2.571
Lognormal OO	E Test on D	etected Observations Only	
Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.85	Shapiro Wilk GOF Test Detected Data Not Lognormal at 10% Significance Lev	
Lilliefors Test Statistic	0.895	Lilliefors GOF Test	vei
10% Lilliefors Critical Value	0.195	Detected Data appear Lognormal at 10% Significance L	ovol
			evel
	proximate L	ognormal at 10% Significance Level	
	Ctotiotics !	Ising Imputed Non Detecto	
		Jsing Imputed Non-Detects	1 405
Mean in Original Scale	0.955	Mean in Log Scale	-1.425
SD in Original Scale	1.905	SD in Log Scale	1.505
95% t UCL (assumes normality of ROS data)	1.691	95% Percentile Bootstrap UCL	1.692

	•	Sootstrap t UCL 2		
DS) 2.447	H-UCL (Log ROS) 2.44			
es on Logged Data and Assuming Lognormal Distribution				
	(88)			
	(88)	· •		
		/alue (KM-Log) 3		
ed) 0.353	or of Mean (logged) 0.353			
DL/2 Statistics	DL/			
DL/2 Log-Transformed	al	d		
ale 0.954 Mean in Log Scale -1	an in Original Scale 0.954	an in Log Scale -1.		
ale 1.905 SD in Log Scale 1	D in Original Scale 1.90	D in Log Scale 1		
ity) 1.691 95% H-Stat UCL 2	Assumes normality) 1.69	5% H-Stat UCL 2		
method, provided for comparisons and historical reasons	a recommended method, pro	I		
ametric Distribution Free UCL Statistics	•			
oximate Lognormal Distributed at 10% Significance Level	ata appear Approximate Log			
Suggested UCL to Use				
CL 1.697	KM (t) UCL 1.69			
nptions that the data were collected in a random and unbiased manner.	· · · · · · · · · · · · · · · · · · ·	nanner.		
e data were collected from random locations.	-			
ted using judgmental or other non-random methods,				
t a statistician to correctly calculate UCLs.	then contact a statisticia			
95% UCL are provided to help the user to select the most appropriate 95% UCL.				
size, data distribution, and skewness using results from simulation studies.				
al World data sets; for additional insight the user may want to consult a statistician.	not cover all Real World data	nsult a statistician.		
General Statistics	Gene			
Ons 20 Number of Distinct Observations 1	per of Observations 20	t Observations 1		
cts 0 Number of Non-Detects 2	Number of Detects 0	of Non-Detects 20		
cts 0 Number of Distinct Non-Detects 1	of Distinct Detects 0	ct Non-Detects 1		
ote (NDe), therefore all statistics and astimates should also be NDel	no oro Non Dotocto (NDc) -t	NDel		
		, EFC, BTV).		
ble C (soil I phenol I 108-05-2) was not processed	data sat for variable C (asi)			
שופיט (Sour huerior אפג ווסג hocessed:	uata set for variable C (SOII			

Total Number of Observations	20	Number of Distinct Observations	16
	20 9	Number of Distinct Observations Number of Non-Detects	16 11
Number of Detects	9 8		8
Number of Distinct Detects		Number of Distinct Non-Detects	-
Minimum Detect	0.0885	Minimum Non-Detect	0.192
Maximum Detect	2.9	Maximum Non-Detect	0.22
Variance Detects	1.389	Percent Non-Detects	55%
Mean Detects	0.999	SD Detects	1.179
Median Detects	0.19	CV Detects	1.18
Skewness Detects	1.041	Kurtosis Detects	-0.556
Mean of Logged Detects	-0.837	SD of Logged Detects	1.45
Norm		t on Detects Only	
Shapiro Wilk Test Statistic	0.756	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.764	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.309	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.309	Detected Data appear Normal at 1% Significance Leve	
		e Normal at 1% Significance Level	
		liable for small sample sizes	
Note GOF lesis i	nay be unre		
Kanlan-Meier (KM) Statistics usin	n Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.525	KM Standard Error of Mean	0.204
90KM SD	0.323	95% KM (BCA) UCL	0.204
95% KM (t) UCL	0.878	95% KM (Percentile Bootstrap) UCL	0.873
95% KM (t) UCL	0.878	95% KM (Percentile Bootstrap) OCL 95% KM Bootstrap t UCL	1.224
90% KM Chebyshev UCL	1.138	95% KM Boolstrap i OCL 95% KM Chebyshev UCL	1.224
97.5% KM Chebyshev UCL	1.801	99% KM Chebyshev UCL	2.558
	1.001		2.000
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.774	Anderson-Darling GOF Test	
5% A-D Critical Value	0.754	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.308	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.29	Detected Data Not Gamma Distributed at 5% Significance	Level
Detected Data Not C	amma Distr	ibuted at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.721	k star (bias corrected MLE)	0.554
Theta hat (MLE)	1.386	Theta star (bias corrected MLE)	1.801
nu hat (MLE)	12.97	nu star (bias corrected)	9.979
Mean (detects)	0.999		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	is <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is especi	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.516
Maximum	2.9	Median	0.125
SD	0.891	CV	1.725
50	5.001		1.72

) 0.516) 1.001) 20.64	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	1.094
) 20.64		
		18.88
) 0.038		
) 10.03	Adjusted Chi Square Value (18.88, β)	9.52
0.972	95% Gamma Adjusted UCL	1.024
amma Parar	neters using KM Estimates	
) 0.525	SD (KM)	0.86
) 0.74	SE of Mean (KM)	0.204
) 0.373	k star (KM)	0.35
) 14.91	nu star (KM)	14.01
) 1.409	theta star (KM)	1.5
) 0.832	90% gamma percentile (KM)	1.516
) 2.283	99% gamma percentile (KM)	4.24
-		
	Adjusted Chi Square Value (14.01, β)	6.176
_ 1.119	95% KM Adjusted Gamma UCL	1.191
	-	
		/el
		/el
Not Lognorm	al at 10% Significance Level	
S Statistics I	Ising Imputed Non Detects	
		-1.372
		1.1
		0.882
·	· · · · ·	1.257
		1.207
) 0.000		
on Logged D	ata and Assuming Lognormal Distribution	
		0.226
,		2.794
		0.85
		2.794
<u>' </u>		
DL/2 S	tatistics	
	DL/2 Log-Transformed	
e 0.505	Mean in Log Scale	-1.637
e 0.892	SD in Log Scale	1.199
	95% H-Stat UCL	0.895
,		
	•	
etric Distribut	tion Free UCL Statistics	
	Gamma Parai 0 0.525 0 0.74 0 0.373 1 0.373 1 14.91 1 14.91 1 1.409 1 1.409 1 2.283 ma Kaplan-M 1 6.576 1 1.119 OF Test on D c 0.838 e 0.859 c 0.271 e 0.252 Not Lognorm OS Statistics I e 0.874 a) 0.884 L 0.957 b) 0.1487 a) 0.276 b) -1.487 a) 0.276 b) 1.108 a) 0.276 b) 0.10276 c) 0.892 c) 0.892 c) 0.85	Comma Parameters using KM Estimates 0 0.525 SD (KM) 0 0.74 SE of Mean (KM) 0 0.373 k star (KM) 0 14.91 nu star (KM) 0 14.91 nu star (KM) 0 1.409 theta star (KM) 0 0.832 90% gamma percentile (KM) 0 2.283 99% gamma percentile (KM) 0 2.283 99% gamma percentile (KM) 1.119 95% KM Adjusted Gamma UCL OF Test on Detected Observations Only c 0.838 Shapiro Wilk GOF Test e 0.859 Detected Data Not Lognormal at 10% Significance Level Not Lognormal at 10% Significance Level Not Lognormal at 10% Significance Level OS Statistics Using Imputed Non-Detects e 0.546 Mean in Log Scale a) 0.884 95% Percentile Bootstrap UCL b) 0.938 0 Con Logged Data and Assuming Lognormal Distribution b) 1.108 <td< td=""></td<>

Detected Data appear Approx			
	Suggested UCL to Us	e	
95% KM (t) UCL	0.878		
The calculated UCLs are based on assumption			
If the data were collected	ata were collected from		
	statistician to correctly		
		assing only one of the GOF tests,	
it is suggested to use a UCL bas	ed upon a distribution	passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%	UCL are provided to I	nelp the user to select the most appropriate 95% UCL	
Recommendations are based upon data size,	data distribution, and	skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data sets; for addi	tional insight the user may want to consult a statisticia	an.
(soil pyridine 110-86-1)			
	General Statistics		
Total Number of Observations	20	Number of Distinct Observations	15
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects		Number of Distinct Non-Detects	15
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	other statistics are also	atistics and estimates should also be NDs! o NDs lying below the largest detection limit!	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	(NDs), therefore all sta other statistics are also e specific values to esti	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	(NDs), therefore all sta other statistics are also e specific values to esti	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable of	(NDs), therefore all sta other statistics are also e specific values to esti	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable of	(NDs), therefore all sta other statistics are also e specific values to esti C (soil pyridine 110-	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV).	8
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8)	(NDs), therefore all sta other statistics are also a specific values to esti C (soil pyridine 110-	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV). 86-1) was not processed!	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects	(NDs), therefore all statistics are also other statistics are also a specific values to esting the specific values to esting t	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! imate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	8 9 6
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	(NDs), therefore all states other statistics are also a specific values to esting C (soil pyridine 110- General Statistics 11 2 2 0.041	atistics and estimates should also be NDs! o NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect S	8 9 6 2.6333E-
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	(NDs), therefore all statistics are also other statistics are also a specific values to esting the specific values to esting t	atistics and estimates should also be NDs! p NDs lying below the largest detection limit! imate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect S Maximum Non-Detect	8 9 6 9.6333E- 0.0019
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) (soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	(NDs), therefore all sta other statistics are also e specific values to esti C (soil pyridine 110- General Statistics 11 2 2 0.041 0.19 0.0111	atistics and estimates should also be NDs! b NDs lying below the largest detection limit! imate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect S Maximum Non-Detect Percent Non-Detects	8 9 6 9.6333E- 0.0019 81.829
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects	(NDs), therefore all statistics are also other statistics are also especific values to esting the specific values to esting th	atistics and estimates should also be NDs! p NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects	8 9 6 0.6333E- 0.0019 81.829 0.105
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) (soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	(NDs), therefore all sta other statistics are also e specific values to esti C (soil pyridine 110- General Statistics 11 2 2 0.041 0.19 0.0111	atistics and estimates should also be NDs! b NDs lying below the largest detection limit! imate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect S Maximum Non-Detect Percent Non-Detects	8 9 6 0.6333E 0.0019 81.829 0.105
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable of (soil sec-butylbenzene 135-98-8) (soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	(NDs), therefore all statistics are also other statistics are also as specific values to esting the specific values to esting	atistics and estimates should also be NDs! D NDs lying below the largest detection limit! mate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1) was not processed! Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detects Maximum Non-Detects SD Detects CV Detects	8 9 6 0.6333E- 0.0019 81.829 0.105 0.912 N/A
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	(NDs), therefore all statistics are also other statistics are also especific values to esting the specific values to estinget to esting the specific values	Atistics and estimates should also be NDs! D NDs lying below the largest detection limit! Imate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1)	8 9 6 9.6333E-4 0.0019 81.829 0.105 0.912
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable ((soil sec-butylbenzene 135-98-8) (soil sec-butylbenzene 135-98-8) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects	(NDs), therefore all statistics are also other statistics are also especific values to esting the specific values to estinget to esting the specific values	atistics and estimates should also be NDs! D NDs lying below the largest detection limit! imate environmental parameters (e.g., EPC, BTV). 86-1) was not processed! 86-1)	8 9 6 0.6333E- 0.0019 81.829 0.105 0.912 N/A

Norma	al GOF Tes	t on Detects Only	
Not Eno	ugh Data to	Perform GOF Test	
Kaplan-Meier (KM) Statistics using	Normal Cr	itical Values and other Nonparametric UCLs	
KM Mean	0.0218	KM Standard Error of Mean	0.0232
90KM SD	0.0544	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.0638	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.06	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.0914	95% KM Chebyshev UCL	0.123
97.5% KM Chebyshev UCL	0.167	99% KM Chebyshev UCL	0.253
Gamma GOF	Tests on De	tected Observations Only	
		Perform GOF Test	
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	2.01	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.0575	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	8.039	nu star (bias corrected)	N/A
Mean (detects)	0.116		
Estimates of Ga	mma Parar	neters using KM Estimates	
Mean (KM)	0.0218	SD (KM)	0.0544
Variance (KM)	0.00296	SE of Mean (KM)	0.0232
k hat (KM)	0.16	k star (KM)	0.177
nu hat (KM)	3.528	nu star (KM)	3.899
theta hat (KM)	0.136	theta star (KM)	0.123
80% gamma percentile (KM)	0.0268	90% gamma percentile (KM)	0.0657
95% gamma percentile (KM)	0.116	99% gamma percentile (KM)	0.256
Gamma	a Kaplan-Me	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (3.90, α)	0.682	Adjusted Chi Square Value (3.90, β)	0.498
95% KM Approximate Gamma UCL	0.125	95% KM Adjusted Gamma UCL	0.171
Lognormal GOF	Test on De	etected Observations Only	
Not Eno	ugh Data to	Perform GOF Test	
	• • • • •		
_		Jsing Imputed Non-Detects	7 700
Mean in Original Scale	0.0212	Mean in Log Scale	-7.703
SD in Original Scale	0.0573	SD in Log Scale	2.89
95% t UCL (assumes normality of ROS data)	0.0525	95% Percentile Bootstrap UCL	0.0522
95% BCA Bootstrap UCL	0.073	95% Bootstrap t UCL	3.545
95% H-UCL (Log ROS)	21.71		
Statistics using KM estimates o	n Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-6.124	KM Geo Mean	0.00219
KM SD (logged)	1.773	95% Critical H Value (KM-Log)	4.638
KM Standard Error of Mean (logged)	0.756	95% H-UCL (KM -Log)	0.142
KM SD (logged)	1.773	95% Critical H Value (KM-Log)	4.638

KM Standard Error of Mean (logged)	0.756		
	DL/2 S		
DL/2 Normal	0.0017	DL/2 Log-Transformed	0.050
Mean in Original Scale	0.0217	Mean in Log Scale	-6.252
SD in Original Scale	0.0571	SD in Log Scale	1.931
95% t UCL (Assumes normality)	0.0529	95% H-Stat UCL	0.262
DL/2 is not a recommended men	inoa, provia	ed for comparisons and historical reasons	
Nonparamet	tric Distribut	ion Free UCL Statistics	
		iscernible Distribution	
	Suggested	UCL to Use	
95% KM (t) UCL	0.0638		
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size,	data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticia	an.
C (soil selenium 7782-49-2)			
		Statistics	
Total Number of Observations	20	Number of Distinct Observations	14
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	14
		efore all statistics and estimates should also be NDs!	
		ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data and forwardship O	(
I ne data set for variable C	(soli seler	ium 7782-49-2) was not processed!	
C (soil silver 7440-22-4)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	14
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	14
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable	C (soil silv	er 7440-22-4) was not processed!	
C (soil styrene 100-42-5)			

	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
	(1.10)		
	<u> </u>	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit	
	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable	C (soil sty	rene 100-42-5) was not processed!	
C (soil t-amyl methyl ether 994-05-8)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
-		efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (so	il tamul me	ethyl ether 994-05-8) was not processed!	
	in preamy me		
C (soil tert-butyl alcohol 75-65-0)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
-	1	refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific va	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (e	oil I tert-but	yl alcohol 75-65-0) was not processed!	
C (soil tert-butylbenzene 98-06-6)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	11
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	tics are also NDs lying below the largest detection limit!	

The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (s	oil tert-buty	vlbenzene 98-06-6) was not processed!	
C (soil tetrachloroethene 127-18-4)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs) then	efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
		lues to estimate environmental parameters (e.g., EPC, BTV).	
	e specific va		
The data set for variable C (so	oil tetrachlo	roethene 127-18-4) was not processed!	
``````````````````````````````````````	•		
C (soil   tetrahydrofuran   109-99-9)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
_		efore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
		drofuran   109-99-9) was not processed!	
		aroturan   109-99-9) was not processed!	
C (soil   thallium   7440-28-0)			
	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	17
Number of Detects	3	Number of Non-Detects	17
Number of Distinct Detects	3	Number of Distinct Non-Detects	14
Minimum Detect	1.35	Minimum Non-Detect	0.877
Maximum Detect	1.45	Maximum Non-Detect	2.5
Variance Detects	0.0025	Percent Non-Detects	85%
Mean Detects	1.4	SD Detects	0.05
Median Detects		CV Detects	0.0357
Skewness Detects		Kurtosis Detects	N/A
Mean of Logged Detects	0.336	SD of Logged Detects	0.0357
Marian D	ata est has	only 3 Detected Values.	
_		ful or reliable statistics and estimates.	
i his is not enough to comp	ure meaning	Jui or reliable statistics and estimates.	

Norm	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	1	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.753	Detected Data appear Normal at 1% Significance Levent	/el
Lilliefors Test Statistic	0.175	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.429	Detected Data appear Normal at 1% Significance Levent	vel
Detected Data a	ppear Norma	al at 1% Significance Level	
Note GOF tests n	nay be unreli	able for small sample sizes	
Kaplan-Meier (KM) Statistics using	normal Crit	ical Values and other Nonparametric UCLs	
KM Mean	1.051	KM Standard Error of Mean	0.101
90KM SD	0.248	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.226	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.218	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.355	95% KM Chebyshev UCL	1.492
97.5% KM Chebyshev UCL	1.683	99% KM Chebyshev UCL	2.058
	1.000		2.000
Gamma GOF	Tests on Det	ected Observations Only	
A-D Test Statistic	0.246	Anderson-Darling GOF Test	
5% A-D Critical Value	0.635	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.224	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.431	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected Data Not G	amma Distril	outed at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	1175	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00119	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	7052	nu star (bias corrected)	N/A
Mean (detects)	1.4		
Gamma ROS	Statistics usi	ng Imputed Non-Detects	
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is a	small such as	s<1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS r	method may	vield incorrect values of UCLs and BTVs	
This is especia	ally true wher	n the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs may	y be computed using gamma distribution on KM estimates	
Minimum	1.169	Mean	1.264
Maximum	1.45	Median	1.26
SD	0.0754	CV	0.0596
k hat (MLE)	306.6	k star (bias corrected MLE)	260.6
Theta hat (MLE)	0.00412	Theta star (bias corrected MLE)	0.00485
nu hat (MLE)		nu star (bias corrected)	10426
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (N/A, α)		Adjusted Chi Square Value (N/A, β)	10171
95% Gamma Approximate UCL	1.293	95% Gamma Adjusted UCL	N/A
Estimates of Ga	amma Param	eters using KM Estimates	

Variance (KM)	0.0614	SE of Mean (KM)	0.101
k hat (KM)	17.99	k star (KM)	15.32
nu hat (KM)	719.6	nu star (KM)	613
theta hat (KM)	0.0584	theta star (KM)	0.0686
80% gamma percentile (KM)	1.268	90% gamma percentile (KM)	1.407
95% gamma percentile (KM)	1.528	99% gamma percentile (KM)	1.774
Gamm	a Kaplan-Me	ier (KM) Statistics	
Approximate Chi Square Value (612.96, $\alpha$ )	556.5	Adjusted Chi Square Value (612.96, $\beta$ )	552.3
95% KM Approximate Gamma UCL	1.158	95% KM Adjusted Gamma UCL	1.167
Lognormal GO	F Test on De	tected Observations Only	
Shapiro Wilk Test Statistic	1	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.789	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.176	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data app	ear Lognorm	nal at 10% Significance Level	
	_	able for small sample sizes	
	Statiation L	sing Imputed Non-Detects	
Mean in Original Scale	1.27	Mean in Log Scale	0.238
SD in Original Scale	0.0712	SD in Log Scale	0.0546
95% t UCL (assumes normality of ROS data)	1.298	95% Percentile Bootstrap UCL	1.296
95% BCA Bootstrap UCL	1.299	95% Bootstrap t UCL	1.304
95% H-UCL (Log ROS)	N/A		
Statistics using KM estimates of	n Logged Da	ata and Assuming Lognormal Distribution	
KM Mean (logged)	0.0243	KM Geo Mean	1.025
KM SD (logged)	0.221	95% Critical H Value (KM-Log)	1.799
KM Standard Error of Mean (logged)	0.0903	95% H-UCL (KM -Log)	1.15
KM SD (logged)	0.221	95% Critical H Value (KM-Log)	1.799
KM Standard Error of Mean (logged)	0.0903		
	DL/2 Sta	atietice	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.88	Mean in Log Scale	-0.205
SD in Original Scale	0.331	SD in Log Scale	0.418
95% t UCL (Assumes normality)	1.008	95% H-Stat UCL	1.072
		ed for comparisons and historical reasons	
_		on Free UCL Statistics	
Detected Data appear	Normal Dist	ributed at 1% Significance Level	
	Suggested L	JCL to Use	
95% KM (t) UCL	1.226		
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	•
	,		

	General S	Statistics	
Total Number of Observations	21	Number of Distinct Observations	17
Number of Detects	3	Number of Non-Detects	18
Number of Distinct Detects	3	Number of Distinct Non-Detects	14
Minimum Detect	4.8000E-4	Minimum Non-Detect 5.	.5667E
Maximum Detect	13	Maximum Non-Detect	0.44
Variance Detects	45.88	Percent Non-Detects	85.7
Mean Detects	5.4	SD Detects	6.77
Median Detects	3.2	CV Detects	1.25
Skewness Detects	1.307	Kurtosis Detects	N/A
Mean of Logged Detects	-1.305	SD of Logged Detects	5.53
		nly 3 Detected Values. ful or reliable statistics and estimates.	
Norm	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.921	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.753	Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.294	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.429	Detected Data appear Normal at 1% Significance Leve	el
	appear Norma	al at 1% Significance Level	
Note GOF tests r	may be unrel	iable for small sample sizes	
	-		
Kaplan-Meier (KM) Statistics using	g Normal Cri	tical Values and other Nonparametric UCLs	
KM Mean	0.772	KM Standard Error of Mean	0.75
90KM SD	2.818	95% KM (BCA) UCL	N/A
95% KM (t) UCL	2.071	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	2.011	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	3.031	95% KM Chebyshev UCL	4.05
97.5% KM Chebyshev UCL	5.475	99% KM Chebyshev UCL	8.2
Gamma GOF	Tests on Det	ected Observations Only	
A-D Test Statistic	0.397	Anderson-Darling GOF Test	
5% A-D Critical Value	0.681	Detected data appear Gamma Distributed at 5% Significance	e Leve
K-S Test Statistic	0.338	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.46	Detected data appear Gamma Distributed at 5% Significance	e Leve
		buted at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.239	k star (bias corrected MLE)	N/A
	22.58	Theta star (bias corrected MLE)	N/A
Theta hat (MLE)			N/A
Theta hat (MLE) nu hat (MLE)	1.435	nu star (bias corrected)	IN/A
	1.435 5.4	nu star (bias corrected)	

GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs				
GROS may not be used when kstar of detects is	small such a	is <1.0, especially when the sample size is small (e.g., <15-20)				
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs				
This is especi	ally true whe	en the sample size is small.				
For gamma distributed detected data, BTVs a	and UCLs ma	ay be computed using gamma distribution on KM estimates				
Minimum	4.8000E-4	Mean	0.78			
Maximum	13	Median	0.01			
SD	2.885	CV	3.699			
k hat (MLE)	0.191	k star (bias corrected MLE)	0.195			
Theta hat (MLE)	4.088	Theta star (bias corrected MLE)	3.994			
nu hat (MLE)	8.014	nu star (bias corrected)	8.202			
Adjusted Level of Significance (β)	0.0383					
Approximate Chi Square Value (8.20, α)	2.853	Adjusted Chi Square Value (8.20, β)	2.615			
95% Gamma Approximate UCL	2.243	95% Gamma Adjusted UCL	N/A			
Estimates of G	amma Parar	neters using KM Estimates				
Mean (KM)	0.772	SD (KM)	2.818			
Variance (KM)	7.939	SE of Mean (KM)	0.753			
k hat (KM)	0.075	k star (KM)	0.0961			
nu hat (KM)	3.152	nu star (KM)	4.035			
theta hat (KM)	10.29	theta star (KM)	8.035			
80% gamma percentile (KM)	0.504	90% gamma percentile (KM)	2.019			
95% gamma percentile (KM)	4.489	99% gamma percentile (KM)	12.51			
Gamm	a Kaplan-Me	eier (KM) Statistics				
Approximate Chi Square Value (4.03, α)	0.735	Adjusted Chi Square Value (4.03, β)	0.638			
95% KM Approximate Gamma UCL	4.234	95% KM Adjusted Gamma UCL	4.881			
95% KM Adjusted G	iamma UCL	(use when k<=1 and 15 < n < 50)				
Lognormal GO	F Test on De	etected Observations Only				
Shapiro Wilk Test Statistic	0.851	Shapiro Wilk GOF Test				
10% Shapiro Wilk Critical Value	0.789	Detected Data appear Lognormal at 10% Significance	Level			
Lilliefors Test Statistic	0.339	Lilliefors GOF Test				
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance	Level			
Detected Data ap	pear Lognorr	nal at 10% Significance Level				
Note GOF tests	may be unre	liable for small sample sizes				
Lognormal ROS	S Statistics L	Jsing Imputed Non-Detects				
Mean in Original Scale	0.772	Mean in Log Scale	-6.73			
SD in Original Scale	2.887	SD in Log Scale	3.143			
95% t UCL (assumes normality of ROS data)	1.859	95% Percentile Bootstrap UCL	2.01			
95% BCA Bootstrap UCL	2.781	95% Bootstrap t UCL	1684			
95% H-UCL (Log ROS)	12.73	· · ·				
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution						
KM Mean (logged)	-6.736	KM Geo Mean	0.00119			
KM SD (logged)	2.799	95% Critical H Value (KM-Log)	5.544			
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	1.915			
KM SD (logged)	2.799	95% Critical H Value (KM-Log)	5.544			
	2.100		0.044			

KM Standard Error of Mean (logged)	0.748		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.822	Mean in Log Scale	-4.289
SD in Original Scale	2.874	SD in Log Scale	3.18
95% t UCL (Assumes normality)	1.904	95% H-Stat UCL	181.4
DL/2 is not a recommended met	hod, provid	ed for comparisons and historical reasons	
Nonparamet	ric Distribut	ion Free UCL Statistics	
· · · · · · · · · · · · · · · · · · ·		tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL	2.071		
		data were collected in a random and unbiased manner.	
-		lected from random locations.	
		nental or other non-random methods,	
then contact a s	tatistician to	o correctly calculate UCLs.	
Note: Our postions repeating the colorities of $\sigma O \Gamma^{0}$			
		rovided to help the user to select the most appropriate 95% UCL. nution, and skewness using results from simulation studies.	
		ets; for additional insight the user may want to consult a statisticia	
C (soil   trans-1,2-dichloroethene   156-60-5)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and o	other statist	ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (soil   tr	ans-1,2-dic	chloroethene   156-60-5) was not processed!	
C (soil   trans-1,4-dichloro-2-butene   110-57-6)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	11
		1	
Warning: All observations are Non-Detects	(NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and o	other statist	ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	

## The data set for variable C (soil | trans-1,4-dichloro-2-butene | 110-57-6) was not processed! C (soil | trichloroethene | 79-01-6) **General Statistics** Total Number of Observations 11 Number of Distinct Observations 8 Number of Detects 0 Number of Non-Detects 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 8 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil | trichloroethene | 79-01-6) was not processed! C (soil | trichlorofluoromethane | 75-69-4) **General Statistics** Number of Distinct Observations **Total Number of Observations** 11 10 Number of Detects 0 Number of Non-Detects 11 Number of Distinct Detects 0 Number of Distinct Non-Detects 10 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (soil | trichlorofluoromethane | 75-69-4) was not processed! C (soil | vanadium | 7440-62-2) **General Statistics** Total Number of Observations 20 Number of Distinct Observations 20 Number of Missing Observations 0 Minimum 15 Mean 32.42 Maximum 110 Median 27.08 SD 20.53 Std. Error of Mean 4.59 Coefficient of Variation 0.633 Skewness 3.187 Normal GOF Test Shapiro Wilk Test Statistic 0.593 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.868 Data Not Normal at 1% Significance Level Lilliefors Test Statistic 0.365 Lilliefors GOF Test Data Not Normal at 1% Significance Level 1% Lilliefors Critical Value 0.223 Data Not Normal at 1% Significance Level

OEO/ Nama at tiot	suming Normal I		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	10.10
95% Student's-t UCL	40.36	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	43.46
		35 % Middilled-LOCE (Johnson-1978)	40.9
	Gamma GOF	Test	
A-D Test Statistic	1.884	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.745	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.309	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.195	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distributed at	5% Significance Level	
	Gamma Stat	istics	
k hat (MLE)	4.724	k star (bias corrected MLE)	4.04
Theta hat (MLE)	6.863	Theta star (bias corrected MLE)	8.00
nu hat (MLE)	188.9	nu star (bias corrected)	161.9
MLE Mean (bias corrected)	32.42	MLE Sd (bias corrected)	16.1
		Approximate Chi Square Value (0.05)	133.5
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	131.5
	uming Gamma		
95% Approximate Gamma UCL	39.32	95% Adjusted Gamma UCL	39.9
	Lognormal GC	F Test	
Shapiro Wilk Test Statistic	0.825	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.27	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data Not Lognormal at 10% Significance Level	
Data Not Lo	gnormal at 10%	Significance Level	
	Lognormal Sta	itistics	
Minimum of Logged Data	2.708	Mean of logged Data	3.36
Maximum of Logged Data	4.7	SD of logged Data	0.42
	4.7	SD of logged Data	0.42
Maximum of Logged Data	ming Lognorma	I Distribution	
Maximum of Logged Data Assu 95% H-UCL	ming Lognorma	I Distribution 90% Chebyshev (MVUE) UCL	40.9
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL	ming Lognorma 38.51 45.18	I Distribution	40.9
Maximum of Logged Data Assu 95% H-UCL	ming Lognorma	I Distribution 90% Chebyshev (MVUE) UCL	40.9
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet	ming Lognorma 38.51 45.18 62.52 tric Distribution	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	40.9
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet	ming Lognorma 38.51 45.18 62.52 tric Distribution	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	40.9
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data do no	ming Lognorma 38.51 45.18 62.52 tric Distribution	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution	40.9
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data do no	ming Lognorma 38.51 45.18 62.52 tric Distribution ot follow a Disce	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution	40.9
Maximum of Logged Data Assur 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data do no Nonpara	ming Lognorma 38.51 45.18 62.52 tric Distribution ot follow a Disce	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution tion Free UCLs	0.42 40.9 51.0 44.3 50.3
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data do no Nonpara 95% CLT UCL	ming Lognorma 38.51 45.18 62.52 tric Distribution ot follow a Disce ametric Distribu 39.97	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics mible Distribution tion Free UCLs 95% BCA Bootstrap UCL	40.9 51.0 44.3
Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data do no Nonparamet 95% CLT UCL 95% Standard Bootstrap UCL	ming Lognorma 38.51 45.18 62.52 tric Distribution ot follow a Discention ametric Distribution 39.97 39.73	I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics rnible Distribution tion Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL	40.9 51.0 44.3 50.3

	Suggested	UCL to Use	
95% Student's-t UCL	40.36		
		· · · · · ·	
		rovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statistici	an.
C (soil   vinyl chloride   75-01-4)			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	11
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detects	(NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statist	ics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	specific va	lues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (	(soil   vinyl d	chloride   75-01-4) was not processed!	
C (soil   xylenes (total)   1330-20-7)			
<b>T</b> . W . I . (0)		Statistics	
Total Number of Observations	21	Number of Distinct Observations	21
Number of Detects	10	Number of Non-Detects Number of Distinct Non-Detects	11
Number of Distinct Detects Minimum Detect	10 0.003	Number of Distinct Non-Detects Minimum Non-Detect	11
Maximum Detect	19.5	Maximum Non-Detect	0.34
Variance Detects	36.01	Percent Non-Detects	52.38%
Mean Detects	2.82	SD Detects	6.001
Median Detects	0.715	CV Detects	2.128
Skewness Detects	2.917	Kurtosis Detects	8.737
Mean of Logged Detects	-0.843	SD of Logged Detects	2.499
Norma	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.518	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.781	Detected Data Not Normal at 1% Significance Leve	l
Lilliefors Test Statistic	0.394	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.304	Detected Data Not Normal at 1% Significance Leve	I
Detected Data	Not Norma	at 1% Significance Level	
		itical Values and other Nonparametric UCLs	0.00
KM Mean	1.345	KM Standard Error of Mean	0.96
90KM SD	4.173	95% KM (BCA) UCL	3.185
95% KM (t) UCL	3	95% KM (Percentile Bootstrap) UCL	3.128 14.23
95% KM (z) UCL	2.924 4.224	95% KM Bootstrap t UCL	5.528
90% KM Chebyshev UCL		95% KM Chebyshev UCL	10.89
97.5% KM Chebyshev UCL	7.339	99% KM Chebyshev UCL	10.89

Gamma GOF	Tests on Det	ected Observations Only	
A-D Test Statistic	0.41	Anderson-Darling GOF Test	
5% A-D Critical Value	0.803	Detected data appear Gamma Distributed at 5% Significance	e l evel
K-S Test Statistic	0.221	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.286	Detected data appear Gamma Distributed at 5% Significance L	
		Distributed at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.357	k star (bias corrected MLE)	0.316
Theta hat (MLE)	7.909	Theta star (bias corrected MLE)	8.917
nu hat (MLE)	7.132	nu star (bias corrected)	6.326
Mean (detects)	2.82		0.520
Wear (delects)	2.02		
Commo POS	Statistics usi	ng Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s < 1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		n the sample size is small.	
-		y be computed using gamma distribution on KM estimates	
Minimum	0.003	Mean	1.348
Maximum	19.5	Median	0.01
SD	4.275	CV	3.17
k hat (MLE)	0.231	k star (bias corrected MLE)	0.23
Theta hat (MLE)	5.834	Theta star (bias corrected MLE)	5.866
nu hat (MLE)	9.706	nu star (bias corrected)	9.653
Adjusted Level of Significance (β)	0.0383		
Approximate Chi Square Value (9.65, $\alpha$ )	3.726	Adjusted Chi Square Value (9.65, $\beta$ )	3.447
95% Gamma Approximate UCL	3.493	95% Gamma Adjusted UCL	3.775
		eters using KM Estimates	
Mean (KM)	1.345	SD (KM)	4.173
Variance (KM)	17.41	SE of Mean (KM)	0.96
k hat (KM)	0.104	k star (KM)	0.121
nu hat (KM)	4.363	nu star (KM)	5.073
theta hat (KM)	12.95	theta star (KM)	11.13
80% gamma percentile (KM)	1.188	90% gamma percentile (KM)	3.817
95% gamma percentile (KM)	7.668	99% gamma percentile (KM)	19.4
Gamma	a Kaplan-Me	ier (KM) Statistics	
Approximate Chi Square Value (5.07, $\alpha$ )	1.186	Adjusted Chi Square Value (5.07, $\beta$ )	1.05
95% KM Approximate Gamma UCL	5.752	95% KM Adjusted Gamma UCL	6.496
Lognormal GOI	- Test on De	tected Observations Only	
Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.869	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.221	Lilliefors GOF Test	
			aval
10% Lilliefors Critical Value	0.241	Detected Data appear Lognormal at 10% Significance L	evei

Leanermal DOC	Ctatistics Lising Inc	uted New Detecto	
Mean in Original Scale	Statistics Using Imp	Mean in Log Scale	-3.865
SD in Original Scale	4.276	SD in Log Scale	3.434
95% t UCL (assumes normality of ROS data)	2.953	95% Percentile Bootstrap UCL	3.084
95% BCA Bootstrap UCL	4.23	95% Bootstrap t UCL	14.13
95% H-UCL (Log ROS)	1298		14.15
Statistics using KM estimates o	n Logged Data and /	Assuming Lognormal Distribution	
KM Mean (logged)	-3.782	KM Geo Mean	0.022
KM SD (logged)	3.313	95% Critical H Value (KM-Log)	6.474
KM Standard Error of Mean (logged)	0.812	95% H-UCL (KM -Log)	667.2
KM SD (logged)	3.313	95% Critical H Value (KM-Log)	6.474
KM Standard Error of Mean (logged)	0.812		
	DL/2 Statistics		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.357	Mean in Log Scale	-3.383
SD in Original Scale	4.272	SD in Log Scale	3.282
95% t UCL (Assumes normality)	2.965	95% H-Stat UCL	822.7
DL/2 is not a recommended me	thod, provided for co	mparisons and historical reasons	
	Gamma Distributed	at 5% Significance Level	
95% KM Adjusted Gamma UCL	Suggested UCL to L 6.496	lse	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption	Suggested UCL to L 6.496		
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data	Suggested UCL to U 6.496 ons that the data were ata were collected fro	Ise e collected in a random and unbiased manner.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected	Suggested UCL to U 6.496 ons that the data were ata were collected fro	Ise e collected in a random and unbiased manner. om random locations. other non-random methods,	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s	Suggested UCL to U 6.496 ons that the data were ata were collected fro using judgmental or statistician to correct	lse e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a second	Suggested UCL to L 6.496 ons that the data were ata were collected fro using judgmental or statistician to correct	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested UCL to U 6.496 ons that the data were ata were collected fro using judgmental or statistician to correctl 0 UCL are provided to data distribution, an	lse e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested UCL to U 6.496 ons that the data were ata were collected fro using judgmental or statistician to correctl 0 UCL are provided to data distribution, an	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. D help the user to select the most appropriate 95% UCL d skewness using results from simulation studies.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected in then contact a signal of the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested UCL to U 6.496 ons that the data were ata were collected fro using judgmental or statistician to correctl 0 UCL are provided to data distribution, an	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. D help the user to select the most appropriate 95% UCL d skewness using results from simulation studies.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested UCL to U 6.496 ons that the data were ata were collected fro using judgmental or statistician to correctl 0 UCL are provided to data distribution, an	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. D help the user to select the most appropriate 95% UCL d skewness using results from simulation studies.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil   zinc   7440-66-6)	Suggested UCL to L 6.496 ons that the data were ata were collected from using judgmental or of statistician to correctl 0 UCL are provided to data distribution, an orld data sets; for ad General Statistics	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statisticia	an.
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected in then contact a signal of the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested UCL to L 6.496 ons that the data were ata were collected fro using judgmental or statistician to correcti 0 UCL are provided to data distribution, an forld data sets; for ad	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statisticia ditional insight the user may want to consult a statisticia Number of Distinct Observations	an. 20
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected of then contact a second of the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil   zinc   7440-66-6) Total Number of Observations	Suggested UCL to L 6.496 ons that the data were ata were collected from using judgmental or a statistician to correctle 0 UCL are provided to data distribution, an forld data sets; for ad General Statistics 20	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statistician ditional insight the user may want to consult a statistician Number of Distinct Observations Number of Missing Observations	an. 20 0
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the dat If the data were collected of then contact a so Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil   zinc   7440-66-6) Total Number of Observations Minimum	Suggested UCL to L         6.496         ons that the data were ata were collected from the connected from the connect of the connecon of the connect of the connect of the connec	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statistician ditional insight the user may want to consult a statistician Number of Distinct Observations Number of Missing Observations Mean	an. 20 0 44.02
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected of then contact a second of the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil   zinc   7440-66-6) Total Number of Observations	Suggested UCL to L 6.496 ons that the data were ata were collected from using judgmental or a statistician to correction o UCL are provided to data distribution, an forld data sets; for ad General Statistics 20 25 84.5	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statisticia is Number of Distinct Observations Number of Missing Observations Mean Median	an. 20 0 44.02 41.67
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the dat If the data were collected of then contact a so Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil   zinc   7440-66-6) Total Number of Observations Minimum	Suggested UCL to L         6.496         ons that the data were collected from the data were collected from the data were collected from the data distribution, and the data distribution, and the data distribution, and the data sets; for add the data sets; for a	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statistician ditional insight the user may want to consult a statistician Number of Distinct Observations Number of Missing Observations Mean	an. 20 0
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data If the data were collected of then contact a second of the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W (soil   zinc   7440-66-6) Total Number of Observations Minimum Maximum	Suggested UCL to L 6.496 ons that the data were ata were collected from using judgmental or a statistician to correction o UCL are provided to data distribution, an forld data sets; for ad General Statistics 20 25 84.5	Ise e collected in a random and unbiased manner. om random locations. other non-random methods, y calculate UCLs. b help the user to select the most appropriate 95% UCL d skewness using results from simulation studies. ditional insight the user may want to consult a statisticia is Number of Distinct Observations Number of Missing Observations Mean Median	an. 20 0 44.02 41.67

Minimum of Logged Data Maximum of Logged Data Assu	Lognormal 3.219 4.437 ming Lognor	Statistics Mean of logged Data SD of logged Data rmal Distribution	3.739 0.304
	3.219	Mean of logged Data	
	3.219	Mean of logged Data	
Data appear L	.ognormal a	t 10% Significance Level	
10% Lilliefors Critical Value	0.176	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.105		
Shaniro Wilk Test Statistic	•		
	lognormal	GOF Test	
95% Approximate Gamma UCL	49.85	95% Adjusted Gamma UCL	50.34
	-		
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	328.3
1		Approximate Chi Square Value (0.05)	331.5
MLE Mean (bias corrected)	44.02	MLE Sd (bias corrected)	14.37
nu hat (MLE)	440.1	nu star (bias corrected)	375.4
Theta hat (MLE)	4.001	Theta star (bias corrected MLE)	4.69
k hat (MLE)	Gamma :	k star (bias corrected MLE)	9.386
		Statistics	
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
5% K-S Critical Value	0.194	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.125	Kolmogorov-Smirnov Gamma GOF Test	
5% A-D Critical Value	0.742	-	ce Level
A-D Test Statistic			
			49.83
	49.66		50.42
	suming Norm		
A		nal Distribution	
Data appea	r Normal at	1% Significance Level	
1% Lilliefors Critical Value	0.223	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.164	Lilliefors GOF Test	
1% Shapiro Wilk Critical Value	0.868	Data appear Normal at 1% Significance Level	
Shapiro Wilk Test Statistic	0.898	Shapiro Wilk GOF Test	
	1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appea Ass 95% Normal UCL 95% Student's-t UCL 95% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Ass 95% Approximate Gamma UCL Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic	1% Shapiro Wilk Critical Value       0.868         Lilliefors Test Statistic       0.164         1% Lilliefors Critical Value       0.223         Data appear Normal at         Assuming Norm         95% Normal UCL       49.66         95% Normal UCL       49.66         95% Normal UCL       49.66         95% Normal UCL       49.66         0.338       5% A-D Test Statistic         0.125       5% K-S Critical Value       0.742         K-S Test Statistic       0.125         5% K-S Critical Value       0.194         Detected data appear Gamma Dis         Camma Dis         K hat (MLE)         11       Theta hat (MLE)       11         Theta hat (MLE)       440.1       440.1         MLE Mean (bias corrected)       44.02       44.02         Adjusted Level of Significance       0.038       0.038         Shapiro Wilk Test Statistic         95% Approximate Gamma UCL       49.85         Lognormal         10% Shapiro Wilk Critical Value       0.92         Lilliefors Test Statistic       0.105         10% Lillileifors Critical Value       0.176 <td>1% Shapiro Wilk Critical Value       0.868       Data appear Normal at 1% Significance Level         1% Lilliefors Test Statistic       0.164       Lilliefors GOF Test         1% Lilliefors Critical Value       0.223       Data appear Normal at 1% Significance Level         Data appear Normal at 1% Significance Level         Data appear Normal at 1% Significance Level         Assuming Normal Distribution         95% Normal UCL       95% Adjusted for Skewness)         95% Student's-t UCL       49.66       95% Adjusted-CLT UCL (Johnson-1978)         95% Student's-t UCL       49.66       95% Adjusted-CLT UCL (Johnson-1978)         Optical Colspan="2"&gt;Optical Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"&gt;Colspan="2"</td>	1% Shapiro Wilk Critical Value       0.868       Data appear Normal at 1% Significance Level         1% Lilliefors Test Statistic       0.164       Lilliefors GOF Test         1% Lilliefors Critical Value       0.223       Data appear Normal at 1% Significance Level         Data appear Normal at 1% Significance Level         Data appear Normal at 1% Significance Level         Assuming Normal Distribution         95% Normal UCL       95% Adjusted for Skewness)         95% Student's-t UCL       49.66       95% Adjusted-CLT UCL (Johnson-1978)         95% Student's-t UCL       49.66       95% Adjusted-CLT UCL (Johnson-1978)         Optical Colspan="2">Optical Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"

95% CLT UCL	49.39	95% BCA Bootstrap UCL	50.44
95% Standard Bootstrap UCL	49.28	95% Bootstrap-t UCL	51.4
95% Hall's Bootstrap UCL	52.11	95% Percentile Bootstrap UCL	49.47
90% Chebyshev(Mean, Sd) UCL	53.81	95% Chebyshev(Mean, Sd) UCL	58.25
97.5% Chebyshev(Mean, Sd) UCL	64.41	99% Chebyshev(Mean, Sd) UCL	76.5
	Suggested	UCL to Use	
95% Student's-t UCL	49.66		
Note: Suggestions regarding the selection of a 95%	6 UCL are p	rovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statistici	an.

ATTACHMENT 2-2 GROUNDWATER PROUCL RESULTS

	UCL Statist	ics for Dat	ta Sets with Non-Detects	
User Selected Options	1			
Date/Time of Computation	ProUCL 5.2 10/11/2023 1	0.05.27 DI	NA	
From File	ProUCL_Export_GW_AV			
Full Precision	OFF	G_202310	11.415	
Confidence Coefficient	95%			
Number of Bootstrap Operations	10000			
C (groundwater   1,1,1,2-tetrachloro	ethane   630-20-6)			
			I Statistica	
Total	Number of Observations	13	I Statistics Number of Distinct Observations	3
- I Oldi	Number of Detects	0	Number of Non-Detects	13
N	umber of Distinct Detects	0	Number of Distinct Non-Detects	3
		0		5
Warning: All obs	ervations are Non-Detects	s (NDs), th	erefore all statistics and estimates should also be NDs!	
-		· · · · ·	tistics are also NDs lying below the largest detection limit!	
The Project Team may de	ecide to use alternative sit	le specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set	for variable C (groundwat	ter   1,1,1,	2-tetrachloroethane   630-20-6) was not processed!	
C (groundwater   1,1,1-trichloroetha	ne   71-55-6)			
			I Statistics	
Total	Number of Observations	36	Number of Distinct Observations	4
	Number of Detects	0	Number of Non-Detects	36
N	umber of Distinct Detects	0	Number of Distinct Non-Detects	4
Maming Allaha	anyatiana ana Nan Dataata		confirm all statistics and estimates should also be ND-I	
			erefore all statistics and estimates should also be NDs! tistics are also NDs lying below the largest detection limit!	
			values to estimate environmental parameters (e.g., EPC, BTV).	
		e specific		
The data	set for variable C (ground)	water   1.1	,1-trichloroethane   71-55-6) was not processed!	
C (groundwater   1,1,2,2-tetrachloro	ethane   79-34-5)			
		Genera	I Statistics	
Total	Number of Observations	36	Number of Distinct Observations	4
	Number of Detects	0	Number of Non-Detects	36
Ν	umber of Distinct Detects	0	Number of Distinct Non-Detects	4
Morring: All cho	entiene ere Nen Detecte		confere all statistics and estimates should also be NDal	
-			erefore all statistics and estimates should also be NDs!	
			tistics are also NDs lying below the largest detection limit!	
	scide to use alternative sit	le specific	values to estimate environmental parameters (e.g., EPC, BTV).	•

	ater   1,1,2,2	2-tetrachloroethane   79-34-5) was not processed!	
groundwater   1,1,2-trichloro-1,2,2-trifluoroethane   76-13-	1)		
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detect	s (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	ralues to estimate environmental parameters (e.g., EPC, BTV)	).
The data set for variable C (groundwater	1,1,2-trichlo	pro-1,2,2-trifluoroethane   76-13-1) was not processed!	
groundwater   1,1,2-trichloroethane   79-00-5)			
		Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detect	s (NDs), the	refore all statistics and estimates should also be NDs!	
	• •	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other statis	refore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV)	).
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si	d other statis	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV)	).
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si	d other statis	stics are also NDs lying below the largest detection limit!	).
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground	d other statis	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV)	).
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground	d other statis ite specific v water   1,1,2	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV) 2-trichloroethane   79-00-5) was not processed!	).
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4)	d other statis ite specific v water   1,1,2 General	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV)	
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations	d other statis ite specific v water   1,1,2 General 31	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV) 2-trichloroethane   79-00-5) was not processed! Statistics Number of Distinct Observations	11
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects	d other statis ite specific v water   1,1,2 General 31 4	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV) 2-trichloroethane   79-00-5) was not processed! Statistics Number of Distinct Observations Number of Non-Detects	11 27
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects	d other statis ite specific v water   1,1,2 General 31 4 4	stics are also NDs lying below the largest detection limit!         ralues to estimate environmental parameters (e.g., EPC, BTV)         2-trichloroethane   79-00-5) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects	11 27 7
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General 31 4 4.6000E-5	Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects	11 27 7 9.9333
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General           31           4           4.6000E-5           5.0000E-4	Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	11 27 7 9.9333 0.05
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	d other statis ite specific v water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV) 2-trichloroethane   79-00-5) was not processed! Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	11 27 7 9.9333 0.09 87.1
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	d other statis ite specific v water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8 2.3400E-4	Statistics Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Statistics Statistic	11 27 7 9.9333 0.05 87.1 1.9078
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	d other statis ite specific v water   1,1,2 water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8 2.3400E-4 1.9500E-4	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV) 2-trichloroethane   79-00-5) was not processed! Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	11 27 7 9.9333 0.05 87.1 1.9078 0.8
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	d other statis ite specific v water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8 2.3400E-4 1.9500E-4 1.157	Statistics Statistics Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects Statistics CV Detects CV Detects Kurtosis Detects	11 27 7 9.9333 0.05 87.1 1.9078 0.8 2.2
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	d other statis ite specific v water   1,1,2 water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8 2.3400E-4 1.9500E-4	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV) 2-trichloroethane   79-00-5) was not processed! Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	11 27 7 9.9333 0.05 87.1 1.9078
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	d other statis ite specific v water   1,1,2 water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8 2.3400E-4 1.9500E-4 1.157 -8.668	Statistics Statistics Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects Statistics CV Detects CV Detects Kurtosis Detects	11 27 7 9.9333 0.05 87. ⁻ 1.9078 0.8 2.2
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (ground groundwater   1,1-biphenyl   92-52-4) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	d other statis ite specific v water   1,1,2 water   1,1,2 General 31 4 4.6000E-5 5.0000E-4 3.6397E-8 2.3400E-4 1.9500E-4 1.157 -8.668	Statistics Statistics Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	11 27 7 9.9333 0.09 87. 1.9078 0.8 2.2

Lilliefors Test Statistic	0.321	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Le	vel
Detected Data	appear Norm	nal at 1% Significance Level	-
		liable for small sample sizes	
		· · · · · · · · · · · · · · · · · · ·	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
	1.5343E-4	KM Standard Error of Mean	6.7970E-5
90KM SD	1.5574E-4	95% KM (BCA) UCL	N/A
95% KM (t) UCL	2.6879E-4	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	4.4970E-4
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	8.2972E-4
		· · · · · ·	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value	0.661	Detected data appear Gamma Distributed at 5% Significar	ice Level
K-S Test Statistic	0.246	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.399	Detected data appear Gamma Distributed at 5% Significar	ice Level
Detected data appea	r Gamma Dis	stributed at 5% Significance Level	
		liable for small sample sizes	
	-		
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	1.771	k star (bias corrected MLE)	0.609
Theta hat (MLE)	1.3214E-4	Theta star (bias corrected MLE)	3.8399E-4
nu hat (MLE)	14.17	nu star (bias corrected)	4.875
Mean (detects)	2.3400E-4		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	n the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	4.6000E-5	Mean	0.00874
Maximum	0.01	Median	0.01
SD	0.00333	CV	0.381
k hat (MLE)	1.427	k star (bias corrected MLE)	1.311
Theta hat (MLE)	0.00612	Theta star (bias corrected MLE)	0.00667
nu hat (MLE)	88.48	nu star (bias corrected)	81.25
Adjusted Level of Significance (β)	0.0413		
Approximate Chi Square Value (81.25, α)	61.48	Adjusted Chi Square Value (81.25, β)	60.52
95% Gamma Approximate UCL	0.0116	95% Gamma Adjusted UCL	N/A
	ļ	1	<u> </u>
Estimates of G	amma Parai	meters using KM Estimates	
Mean (KM)			1.5574E-4
Variance (KM)		SE of Mean (KM)	
k hat (KM)		k star (KM)	0.898
nu hat (KM)		nu star (KM)	55.68
- ( )		- ( )	İ.

theta hat (KM)     1.5808E-4     theta star (KM)       80% gamma percentile (KM)     24894E-4     90% gamma percentile (KM)       95% gamma percentile (KM)     95% gamma percentile (KM)     99% gamma percentile (KM)       0.95% gamma percentile (KM)     39.53     Adjusted Chi Square Value (55.68, β)       95% KM Approximate Chi Square Value (55.68, β)     95% KM Adjusted Gamma UCL     2.1610E-4       0.95% KM Approximate Gamma UCL     0.933     Shapiro Wilk Core Statistic     0.933       0.95% KM Approximate Gamma UCL     0.933     Shapiro Wilk GOF Test       10% Shapiro Wilk Critical Value     0.792     Detected Data appear Lognormal at 10% Significance L       10% Shapiro Wilk Critical Value     0.792     Detected Data appear Lognormal at 10% Significance L       10% Shapiro Wilk Critical Value     0.792     Detected Data appear Lognormal at 10% Significance L       10% Lillefors Critical Value     0.346     Detected Data appear Lognormal at 10% Significance L       10% Lillefors Core Statistic     0.29     Lillefors Core Statistic       10% Lillefors Core Statistics Using Imputed Non-Detects     Mean in Log Scale       10% Significance Level     Note CoF tests may be unreliable for small sample sizes       10% Significance Level     Sb in Log Scale       95% HUCL (assumes normality of ROS data)     2.023E-4     95% Bootstrap UCL       95% HUCL (assumes normality of ROS data)	
95% gamma percentile (KM)     4.7751E-4     99% gamma percentile (KM)       Gamma Kaplan-Meler (KM) Statistics       Approximate Chi Square Value (55.68, o)     95.3     Adjusted Chi Square Value (55.68, f)       95% KM Approximate Camma UCL     2.1610E-4     95% KM Adjusted Gamma UCL       Usgnormal GOF Test on Detected Observations Only     Shapiro Wilk Critical Value     0.933     Shapiro Wilk GOF Test       10% Shapiro Wilk Critical Value     0.792     Detected Data appear Lognormal at 10% Significance L     Lilliefors GOF Test       10% Lillefors Critical Value     0.346     Detected Data appear Lognormal at 10% Significance L     Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal at 10% Significance L       Detected Data appear Lognormal to Significance L       Detected Data appear Lognormal to Significance L	

	<u> </u>		
	General Stat		
Total Number of Observations	36	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	3
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detect	s (NDs) therefo	ore all statistics and estimates should also be NDs!	
	· ·	s are also NDs lying below the largest detection limit!	
		es to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	dwater   1,1-dic	hloroethane   75-34-3) was not processed!	
Indwater   1,1-dichloroethene   75-35-4)			
	General Stat	tistics	
Total Number of Observations	36	Number of Distinct Observations	Ę
Number of Detects	1	Number of Non-Detects	3
Number of Distinct Detects	1	Number of Distinct Non-Detects	4
	nined by the Pro	any other software) should not be used on such a data set! oject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed!	C,
	nined by the Pro	oject Team to estimate environmental parameters (e.g., EP	C,
The data set for variable C (ground	nined by the Pro	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed!	C,
The data set for variable C (ground indwater   1,1-dichloropropene   563-58-6)	dwater   1,1-dic	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed!	
The data set for variable C (ground undwater   1,1-dichloropropene   563-58-6) Total Number of Observations	dwater   1,1-dic General Stat	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations	
The data set for variable C (ground indwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects	dwater   1,1-dic dwater   1,1-dic General Stat 13 0	hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects	;
The data set for variable C (ground undwater   1,1-dichloropropene   563-58-6) Total Number of Observations	dwater   1,1-dic General Stat	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations	;
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0	hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects	;
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 0 s (NDs), therefor	tistics Number of Distinct Non-Detects Number of Distinct Non-Detects	;
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 0 s (NDs), therefor d other statistics	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects	;
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 0 s (NDs), therefor d other statistics	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit!	;
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 s (NDs), therefor d other statistics te specific value	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit!	
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 s (NDs), therefor d other statistics te specific value	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	; ;
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 s (NDs), therefor d other statistics te specific value	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 s (NDs), therefor d other statistics te specific value	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground indwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (grounds)	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 s (NDs), therefor d other statistics te specific value	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV). loropropene   563-58-6) was not processed!	
The data set for variable C (ground indwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (grounds)	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 5 (NDs), therefor d other statistics te specific value water   1,1-dich	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV). loropropene   563-58-6) was not processed!	
The data set for variable C (ground andwater   1,1-dichloropropene   563-58-6) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (grounds) The data set for variable C (grounds) andwater   1,2,3-trichlorobenzene   87-61-6)	dwater   1,1-dic dwater   1,1-dic General Stat 13 0 0 5 (NDs), therefor d other statistics te specific value water   1,1-dich	bject Team to estimate environmental parameters (e.g., EP hloroethene   75-35-4) was not processed! tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects sare all statistics and estimates should also be NDs! as are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	

Warning: All observations are Non-Detect	ts (NDs), the	erefore all statistics and estimates should also be NDs!	
-		istics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	water   1,2,3	3-trichlorobenzene   87-61-6) was not processed!	
(groundwater   1,2,3-trichloropropane   96-18-4)			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	3
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
-		erefore all statistics and estimates should also be NDs!	
		istics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The date act for variable C (around	water I 1 0 f	3-trichloropropane   96-18-4) was not processed!	
	water   1,2,4	s-inchioropropane ( 90-10-4) was not processed!	
(groundwater   1,2,4,5-tetrachlorobenzene   95-94-3)			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	6
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	6
Warring: All chaptrations are Non Detection	in (NDn), th	erefore all statistics and estimates should also be NDs!	
-	· · · · · ·	istics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
	ne specific	values to estimate environmental parameters (e.g., EFC, BTV).	
The data set for variable C (groundwa	ter   1.2.4.5	-tetrachlorobenzene   95-94-3) was not processed!	
(groundwater   1,2,4-trichlorobenzene   120-82-1)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	5
_		erefore all statistics and estimates should also be NDs!	
		istics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	Ite specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The date ant forwardship O forwardship	votor 1.1.0.4	triphlarahanyana   120,92,1) waa nat processed!	
i ne data set for variable C (groundv	vater   1,2,4	-trichlorobenzene   120-82-1) was not processed!	

C (groundwater   1,2,4-trimethylbenzene   95-63-6)			
		Statistics	-
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detect	s (NDs), the	refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundw	vater   1,2,4	-trimethylbenzene   95-63-6) was not processed!	
C (groundwater   1,2-dibromo-3-chloropropane   96-12-8)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwate	er   1,2-dibro	omo-3-chloropropane   96-12-8) was not processed!	
C (groundwater   1,2-dibromoethane   106-93-4)			
	0	0-4-4	
		Statistics	
Total Number of Observations	43	Number of Distinct Observations Number of Non-Detects	9 42
Number of Detects Number of Distinct Detects	1		42 8
Number of Distinct Detects	I	Number of Distinct Non-Detects	ð
Warning: Only one distinct data value was detected		(or any other software) should not be used on such a data set!	
		Project Team to estimate environmental parameters (e.g., EP	
			5, 61 • ).
The data set for variable C (ground	water   1 2-	dibromoethane   106-93-4) was not processed!	
C (groundwater   1,2-dichlorobenzene   95-50-1)			
	General	Statistics	
Total Number of Observations	General 36	Statistics Number of Distinct Observations	5
Total Number of Observations Number of Detects			
	36	Number of Distinct Observations	5 36 5

Warning: All observations are Non Detect		therefore all statistics and estimates should also be NDs!	
-		atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	water   1	2-dichlorobenzene   95-50-1) was not processed!	
C (groundwater   1,2-dichloroethane   107-06-2)			
	Ganar	al Statistics	
Total Number of Observations	43	Number of Distinct Observations	9
Number of Detects	43	Number of Non-Detects	43
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
			5
Warning: All observations are Non-Detect	s (NDs), 1	therefore all statistics and estimates should also be NDs!	
-	1 A A A A A A A A A A A A A A A A A A A	atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	lwater   1	,2-dichloroethane   107-06-2) was not processed!	
C (groundwater   1,2-dichloropropane   78-87-5)		al Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warring All short stiens are New Detect		therefore all statistics and estimates should also be ND-1	
-		therefore all statistics and estimates should also be NDs! atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	water   1	,2-dichloropropane   78-87-5) was not processed!	
C (groundwater   1,2-diphenylhydrazine   122-66-7)			
		al Statistics	
Total Number of Observations	13	Number of Distinct Observations	6
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	6
Warning: All observations are Non Detect		therefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
			·
The data set for variable C (oroundw	ater   1.2	-diphenylhydrazine   122-66-7) was not processed!	

groundwater   1,3,5-trichlorobenzene   108-70-3)			
- · · ·			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detects	s (NDs), the	erefore all statistics and estimates should also be NDsI	
	· ·	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	te specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundw	ater   1,3,5	-trichlorobenzene   108-70-3) was not processed!	
groundwater   1,3,5-trimethylbenzene   108-67-8)			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Marrier All sharestiens are blen Datast		sectors all statistics and estimates should also be ND-1	
-		erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project ream may decide to use alternative sit		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwa	ater   1,3,5-	trimethylbenzene   108-67-8) was not processed!	
groundwater   1,3-dichlorobenzene   541-73-1)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	
-			5
		erefore all statistics and estimates should also be NDs!	5
The Droject Team may decide to use alternative air	l other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	l other stati		
	te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	
· · ·	te specific v	stics are also NDs lying below the largest detection limit!	
	te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	
	te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundv	te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundv	to ther stati	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	

Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
Warning: All observations are Non-Detects	s (NDs), the	erefore all statistics and estimates should also be NDs!	
_		istics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundv	water   1,3-	dichloropropane   142-28-9) was not processed!	
	• •		
C (groundwater   1,3-dichloropropene (total)   542-75-6)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
	-		
Warning: All observations are Non-Detects	s (NDs), the	erefore all statistics and estimates should also be NDs!	
_		istics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
······································		· · · · · · · · · · · · · · · · · · ·	
The data set for variable C (groundwate	er   1.3-dic	hloropropene (total)   542-75-6) was not processed!	
C (groundwater   1,4-dichlorobenzene   106-46-7)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	5
	•		•
Warning: All observations are Non-Detects	(NDs) th	erefore all statistics and estimates should also be NDs!	
_	1 A A A A A A A A A A A A A A A A A A A	istics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (grounde	vator   1 /-	dichlorobenzene   106-46-7) was not processed!	
C (groundwater   1,4-dioxane   123-91-1)			
	Gonoral	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Detects	0	Number of Non-Detects Number of Distinct Non-Detects	2
	0		2
Worning: All choon stiens are Non Detector		profers all statistics and estimates should also be NDal	
	<u> </u>	erefore all statistics and estimates should also be NDs!	
		istics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	

## The data set for variable C (groundwater | 1,4-dioxane | 123-91-1) was not processed!

C (groundwater | 1-methylnaphthalene | 90-12-0)

	General	Statistics	
Total Number of Observations	20	Number of Distinct Observations	14
Number of Detects	5	Number of Non-Detects	15
Number of Distinct Detects	5	Number of Distinct Non-Detects	9
Minimum Detect	2.5000E-5	Minimum Non-Detect	9.2167E
Maximum Detect	0.002	Maximum Non-Detect	0.005
Variance Detects	6.8810E-7	Percent Non-Detects	75%
Mean Detects	5.9550E-4	SD Detects	8.2952E
Median Detects	2.2500E-4	CV Detects	1.39
Skewness Detects	1.725	Kurtosis Detects	2.85
Mean of Logged Detects	-8.524	SD of Logged Detects	1.85
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.784	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.686	Detected Data appear Normal at 1% Significance Lev	rel
Lilliefors Test Statistic	0.272	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.396	Detected Data appear Normal at 1% Significance Lev	vel
Detected Data	appear Norn	nal at 1% Significance Level	
KM Mean	4.3464E-4	KM Standard Error of Mean	0.0500
	4.3404E-4	KIVI Staliualu Eliul ul Medil	
		95% KM (BCA) UCL	
90KM SD	6.7669E-4	95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	9.9464E
90KM SD 95% KM (t) UCL	6.7669E-4 9.2911E-4	95% KM (Percentile Bootstrap) UCL	9.9464E 9.4722E
90KM SD 95% KM (t) UCL 95% KM (z) UCL	6.7669E-4 9.2911E-4 9.0501E-4	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	9.9464E 9.4722E 0.002
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	6.7669E-4 9.2911E-4	95% KM (Percentile Bootstrap) UCL	9.9464E 9.4722E 0.002 0.001
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	9.9464E 9.4722E 0.002 0.001
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 with this da	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended	9.9464E
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 v with this da	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended	9.9464E 9.4722E 0.002 0.001
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 with this da	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended etected Observations Only Anderson-Darling GOF Test	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 with this da <b>Tests on De</b> 0.276 0.708	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 with this da <b>Tests on De</b> 0.276 0.708 0.226	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 v with this da Tests on De 0.276 0.708 0.226 0.37	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significant Kolmogorov-Smirnov GOF	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 v with this da <b>Tests on De</b> 0.276 0.708 0.226 0.37 r Gamma Dia	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significant Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significant	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appea Note GOF tests	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 / with this da 7 Tests on De 0.276 0.708 0.226 0.37 r Gamma Dia may be unre	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 99% KM Chebyshev UCL taset. Other substitution method recommended etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significanc Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significanc stributed at 5% Significance Level	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear Note GOF tests	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 r with this da 0.276 0.276 0.276 0.226 0.37 r Gamma Dia may be unree Statistics or	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended taset. Other substitution method recommended Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level eliable for small sample sizes	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appea Note GOF tests Gamma k hat (MLE)	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 v with this da Tests on De 0.276 0.708 0.226 0.37 r Gamma Dia may be unre Statistics or 0.567	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 99% KM Chebyshev UCL taset. Other substitution method recommended etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significant Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significant stributed at 5% Significance Level eliable for small sample sizes	9.9464E 9.4722E 0.002 0.001 0.003
90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Note: KM UCLs may be biased low Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear Note GOF tests	6.7669E-4 9.2911E-4 9.0501E-4 0.00129 0.00222 v with this da Tests on De 0.276 0.708 0.226 0.37 r Gamma Dia may be unre Statistics or 0.567	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL taset. Other substitution method recommended taset. Other substitution method recommended Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level eliable for small sample sizes	9.9464E 9.4722E 0.002 0.001 0.003

		sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
	-	yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
		y be computed using gamma distribution on KM estimates	
	2.5000E-5	Mean	0.00765
Maximum		Median	0.01
SD		CV	0.548
k hat (MLE)	0.83	k star (bias corrected MLE)	0.739
Theta hat (MLE)	0.00922	Theta star (bias corrected MLE)	0.0104
nu hat (MLE)	33.2	nu star (bias corrected)	29.55
Adjusted Level of Significance (β)			
Approximate Chi Square Value (29.55, α)		Adjusted Chi Square Value (29.55, β)	17.43
95% Gamma Approximate UCL	0.0125	95% Gamma Adjusted UCL	0.013
		meters using KM Estimates	
	4.3464E-4		6.7669E-4
Variance (KM)	4.5790E-7	SE of Mean (KM)	2.8596E-4
k hat (KM)	0.413	k star (KM)	0.384
nu hat (KM)	16.5	nu star (KM)	15.36
theta hat (KM)	0.00105	theta star (KM)	0.00113
80% gamma percentile (KM)	6.9793E-4	90% gamma percentile (KM)	0.00124
95% gamma percentile (KM)	0.00183	99% gamma percentile (KM)	0.00333
Gamn	na Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (15.36, α)	7.513	Adjusted Chi Square Value (15.36, β)	7.082
95% KM Approximate Gamma UCL	8.8864E-4	95% KM Adjusted Gamma UCL	9.4278E-4
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
Lognormal GC	OF Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic	0.206	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.319	Detected Data appear Lognormal at 10% Significance	Level
Detected Data ap	pear Lognor	mal at 10% Significance Level	
Note GOF tests	may be unre	bliable for small sample sizes	
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale	2.7043E-4	Mean in Log Scale	-9.069
SD in Original Scale	4.5626E-4	SD in Log Scale	1.283
95% t UCL (assumes normality of ROS data)	4.4684E-4	95% Percentile Bootstrap UCL	4.5635E-4
95% BCA Bootstrap UCL	5.5078E-4	95% Bootstrap t UCL	6.9185E-4
95% H-UCL (Log ROS)	6.4711E-4		
		1	
Statistics using KM estimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-9.049	KM Geo Mean	1.1751E-4
	1		

KM SD (logged)	1.634	95% Critical H Value (KM-Log)	3.656
KM Standard Error of Mean (logged)	0.695	95% H-UCL (KM -Log)	0.00176
KM SD (logged)	1.634	95% Critical H Value (KM-Log)	3.656
KM Standard Error of Mean (logged)	0.695		
Note: KM UCLs may be biased low	with this datase	et. Other substitution method recommended	
	DL/2 Statis		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00181	Mean in Log Scale	-7.004
SD in Original Scale	0.00112	SD in Log Scale	1.719
95% t UCL (Assumes normality)	0.00224	95% H-Stat UCL	0.0178
DL/2 is not a recommended me	thod, provided	for comparisons and historical reasons	
N			
· · · ·		Free UCL Statistics	
	Normal Distrib	outed at 1% Significance Level	
	Suggested UC		
	Suggested UC	L to Use	
95% KM (t) UCL 9	9.2911E-4		
The calculated LICLs are based on assumpti	one that the da	ta were collected in a random and unbiased manner.	
		ted from random locations.	
	ala were conec		
-			
If the data were collected	using judgmen	tal or other non-random methods,	
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95%	using judgmen statistician to co UCL are provid	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL.	
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo	using judgmen statistician to co UCL are provid data distribution	tal or other non-random methods, orrectly calculate UCLs.	n.
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	using judgmen statistician to co UCL are provid data distribution orld data sets; fo	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician	n.
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7)	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics	
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations	3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects	3 13
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations	3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo c (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Distinct Detects	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	3 13
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Warning: All observations are Non-Detects	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects	3 13
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefor I other statistics	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! s are also NDs lying below the largest detection limit!	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefor I other statistics	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefor d other statistics te specific value	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! as are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefor d other statistics te specific value	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! s are also NDs lying below the largest detection limit!	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefor d other statistics te specific value	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! as are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundy	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefor d other statistics te specific value	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! as are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV).	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundy	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 5 (NDs), therefo I other statistics te specific value water   2,2-dich	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! is are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV). loropropane   594-20-7) was not processed!	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundw C (groundwater   2,2'-oxybis(1-chloropropane)   108-60-1)	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefo I other statistics te specific value water   2,2-dich	tistics tistic	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundw C (groundwater   2,2'-oxybis(1-chloropropane)   108-60-1) Total Number of Observations	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 5 (NDs), therefo I other statistics te specific value water   2,2-dich	tal or other non-random methods, prrectly calculate UCLs. led to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies. or additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects ore all statistics and estimates should also be NDs! as are also NDs lying below the largest detection limit! es to estimate environmental parameters (e.g., EPC, BTV). loropropane   594-20-7) was not processed! tistics Number of Distinct Observations	3 13 3
If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real Wo C (groundwater   2,2-dichloropropane   594-20-7) Total Number of Observations Number of Detects Number of Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundw C (groundwater   2,2'-oxybis(1-chloropropane)   108-60-1)	using judgmen statistician to co UCL are provid data distribution orld data sets; fo General Stat 13 0 0 0 s (NDs), therefo I other statistics te specific value water   2,2-dich	tistics tistic	3 13 3

Warning: All observations are Non-Detect	: (NDs) t	herefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwate	r   2,2'-ox	ybis(1-chloropropane)   108-60-1) was not processed!	
C (groundwater   2,4,5-trichlorophenol   95-95-4)			
	Genera	al Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
		home all statistics and estimates should also be NDal	
		herefore all statistics and estimates should also be NDs! atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
	le specific		•
The data set for variable C (ground	water   2.	4,5-trichlorophenol   95-95-4) was not processed!	
C (groundwater   2,4,6-trichlorophenol   88-06-2)			
	Genera	al Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Warning: All observations are Non-Detect	NDe) t	herefore all statistics and estimates should also be NDs!	
	· · · ·	atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
			<u> </u>
The data set for variable C (ground	water   2,	4,6-trichlorophenol   88-06-2) was not processed!	
C (groundwater   2,4-dichlorophenol   120-83-2)			
	Genera	al Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Manufactor All 1 all All The second			
-	<u> </u>	herefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit! c values to estimate environmental parameters (e.g., EPC, BTV).	
	re shecili	values to estimate environmental parameters (e.g., EPC, BTV).	•
The data set for variable C (ground	water   2.	4-dichlorophenol   120-83-2) was not processed!	

O (groundwater I 0.4 directively barel I 405.07.0)			
C (groundwater   2,4-dimethylphenol   105-67-9)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	10
Number of Detects	1	Number of Non-Detects	41
Number of Distinct Detects	1	Number of Distinct Non-Detects	9
		1	
Warning: Only one distinct data value was detected	ed! ProUCL	(or any other software) should not be used on such a data set	l
It is suggested to use alternative site specific values detern	mined by the	Project Team to estimate environmental parameters (e.g., EF	PC, BTV).
The data set for variable C (ground	dwater   2,4-	dimethylphenol   105-67-9) was not processed!	
O (groundwater I O.4. distractional I Ed. OD. E)			
C (groundwater   2,4-dinitrophenol   51-28-5)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	12
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	12
Warning: All observations are Non-Detect	ts (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific \	values to estimate environmental parameters (e.g., EPC, BTV)	-
The data set for variable C (grou	ndwater   2,	4-dinitrophenol   51-28-5) was not processed!	
C (groundwater   2,4-dinitrotoluene   121-14-2)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Warning: All observations are Non-Detect	ts (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	values to estimate environmental parameters (e.g., EPC, BTV)	•
The data set for variable C (groun	dwater   2,4	-dinitrotoluene   121-14-2) was not processed!	
C (groundwater   2,6-dinitrotoluene   606-20-2)			
	0'	Otatiatian	
Total Number of Observations		Statistics Number of Distinct Observations	9
I otal Number of Observations Number of Detects	42	Number of Distinct Observations Number of Non-Detects	9 42
inumber of Detects	U		42

Number of Distinct Detects	0	Number of Distinct Non-Detects	9
-		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si		alues to estimate environmental parameters (e.g., EPC, BTV).	•
The data set for variable C (groun	dwater   2,6-	-dinitrotoluene   606-20-2) was not processed!	
C (groundwater   2-butanone   78-93-3)			
Total Number of Observations	General S		6
Number of Detects	36 3	Number of Distinct Observations	6
	3	Number of Non-Detects	33 5
Number of Distinct Detects Minimum Detect	2	Number of Distinct Non-Detects Minimum Non-Detect	0.01
Maximum Detect	0.001	Maximum Non-Detect	0.01
Variance Detects		Percent Non-Detects	91.67%
Mean Detects	0.00467	SD Detects	0.00635
Median Detects	0.00407	CV Detects	1.361
Skewness Detects	1.732	Kurtosis Detects	N/A
Mean of Logged Detects	-6.079	SD of Logged Detects	1.435
	0.75	t on Detects Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.753 0.385	Detected Data Not Normal at 1% Significance Level	
1% Lilliefors Critical Value	0.385	Lilliefors GOF Test Detected Data appear Normal at 1% Significance Leve	
		e Normal at 1% Significance Level	CI
		liable for small sample sizes	
Kaplan-Meier (KM) Statistics usir		ritical Values and other Nerrorentzia LOLs	
	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	ng Normal C 0.00152	KM Standard Error of Mean	6.2607E-4
	-	-	6.2607E-4 N/A
KM Mean	0.00152	KM Standard Error of Mean	
KM Mean 90KM SD	0.00152	KM Standard Error of Mean 6 95% KM (BCA) UCL	N/A
KM Mean 90KM SD 95% KM (t) UCL	0.00152 0.00234 0.00258	KM Standard Error of Mean 6 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A N/A
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL	0.00152 0.00234 0.00258 0.00255	KM Standard Error of Mean 6 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A 0.00425
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.00152 0.00234 0.00258 0.00255 0.0034 0.00543	KM Standard Error of Mean 6 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 0.00425
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF	0.00152 0.00234 0.00258 0.00255 0.0034 0.00543 Tests on De	KM Standard Error of Mean 6 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 0.00425
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF A-D Test Statistic	0.00152 0.00234 0.00258 0.00255 0.0034 0.00543 <b>Tests on De</b> 0.612	KM Standard Error of Mean 6 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A 0.00425 0.00775
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL <b>Gamma GOF</b> A-D Test Statistic 5% A-D Critical Value	0.00152 0.00234 0.00258 0.00255 0.0034 0.00543 <b>Tests on De</b> 0.612 0.642	KM Standard Error of Mean       95% KM (BCA) UCL         95% KM (Percentile Bootstrap) UCL       95% KM Bootstrap t UCL         95% KM Chebyshev UCL       95% KM Chebyshev UCL         99% KM Chebyshev UCL       99% KM Chebyshev UCL         etected Observations Only       95% CONSTRUCT         Detected data appear Gamma Distributed at 5% Significance	N/A N/A 0.00425 0.00775
KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF A-D Test Statistic	0.00152 0.00234 0.00258 0.00255 0.0034 0.00543 <b>Tests on De</b> 0.612	KM Standard Error of Mean 6 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A 0.00425 0.00775

Detected Data Not C	amma Dist	ributed at 5% Significance Level	
Gamma	Statistics or	Detected Data Only	
k hat (MLE)	0.829	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00563	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	4.977	nu star (bias corrected)	N/A
Mean (detects)	0.00467		
GROS may not be used when data se	et has > 50%	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	In the sample size is small.	
		y be computed using gamma distribution on KM estimates	
Minimum	0.001	Mean	0.00956
Maximum	0.001	Median	0.00956
	0.012	CV	0.01
SD			
k hat (MLE)	6.623	k star (bias corrected MLE)	6.089
Theta hat (MLE)	0.00144	Theta star (bias corrected MLE)	0.00157
nu hat (MLE)	476.8	nu star (bias corrected)	438.4
Adjusted Level of Significance (β)	0.0428		
Approximate Chi Square Value (438.43, α)	390.9	Adjusted Chi Square Value (438.43, β)	388.9
95% Gamma Approximate UCL	0.0107	95% Gamma Adjusted UCL	N/A
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	0.00152	SD (KM)	0.00234
Variance (KM)		SE of Mean (KM)	
k hat (KM)	0.423	k star (KM)	0.406
nu hat (KM)	30.47	nu star (KM)	29.26
theta hat (KM)	0.0036	theta star (KM)	0.00375
80% gamma percentile (KM)	0.00246	90% gamma percentile (KM)	0.00429
95% gamma percentile (KM)	0.00240	99% gamma percentile (KM)	0.00423
Gamm	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (29.26, α)	17.91	Adjusted Chi Square Value (29.26, β)	17.51
95% KM Approximate Gamma UCL	0.00249	95% KM Adjusted Gamma UCL	0.00255
Lognormal GO	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.75	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.789	Detected Data Not Lognormal at 10% Significance Le	evel
Lilliefors Test Statistic	0.385	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance I	امر
		Lognormal at 10% Significance Level	
		liable for small sample sizes	
		Using Imputed Non-Detects	
Mean in Original Scale	0.00179	Mean in Log Scale	-6.739
SD in Original Scale	0.00213	SD in Log Scale	0.886

95% t UCL (assumes normality of ROS data)	0.00239	95% Percentile Bootstrap UCL	0.0024
95% BCA Bootstrap UCL	0.00266	95% Bootstrap t UCL	0.0028
95% H-UCL (Log ROS)	0.00246		
		Data and Assuming Lognormal Distribution	
KM Mean (logged)	-6.789	KM Geo Mean	0.0011
KM SD (logged)	0.529	95% Critical H Value (KM-Log)	1.932
KM Standard Error of Mean (logged)	0.141	95% H-UCL (KM -Log)	0.001
KM SD (logged)	0.529	95% Critical H Value (KM-Log)	1.93
KM Standard Error of Mean (logged)	0.141		
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
DI /O Normal	DL/2 St		
DL/2 Normal	0.0004	DL/2 Log-Transformed	4.00
Mean in Original Scale	0.0084	Mean in Log Scale	-4.98
SD in Original Scale	0.00585	SD in Log Scale	0.68
95% t UCL (Assumes normality)	0.01	95% H-Stat UCL	0.01
DL/2 is not a recommended me	ethod, provid	ded for comparisons and historical reasons	
Nonnarame	tric Distribut	tion Free UCL Statistics	
		mal Distributed at 1% Significance Level	
	Suggosted	UCL to Use	
95% KM (t) UCL	0.00258		
The colouisted UOLs are based on accurate		date ware collected in a readers and which ad more	
		e data were collected in a random and unbiased manner. Ilected from random locations.	
-		nental or other non-random methods,	
		o correctly calculate UCLs.	
When a data set follows an app	roximate dis	tribution passing only one of the GOF tests,	
		istribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies.	
Recommendations are based upon data size.			
•		<u> </u>	n
•		ts; for additional insight the user may want to consult a statisticia	n.
However, simulations results will not cover all Real We		<u> </u>	n.
•		<u> </u>	n.
However, simulations results will not cover all Real We	orld data set	ts; for additional insight the user may want to consult a statisticia	in.
However, simulations results will not cover all Real We undwater   2-chloronaphthalene   91-58-7)	orld data set	ts; for additional insight the user may want to consult a statisticia	
However, simulations results will not cover all Real Wa undwater   2-chloronaphthalene   91-58-7) Total Number of Observations	General 42	ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	10
However, simulations results will not cover all Real We undwater   2-chloronaphthalene   91-58-7) Total Number of Observations Number of Detects	General 42 0	ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects	10 42
However, simulations results will not cover all Real Wa undwater   2-chloronaphthalene   91-58-7) Total Number of Observations	General 42	ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	10
However, simulations results will not cover all Real We undwater   2-chloronaphthalene   91-58-7) Total Number of Observations Number of Detects Number of Distinct Detects	General 42 0 0	ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	10 42
However, simulations results will not cover all Real We undwater   2-chloronaphthalene   91-58-7) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	General 42 0 0 s (NDs), the	ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects	10 42

The data set for variable C (ground	water   2	-chloronaphthalene   91-58-7) was not processed!	
c (groundwater   2-chlorophenol   95-57-8)			
	Gener	ral Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Warning: All observations are Non-Detects	s (NDs), 1	therefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	l other st	atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	te specifi	ic values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (grou	ndwater	2-chlorophenol   95-57-8) was not processed!	
(groundwater   2-chlorotoluene   95-49-8)			
	Gener	ral Statistics	
Total Number of Observations	13	Number of Distinct Observations	3
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
Warning: All observations are Non-Detects		therefore all statistics and estimates should also be NDs!	
-	<u> </u>	atistics are also NDs lying below the largest detection limit!	
		ic values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (grou	ndwater	2-chlorotoluene   95-49-8) was not processed!	
(groundwater   2-hexanone   591-78-6)			
1		ral Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detects	s (NDs), 1	therefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	l other st	atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	te specifi	ic values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (are	undwata	r   2-hexanone   591-78-6) was not processed!	
	unuwate	2-nexanone   591-76-0) was not processed:	
(groundwater   2-methylnaphthalene   91-57-6)			
(9,04,0,440) - 2-1104/9114/914/916/06 - 91-07-0)			
	Gener	ral Statistics	

			00
Total Number of Observations		Number of Distinct Observations	20
Number of Detects		Number of Non-Detects	38
Number of Distinct Detects		Number of Distinct Non-Detects	15
Minimum Detect		Minimum Non-Detect	
Maximum Detect		Maximum Non-Detect	0.0056
Variance Detects	2.8276E-6	Percent Non-Detects	88.37%
Mean Detects	0.00101	SD Detects	0.00168
Median Detects	2.0000E-4	CV Detects	1.661
Skewness Detects	2.164	Kurtosis Detects	4.718
Mean of Logged Detects	-7.872	SD of Logged Detects	1.459
		· · · · · ·	
Norm	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.641	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.686	Detected Data Not Normal at 1% Significance Leve	I
Lilliefors Test Statistic	0.397	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.396	Detected Data Not Normal at 1% Significance Leve	I
Detected Date	a Not Norma	al at 1% Significance Level	
Kaplan-Meier (KM) Statistics usi	ng Normal C	Critical Values and other Nonparametric UCLs	
KM Mean	2.7421E-4	KM Standard Error of Mean	1.3844E-4
90KM SD	6.8642E-4	95% KM (BCA) UCL	6.1083E-4
95% KM (t) UCL	5.0707E-4	95% KM (Percentile Bootstrap) UCL	
95% KM (z) UCL		95% KM Bootstrap t UCL	0.00152
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	0.00165
-		taset. Other substitution method recommended	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce l evel
		stributed at 5% Significance Level	2010
		eliable for small sample sizes	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.385
Theta hat (MLE)	0.029	Theta star (bias corrected MLE)	0.385
	6.285		3.847
nu hat (MLE)		nu star (bias corrected)	3.047
Mean (detects)	0.00101		
0	Otaticita	aing language Mars Datasta	
		sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
	-	yield incorrect values of UCLs and BTVs	
	-	en the sample size is small.	
		ay be computed using gamma distribution on KM estimates	
Minimum	1.1200E-4	Mean	0.00895

Maximum	0.01	Median	0.01
SC		CV	0.331
k hat (MLE		k star (bias corrected MLE)	1.882
Theta hat (MLE)		Theta star (bias corrected MLE)	0.00476
nu hat (MLE)		nu star (bias corrected)	161.8
Adjusted Level of Significance (β)			101.0
Approximate Chi Square Value (161.83, a)		Adjusted Chi Square Value (161.83, β)	132.5
95% Gamma Approximate UCL		95% Gamma Adjusted UCL	0.0109
	0.0100		0.0100
		meters using KM Estimates	
	2.7421E-4		6.8642E-4
Variance (KM)	4.7117E-7	SE of Mean (KM)	1.3844E-4
k hat (KM)	0.16	k star (KM)	0.164
nu hat (KM)	13.72	nu star (KM)	14.1
theta hat (KM)	0.00172	theta star (KM)	0.00167
80% gamma percentile (KM)	3.1962E-4	90% gamma percentile (KM)	8.2153E-4
95% gamma percentile (KM)	0.00148	99% gamma percentile (KM)	0.00336
Gamr	na Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (14.10, α	6.64	Adjusted Chi Square Value (14.10, β)	6.462
95% KM Approximate Gamma UCL	5.8230E-4	95% KM Adjusted Gamma UCL	5.9836E-4
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
_		etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic		Lilliefors GOF Test	
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance	Level
		mal at 10% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
		Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-9.039
SD in Original Scale		SD in Log Scale	0.946
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	9.1847E-4
95% H-UCL (Log ROS)	2.5994E-4		
		Data and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	
KM SD (logged)		95% Critical H Value (KM-Log)	2.056
KM Standard Error of Mean (logged		95% H-UCL (KM -Log)	
KM SD (logged)		95% Critical H Value (KM-Log)	2.056
KM Standard Error of Mean (logged			
Note: KM UCLs may be biased low	w with this da	taset. Other substitution method recommended	
	=		
DL/2 Normal	DL/2 S	tatistics DL/2 Log-Transformed	

Maan in Original Ocale	0.00102	Maan in Law Orala	7.010
Mean in Original Scale		Mean in Log Scale	-7.612
SD in Original Scale		SD in Log Scale	1.26
95% t UCL (Assumes normality)		95% H-Stat UCL	0.00184
DL/2 is not a recommended m	ethod, provid	ded for comparisons and historical reasons	
		tion Free UCL Statistics	
Detected Data appea	r Gamma Di	stributed at 5% Significance Level	
		UCL to Use	
95% KM Adjusted Gamma UCL	5.9836E-4		
The calculated UCLs are based on assump	tions that the	e data were collected in a random and unbiased manner.	
Please verify the	data were co	Ilected from random locations.	
If the data were collected	d using judgr	nental or other non-random methods,	
then contact a	statistician t	o correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real V	Vorld data set	ts; for additional insight the user may want to consult a statisticia	an.
C (groundwater   2-methylphenol   95-48-7)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	13
Number of Detects		Number of Non-Detects	37
Number of Distinct Detects	-	Number of Distinct Non-Detects	9
Minimum Detect		Minimum Non-Detect	0.002
Maximum Detect		Maximum Non-Detect	0.002
Variance Detects		Percent Non-Detects	88.1%
Mean Detects		SD Detects	0.00232
Median Detects		CV Detects	1.247
Skewness Detects		Kurtosis Detects	4.92
Mean of Logged Detects	-6.717	SD of Logged Detects	0.915
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.615	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.686	Detected Data Not Normal at 1% Significance Level	l
Lilliefors Test Statistic	0.445	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.396	Detected Data Not Normal at 1% Significance Level	
Detected Dat	a Not Norma	I at 1% Significance Level	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	-	KM Standard Error of Mean	2.1167E-4
	9.5538E-4	95% KM (BCA) UCL	0.0014
95% KM (t) UCL	0.00136	95% KM (Percentile Bootstrap) UCL	0.00139
95% KM (z) UCL		95% KM Bootstrap t UCL	0.00186
90% KM Chebyshev UCL	0.00164	95% KM Chebyshev UCL	0.00193
97.5% KM Chebyshev UCL	0.00104	99% KM Chebyshev UCL	0.00193
97.5% KWI Chedysnev UCL	0.00233	99% KW Chebysnev UCL	0.00311

Note: KM UCLs may be biased low	v with this dat	taset. Other substitution method recommended	
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.918	Anderson-Darling GOF Test	
5% A-D Critical Value	0.688	Detected Data Not Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.431	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.363	Detected Data Not Gamma Distributed at 5% Significance	e Level
Detected Data Not	Gamma Distr	ributed at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	1.304	k star (bias corrected MLE)	0.655
Theta hat (MLE)	0.00143	Theta star (bias corrected MLE)	0.0028
nu hat (MLE)	13.04	nu star (bias corrected)	6.549
Mean (detects)	0.00186		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such as	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ally true whe	n the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs mag	y be computed using gamma distribution on KM estimates	
Minimum	6.0000E-4	Mean	0.0090
Maximum	0.01	Median	0.01
SD	0.00276	CV	0.306
k hat (MLE)	3.502	k star (bias corrected MLE)	3.268
Theta hat (MLE)	0.00258	Theta star (bias corrected MLE)	0.0027
nu hat (MLE)	294.2	nu star (bias corrected)	274.5
Adjusted Level of Significance (β)	0.0443		
Approximate Chi Square Value (274.50, α)	237.1	Adjusted Chi Square Value (274.50, β)	235.9
95% Gamma Approximate UCL	0.0105	95% Gamma Adjusted UCL	0.010
Estimates of G	amma Parar	neters using KM Estimates	
Mean (KM)	0.001	SD (KM)	9.5538E
Variance (KM)		SE of Mean (KM)	
k hat (KM)	1.103	k star (KM)	1.04
nu hat (KM)	92.67	nu star (KM)	87.38
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)	0.00161	90% gamma percentile (KM)	0.0022
95% gamma percentile (KM)	0.00296	99% gamma percentile (KM)	0.004
	No-lo- M	sion ///AI) Statistics	
Approximate Chi Square Value (87.38, α)	-	eier (KM) Statistics Adjusted Chi Square Value (87.38, β)	66.19
95% KM Approximate Gamma UCL	0.00131	95% KM Adjusted Gamma UCL	0.001
		taset. Other substitution method recommended	0.001
		etected Observations Only	
Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test	
	0.806	Detected Data Not Lognormal at 10% Significance Le	

Lilliefors Test Statistic			
	0.382	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.319	Detected Data Not Lognormal at 10% Significance Lev	vel
Detected Data N	lot Lognorma	al at 10% Significance Level	
Lognormal ROS	S Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	0.00111	Mean in Log Scale	-6.999
SD in Original Scale	9.3028E-4	SD in Log Scale	0.593
95% t UCL (assumes normality of ROS data)	0.00135	95% Percentile Bootstrap UCL	0.0013
95% BCA Bootstrap UCL	0.00148	95% Bootstrap t UCL	0.0015
95% H-UCL (Log ROS)	0.00131		
Statistics using KM astimatos		Data and Assuming Lognormal Distribution	
-	-7.049	KM Geo Mean	
KM Mean (logged)			
KM SD (logged)	0.411	95% Critical H Value (KM-Log)	1.838
KM Standard Error of Mean (logged)	0.128	95% H-UCL (KM -Log)	0.0010
KM SD (logged)	0.411	95% Critical H Value (KM-Log)	1.838
KM Standard Error of Mean (logged)	0.128		
Note: KM UCLs may be biased low	with this dat	taset. Other substitution method recommended	
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00243	Mean in Log Scale	-6.341
SD in Original Scale	0.00197	SD in Log Scale	0.795
95% t UCL (Assumes normality)	0.00294	95% H-Stat UCL	0.0031
DL/2 is not a recommended me	ethod, provid	led for comparisons and historical reasons	
Nonparame	tric Distribut	ion Free UCL Statistics	
Data do no	ot follow a D	iscernible Distribution	
	Suggested		
	Suggested	UCL to Use	
95% KM (t) UCL	O.00136	UCL to Use	
95% KM (t) UCL	0.00136		
95% KM (t) UCL The calculated UCLs are based on assumpti	0.00136	data were collected in a random and unbiased manner.	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d	0.00136 ions that the ata were co	data were collected in a random and unbiased manner. llected from random locations.	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected	0.00136 ions that the ata were co using judgn	e data were collected in a random and unbiased manner. Ilected from random locations. nental or other non-random methods,	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected	0.00136 ions that the ata were co using judgn	data were collected in a random and unbiased manner. llected from random locations.	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s	0.00136 ions that the lata were co using judgn statistician to	e data were collected in a random and unbiased manner. Ilected from random locations. mental or other non-random methods, o correctly calculate UCLs.	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95%	0.00136 ions that the ata were co using judgn statistician to UCL are pro	e data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, o correctly calculate UCLs.	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	0.00136 ions that the lata were co using judgn statistician to UCL are pro data distribu	e data were collected in a random and unbiased manner. Ilected from random locations. mental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	0.00136 ions that the lata were co using judgn statistician to UCL are pro data distribu	e data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, o correctly calculate UCLs.	In.
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	0.00136 ions that the lata were co using judgn statistician to UCL are pro data distribu	e data were collected in a random and unbiased manner. Ilected from random locations. mental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	in.
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	0.00136 ions that the lata were co using judgn statistician to UCL are pro data distribu	e data were collected in a random and unbiased manner. Ilected from random locations. mental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	n.
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W c (groundwater   2-nitroaniline   88-74-4)	0.00136 ions that the ata were co using judgn statistician to UCL are pro data distribu orld data set	e data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, to correctly calculate UCLs. povided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics	ın.
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	0.00136 ions that the lata were co using judgn statistician to UCL are pro data distribu orld data set	e data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, to correctly calculate UCLs. by ided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia	in.
95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W C (groundwater   2-nitroaniline   88-74-4)	0.00136 ions that the ata were co using judgn statistician to UCL are pro data distribu orld data set	e data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, to correctly calculate UCLs. povided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics	

···· · ··· · · · · · ·			
		therefore all statistics and estimates should also be NDs!	
		tatistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specif	ic values to estimate environmental parameters (e.g., EPC, BTV).	•
The data set for variable C (gro	undwate	r   2-nitroaniline   88-74-4) was not processed!	
C (groundwater   2-nitrophenol   88-75-5)			
		ral Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
		therefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specif	ic values to estimate environmental parameters (e.g., EPC, BTV).	•
The data set for variable C (gro	undwate	r   2-nitrophenol   88-75-5) was not processed!	
C (groundwater   3&4-methylphenol   65794-96-9)			
	Gene	ral Statistics	
Total Number of Observations	13	Number of Distinct Observations	6
Number of Detects	1	Number of Non-Detects	12
Number of Distinct Detects	1	Number of Distinct Non-Detects	5
Warning: Only one distinct data value was detecte	d! ProU	CL (or any other software) should not be used on such a data set!	
It is suggested to use alternative site specific values detern	nined by	the Project Team to estimate environmental parameters (e.g., EP	PC, BTV).
The data set for variable C (groundv	vater   38	&4-methylphenol   65794-96-9) was not processed!	
C (groundwater   3,3'-dichlorobenzidine   91-94-1)			
	Gene	ral Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
	Ū.		C C
Warning: All observations are Non-Detects	s (NDs)	therefore all statistics and estimates should also be NDs!	
		tatistics are also NDs lying below the largest detection limit!	
		ic values to estimate environmental parameters (e.g., EPC, BTV).	
			•
The data set for variable C (aroundu	vater 1 2	3'-dichlorobenzidine   91-94-1) was not processed!	
	valei   J,		

	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	11
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	11
Worning: All observations are Non Datest	n (NDn) th	erefore all statistics and estimates should also be NDs!	
-		istics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (gro	undwater	3-nitroaniline   99-09-2) was not processed!	
oundwater   4,6-dinitro-2-methylphenol   534-52-1)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	12
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	12
The Project Team may decide to use alternative sit	te specific	istics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). itro-2-methylphenol   534-52-1) was not processed!	
The Project Team may decide to use alternative sit	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The Project Team may decide to use alternative sit	te specific er   4,6-din	values to estimate environmental parameters (e.g., EPC, BTV).	
The Project Team may decide to use alternative sit	te specific er   4,6-din	values to estimate environmental parameters (e.g., EPC, BTV). itro-2-methylphenol   534-52-1) was not processed!	9
The Project Team may decide to use alternative sit	te specific er   4,6-din General	values to estimate environmental parameters (e.g., EPC, BTV). itro-2-methylphenol   534-52-1) was not processed! Statistics	
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations	te specific er   4,6-din General 42	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations	9
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects	te specific er   4,6-din General 42 0 0	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects	9
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	te specific er   4,6-din General 42 0 0 s (NDs), the	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects	9
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	te specific er   4,6-din General 42 0 0 0 s (NDs), the d other stat	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         Parameters (e.g., EPC, BTV).	9 42 9
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	te specific er   4,6-din General 42 0 0 s (NDs), the d other stat te specific	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         Number of Distinct Non-Detects         Statistics and estimates should also be NDs!         istics are also NDs lying below the largest detection limit!	9 42 9
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwater)	te specific er   4,6-din General 42 0 0 s (NDs), the d other stat te specific	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         Number of Distinct Non-Detects         statistics and estimates should also be NDs!         istics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).	9 42 9
The Project Team may decide to use alternative sit The data set for variable C (groundwater oundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwater)	te specific er   4,6-din General 42 0 0 s (NDs), the d other stat te specific	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         Number of Distinct Non-Detects         statistics and estimates should also be NDs!         istics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).	9 42 9
The Project Team may decide to use alternative sit The data set for variable C (groundwater roundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwater)	te specific er   4,6-din General 42 0 0 s (NDs), the d other stat te specific er   4-bromo	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         Number of Distinct Non-Detects         statistics and estimates should also be NDs!         istics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).	9 42 9
The Project Team may decide to use alternative sit The data set for variable C (groundwater roundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwater	te specific er   4,6-din General 42 0 0 s (NDs), the d other stat te specific er   4-bromo	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         Number of Distinct Non-Detects         statistics and estimates should also be NDs!         istics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).         ophenyl-phenyl ether   101-55-3) was not processed!	9 42 9
The Project Team may decide to use alternative sit The data set for variable C (groundwater roundwater   4-bromophenyl-phenyl ether   101-55-3) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwater The data set for variable C (groundwater The data set for variable C (groundwater	te specific er   4,6-din General 42 0 0 s (NDs), the d other stat te specific er   4-bromo General	values to estimate environmental parameters (e.g., EPC, BTV).         itro-2-methylphenol   534-52-1) was not processed!         Statistics         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         stistics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).         ophenyl-phenyl ether   101-55-3) was not processed!	

Specifically sample mean LICLs LIPLs and		e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit!	
		s to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundw	ater   4-chloro-3-	methylphenol   59-50-7) was not processed!	
roundwater   4-chloroaniline   106-47-8)			
	General Statis		
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Manuface All shares there are New Dates		- Il statistics and estimates should also be MD-1	
		e all statistics and estimates should also be NDs!	
		are also NDs lying below the largest detection limit! s to estimate environmental parameters (e.g., EPC, BTV).	
	te specific value:		
The data set for variable C (arou	ndwater I.4. chlou	oaniline   106-47-8) was not processed!	-
oundwater   4-chlorophenyl-phenyl ether   7005-72-3)			
	General Statis	stics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Warning: All observations are Non-Detect	s (NDs), therefor	e all statistics and estimates should also be NDs!	
		are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific value	s to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwate	r   4-chloropheny	I-phenyl ether   7005-72-3) was not processed!	
oundwater   4-chlorotoluene   106-43-4)			
	General Statis	stics	
Total Number of Observations	13	Number of Distinct Observations	3
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
Warning: All observations are Non-Detect	· · · · ·	e all statistics and estimates should also be NDs!	
Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and	d other statistics	e all statistics and estimates should also be NDs! are also NDs lying below the largest detection limit! s to estimate environmental parameters (e.g., EPC, BTV).	

C (groundwater   4-methyl-2-pentanone   108-10-1)			
	General S		
Total Number of Observations		Number of Distinct Observations	4
Number of Detects	-	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detect	ts (NDs), there	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other statist	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific va	lues to estimate environmental parameters (e.g., EPC, BTV)	•
The data set for variable C (ground	water   4-meth	yl-2-pentanone   108-10-1) was not processed!	
(groundwater   4-methylphenol   106-44-5)			
	General S		
Total Number of Observations		Number of Distinct Observations	4
Number of Detects	1	Number of Non-Detects	29
Number of Distinct Detects	1	Number of Distinct Non-Detects	3
(groundwater   4-nitroaniline   100-01-6)			
(groundwater   4-nitroaniline   100-01-6)	General S	tatistics	
	General S		10
(groundwater   4-nitroaniline   100-01-6) Total Number of Observations Number of Detects	42	tatistics Number of Distinct Observations Number of Non-Detects	10
Total Number of Observations	42 0	Number of Distinct Observations	42
Total Number of Observations Number of Detects	42 0	Number of Distinct Observations Number of Non-Detects	
Total Number of Observations Number of Detects Number of Distinct Detects	42 0 0	Number of Distinct Observations Number of Non-Detects	42
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect	42 0 0	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	42
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, an	42 0 0 ts (NDs), there d other statist	Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects	42 10
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detec Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s	42 0 0 is (NDs), there d other statist ite specific va	Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         efore all statistics and estimates should also be NDs!         tics are also NDs lying below the largest detection limit!	42 10
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detec Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s	42 0 0 is (NDs), there d other statist ite specific va	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV)	42 10
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s The data set for variable C (gro	42 0 0 is (NDs), there d other statist ite specific va	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV)	42 10
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s The data set for variable C (gro	42 0 0 is (NDs), there d other statist ite specific va	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV)	42 10
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s The data set for variable C (gro	42 0 0 ts (NDs), there d other statist ite specific va undwater   4-	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! Ilues to estimate environmental parameters (e.g., EPC, BTV) nitroaniline   100-01-6) was not processed!	42
Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detec Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s	42 0 0 ts (NDs), there d other statist ite specific va undwater   4-	Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects efore all statistics and estimates should also be NDs! tics are also NDs lying below the largest detection limit! Ilues to estimate environmental parameters (e.g., EPC, BTV) nitroaniline   100-01-6) was not processed!	42

Number of Distinct Detects	0	Number of Distinct Non-Detects	12	
Warning: All observations are Non-Detect	s (NDs). the	prefore all statistics and estimates should also be NDs!		
-		stics are also NDs lying below the largest detection limit!		
		values to estimate environmental parameters (e.g., EPC, BTV	).	
			<i>,</i> .	
The data set for variable C (grou	undwater   4	-nitrophenol   100-02-7) was not processed!		
C (groundwater   acenaphthene   83-32-9)				
	General	Statistics		
Total Number of Observations	43	Number of Distinct Observations	21	
Number of Detects	10	Number of Non-Detects	33	
Number of Distinct Detects	10	Number of Distinct Non-Detects		
Minimum Detect		Minimum Non-Detect		
Maximum Detect	0.002	Maximum Non-Detect		
Variance Detects		Percent Non-Detects	76.74%	
Mean Detects		SD Detects		
Median Detects		CV Detects	0.827	
Skewness Detects	0.925	Kurtosis Detects	0.15	
Mean of Logged Detects	-7.672	SD of Logged Detects	1.359	
	7.072		1.000	
Norm	al GOF Tes	t on Detects Only		
Shapiro Wilk Test Statistic	0.899	Shapiro Wilk GOF Test		
1% Shapiro Wilk Critical Value	0.781	Detected Data appear Normal at 1% Significance Le	vel	
Lilliefors Test Statistic	0.204	Lilliefors GOF Test		
1% Lilliefors Critical Value	0.304	Detected Data appear Normal at 1% Significance Le	vel	
Detected Data a	appear Norr	nal at 1% Significance Level		
Kaplan-Meier (KM) Statistics usir	ng Normal C	critical Values and other Nonparametric UCLs		
KM Mean	3.4127E-4	KM Standard Error of Mean	1.0534E-4	
90KM SD	4.9054E-4	95% KM (BCA) UCL	5.3426E-4	
95% KM (t) UCL	5.1844E-4	95% KM (Percentile Bootstrap) UCL	5.2677E-4	
95% KM (z) UCL	5.1454E-4	95% KM Bootstrap t UCL	5.8010E-4	
90% KM Chebyshev UCL	6.5729E-4	95% KM Chebyshev UCL	8.0044E-4	
97.5% KM Chebyshev UCL	9.9912E-4	99% KM Chebyshev UCL	0.00139	
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended		
		etected Observations Only		
A-D Test Statistic	0.369	Anderson-Darling GOF Test		
5% A-D Critical Value	0.747	Detected data appear Gamma Distributed at 5% Significan	ice Level	
K-S Test Statistic	0.187	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.273	Detected data appear Gamma Distributed at 5% Significan	ice Level	
Detected data appear	Gamma Di	stributed at 5% Significance Level		
		n Detected Data Only		
k hat (MLE)	1.089	k star (bias corrected MLE)	0.829	

Theta star (bias corrected MLE)	9.4983E-4
	16.58
Detects	
ed observations at multiple DLs	
when the sample size is small (e.g., <15-20)	
les of UCLs and BTVs	
s small.	
ng gamma distribution on KM estimates	
Mean	0.00786
Median	0.01
CV	0.503
k star (bias corrected MLE)	1.13
Theta star (bias corrected MLE)	0.00695
nu star (bias corrected)	97.2
Adjusted Chi Square Value (97.20, β)	74.79
	0.0102
stimates	
SD (KM)	4.9054E-4
	0.466
. ,	40.05
	0.00235
3	
Adjusted Chi Square Value (40.05, β)	26.17
	5.2231E-4
•	
ons Only	
•	
•	/el
	-
	/el
1-Detects	
	-8.961
SD in Log Scale	1.241
52 20g 00010	
95% Percentile Bootstran UCL	
95% Percentile Bootstrap UCL 3	
95% Percentile Bootstrap UCL 3 95% Bootstrap t UCL 4	
	d observations at multiple DLs then the sample size is small (e.g., <15-20) es of UCLs and BTVs s small. ng gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (97.20, β) 95% Gamma Adjusted UCL stimates SD (KM) SE of Mean (KM) k star (KM) nu star (KM) SE of Mean (KM) % star (KM) 100% gamma percentile (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) Sa Adjusted Chi Square Value (40.05, β) 95% KM Adjusted Gamma UCL tution method recommended ms Only Shapiro Wilk GOF Test Data Not Lognormal at 10% Significance Leven nce Level -Detects Mean in Log Scale

Statistics using KM estimates	on Loaaed I	Data and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	1.2790F-4
KM SD (logged)		95% Critical H Value (KM-Log)	2.879
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	
KM SD (logged)		95% Critical H Value (KM-Log)	2.879
KM Standard Error of Mean (logged)			2.070
		taset. Other substitution method recommended	
	with this da		
	DI /2 S	tatistics	
DL/2 Normal	0020	DL/2 Log-Transformed	
Mean in Original Scale	0.00101	Mean in Log Scale	-7.533
SD in Original Scale		SD in Log Scale	1.26
95% t UCL (Assumes normality)		95% H-Stat UCL	0.00199
		ded for comparisons and historical reasons	0.00133
	ieulou, provi		
Nonparam	etric Distribu	tion Free UCL Statistics	
-		stributed at 1% Significance Level	
Delected Data appea			
	Suggested	UCL to Use	
95% KM (t) UCL			r
55 % KWI (I) UCL	5.1044⊏-4		
Note: Suggestions reparding the selection of a 05°	/ UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statistici.	
	vonu uala se	is, for additional insight the user may want to consult a statisticity	
			an
C (groundwater   acenaphthylene   208-96-8)			
C (groundwater   acenaphthylene   208-96-8)			
		Statistics	
C (groundwater   acenaphthylene   208-96-8) Total Number of Observations			18
	43	Statistics	
Total Number of Observations	43 3	Statistics Number of Distinct Observations	18
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	43 3 6.8667E-5	Statistics Number of Distinct Observations Number of Non-Detects	18 40 15
Total Number of Observations Number of Detects Number of Distinct Detects	43 3 6.8667E-5	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	18 40 15 8.9350E-5
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	43 3 6.8667E-5 7.9000E-4	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	18 40 15 8.9350E-5
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	43 3 6.8667E-5 7.9000E-4 1.7154E-7	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	18 40 15 8.9350E-5 0.0056 93.02%
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	18 40 15 8.9350E-5 0.0056 93.02%
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects only 3 Detected Values.	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects only 3 Detected Values.	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Warning: I This is not enough to com	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735 Data set has pute meaning	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects only 3 Detected Values.	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Warning: I This is not enough to com	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735 Data set has pute meaning	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects only 3 Detected Values. gful or reliable statistics and estimates.	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Skewness Detects Mean of Logged Detects Warning: I This is not enough to com	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735 Data set has pute meaning mal GOF Tes 0.758	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           Minimum Non-Detect           Maximum Non-Detect           Percent Non-Detects           SD Detects           CV Detects           Kurtosis Detects           SD of Logged Detects           only 3 Detected Values.           gful or reliable statistics and estimates.	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A 1.38
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: D Warning: D Norr Shapiro Wilk Test Statistic	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735 Data set has pute meaning mal GOF Tes 0.758 0.753	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           Minimum Non-Detect           Maximum Non-Detect           Maximum Non-Detects           SD Detects           SD Detects           CV Detects           SD of Logged Detects           only 3 Detected Values.           gful or reliable statistics and estimates.	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A 1.38
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Warning: I Warning: I Norr Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	43 3 6.8667E-5 7.9000E-4 1.7154E-7 3.1178E-4 7.6667E-5 1.731 -8.735 Data set has pute meaning nal GOF Tes 0.758 0.753 0.382	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           Minimum Non-Detect           Maximum Non-Detect           Percent Non-Detects           SD Detects           CV Detects           SD of Logged Detects           SD of Logged Detects           Statistics and estimates.           St on Detects Only           Shapiro Wilk GOF Test           Detected Data appear Normal at 1% Significance Level	18 40 15 8.9350E-5 0.0056 93.02% 4.1417E-4 1.328 N/A 1.38

		nal at 1% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics usi	ing Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	9.8286E-5	KM Standard Error of Mean	3.0992E-5
90KM SD	1.3318E-4	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.5041E-4	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.4926E-4	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.9126E-4	95% KM Chebyshev UCL	2.3338E-4
97.5% KM Chebyshev UCL	2.9183E-4	99% KM Chebyshev UCL	4.0665E-4
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.576	Anderson-Darling GOF Test	
5% A-D Critical Value	0.642	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.421	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.442	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected Data Not	Gamma Dist	ributed at 5% Significance Level	
Commo	Statiation on	Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A N/A
nu hat (MLE)		nu star (bias corrected MLE)	N/A N/A
Mean (detects)			N/A
	3.1170E-4		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	n the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	6.8667E-5	Mean	0.00932
Maximum	0.01	Median	0.01
SD	0.0025	CV	0.268
k hat (MLE)	2.446	k star (bias corrected MLE)	2.291
Theta hat (MLE)	0.00381	Theta star (bias corrected MLE)	0.00407
nu hat (MLE)	210.3	nu star (bias corrected)	197
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (196.99, α)	165.5	Adjusted Chi Square Value (196.99, $\beta$ )	164.5
95% Gamma Approximate UCL	0.0111	95% Gamma Adjusted UCL	N/A
Entimates of C	Commo Doro	motors using KM Estimatos	
		meters using KM Estimates	1 3318⊏ /
Mean (KM)	9.8286E-5	SD (KM)	1.3318E-4
Mean (KM) Variance (KM)	9.8286E-5 1.7736E-8	SD (KM) SE of Mean (KM)	3.0992E-5
Mean (KM) Variance (KM) k hat (KM)	9.8286E-5 1.7736E-8 0.545	SD (KM) SE of Mean (KM) k star (KM)	3.0992E-5 0.522
Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	9.8286E-5 1.7736E-8 0.545 46.84	SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	3.0992E-5 0.522 44.9
Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	9.8286E-5 1.7736E-8 0.545 46.84 1.8046E-4	SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	3.0992E-5 0.522 44.9 1.8823E-4
Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	9.8286E-5 1.7736E-8 0.545 46.84 1.8046E-4 1.6169E-4	SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	3.0992E-5 0.522 44.9 1.8823E-4 2.6351E-4

Gamm	a Kaplan-Meie	er (KM) Statistics	
Approximate Chi Square Value (44.90, $\alpha$ )	30.53	Adjusted Chi Square Value (44.90, β)	30.12
95% KM Approximate Gamma UCL	1.4455E-4	95% KM Adjusted Gamma UCL	1.4652E-4
Lognormal GO	F Test on Dete	ected Observations Only	
Shapiro Wilk Test Statistic	0.784	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.789	Detected Data Not Lognormal at 10% Significance Le	vel
Lilliefors Test Statistic	0.371	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data appear A	pproximate Log	gnormal at 10% Significance Level	
		ble for small sample sizes	
Lognormal RO	S Statistics   le	ing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-9.402
SD in Original Scale		SD in Log Scale	0.727
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)			1.7477
-		ta and Assuming Lognormal Distribution	
KM Mean (logged)	-9.446	KM Geo Mean	
KM SD (logged)	0.446	95% Critical H Value (KM-Log)	1.864
KM Standard Error of Mean (logged)	0.112	95% H-UCL (KM -Log)	
KM SD (logged)	0.446	95% Critical H Value (KM-Log)	1.864
KM Standard Error of Mean (logged)	0.112		
Note: KM UCLs may be biased low	with this datas	set. Other substitution method recommended	
	DL/2 Stati	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.3969E-4	Mean in Log Scale	-7.73
SD in Original Scale	0.00105	SD in Log Scale	1.317
95% t UCL (Assumes normality)	0.00121	95% H-Stat UCL	0.0018
DL/2 is not a recommended me	ethod, provided	d for comparisons and historical reasons	
Nonparame	etric Distribution	n Free UCL Statistics	
•		buted at 1% Significance Level	
95% KM (t) UCL	Suggested UC	CL to Use	
		ata were collected in a random and unbiased manner.	
		cted from random locations. ntal or other non-random methods,	
		correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%		ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies.	

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

## C (groundwater | acetone | 67-64-1)

	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	13
Number of Detects	12	Number of Non-Detects	24
Number of Distinct Detects	9	Number of Distinct Non-Detects	4
Minimum Detect	0.001	Minimum Non-Detect	0.02
Maximum Detect	0.028	Maximum Non-Detect	0.1
Variance Detects	5.4745E-5	Percent Non-Detects	66.67%
Mean Detects	0.00552	SD Detects	0.0074
Median Detects	0.0032	CV Detects	1.341
Skewness Detects	2.979	Kurtosis Detects	9.47
Mean of Logged Detects	-5.669	SD of Logged Detects	0.922
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.582	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.805	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.331	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.281	Detected Data Not Normal at 1% Significance Level	
Detected Dat	a Not Norma	l at 1% Significance Level	
	-	ritical Values and other Nonparametric UCLs	0.00100
KM Mean		KM Standard Error of Mean	0.00123
90KM SD		95% KM (BCA) UCL	0.00669
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	0.00661
95% KM (z) UCL		95% KM Bootstrap t UCL	0.00892
90% KM Chebyshev UCL		95% KM Chebyshev UCL	0.00985
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL taset. Other substitution method recommended	0.0167
	with this da		
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.745	Anderson-Darling GOF Test	
5% A-D Critical Value	0.752	Detected data appear Gamma Distributed at 5% Significand	e Level
K-S Test Statistic	0.259	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.251	Detected Data Not Gamma Distributed at 5% Significance	Level
Detected data follow Ap	pr. Gamma I	Distribution at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.96
Theta hat (MLE)		Theta star (bias corrected MLE)	0.00575
nu hat (MLE)		nu star (bias corrected MLE)	23.04
Mean (detects)			20.04
		sing Imputed Non-Detects           NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	

For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
For gamma distributed detected data, BTVs a	ind UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	0.001	Mean	0.00867
Maximum	0.028	Median	0.01
SD	0.00478	CV	0.551
k hat (MLE)	2.685	k star (bias corrected MLE)	2.48
Theta hat (MLE)	0.00323	Theta star (bias corrected MLE)	0.0035
nu hat (MLE)	193.3	nu star (bias corrected)	178.6
Adjusted Level of Significance (β)	0.0428		
Approximate Chi Square Value (178.55, α)	148.6	Adjusted Chi Square Value (178.55, β)	147.4
95% Gamma Approximate UCL	0.0104	95% Gamma Adjusted UCL	0.0105
Estimates of G	iamma Parai	meters using KM Estimates	
Mean (KM)	0.00449	SD (KM)	0.00533
Variance (KM)	2.8442E-5	SE of Mean (KM)	0.00123
k hat (KM)	0.71	k star (KM)	0.67
nu hat (KM)	51.14	nu star (KM)	48.21
theta hat (KM)	0.00633	theta star (KM)	0.00671
80% gamma percentile (KM)	0.0074	90% gamma percentile (KM)	0.0114
95% gamma percentile (KM)	0.0155	99% gamma percentile (KM)	0.0255
	-	eier (KM) Statistics	
Approximate Chi Square Value (48.21, α)	33.27	Adjusted Chi Square Value (48.21, β)	32.71
95% KM Approximate Gamma UCL	0.00651	95% KM Adjusted Gamma UCL	0.00662
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
-		etected Observations Only	
Shapiro Wilk Test Statistic	0.934	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.883	Detected Data appear Lognormal at 10% Significance L	evei
Lilliefors Test Statistic	0.187	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.223	Detected Data appear Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lovel	evei
	pear Lognon		
Lognormal BO	S Statistics I	Using Imputed Non-Detects	
Mean in Original Scale	0.00436	Mean in Log Scale	-5.755
SD in Original Scale		SD in Log Scale	0.765
95% t UCL (assumes normality of ROS data)	0.00569	95% Percentile Bootstrap UCL	0.00576
95% BCA Bootstrap UCL	0.00639	95% Bootstrap t UCL	0.00684
95% H-UCL (Log ROS)	0.00559		
, , , , , , , , , , , , , , , , , , ,		<u>                                      </u>	
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-5.764	KM Geo Mean	0.00314
KM SD (logged)	0.779	95% Critical H Value (KM-Log)	2.15
KM Standard Error of Mean (logged)	0.218	95% H-UCL (KM -Log)	0.00565
KM SD (logged)	0.779	95% Critical H Value (KM-Log)	2.15
KM Standard Error of Mean (logged)	0.218		
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	

	DL/2 S	tatistics	
DL/2 Normal	0.0157	DL/2 Log-Transformed	4 500
Mean in Original Scale	0.0157	Mean in Log Scale	-4.588
SD in Original Scale	0.0136	SD in Log Scale	1.047
95% t UCL (Assumes normality)	0.0195	95% H-Stat UCL	0.0271
DL/2 is not a recommended me	ethod, provi	ded for comparisons and historical reasons	
Navyara	trie Dietriku	tion Free U.C. Statistics	
		tion Free UCL Statistics nma Distributed at 5% Significance Level	
	Suggested	UCL to Use	
95% KM Adjusted Gamma UCL	0.00662		
	0.00002		
The calculated UCLs are based on assumpt	ions that the	e data were collected in a random and unbiased manner.	
		ollected from random locations.	
-		mental or other non-random methods,	
		to correctly calculate UCLs.	
When a data set follows an app	roximate dis	stribution passing only one of the GOF tests,	
		istribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size,	data distrib	ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statisticia	n.
C (groundwater   acetophenone   98-86-2)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Warning: All observations are Non-Detects	s (NDs), the	prefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
	-		
The data set for variable C (grou	undwater   a	acetophenone   98-86-2) was not processed!	
	· · · ·	, .	
C (groundwater   acrylonitrile   107-13-1)			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
	0		L
Warning: All observations are Non Datest	e (NDe) the	prefore all statistics and estimates should also be NDs	

## Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable C (groundwater | acrylonitrile | 107-13-1) was not processed!

## C (groundwater | aluminum | 7429-90-5)

	General	Statistics	
Total Number of Observations	12	Number of Distinct Observations	11
Number of Detects	10	Number of Non-Detects	2
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	0.072	Minimum Non-Detect	0.05
Maximum Detect	9.534	Maximum Non-Detect	0.05
Variance Detects	8.68	Percent Non-Detects	16.67%
Mean Detects	1.329	SD Detects	2.946
Median Detects	0.23	CV Detects	2.217
Skewness Detects	2.938	Kurtosis Detects	8.827
Mean of Logged Detects	-1.124	SD of Logged Detects	1.549

Norma	al GOF Tes	t on Detects Only
Shapiro Wilk Test Statistic	0.492	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.781	Detected Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.413	Lilliefors GOF Test
1% Lilliefors Critical Value	0.304	Detected Data Not Normal at 1% Significance Level
Detected Data	Not Norma	al at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs
----------------------------------------------------------------------------------------

0.79	KM Standard Error of Mean	1.116	KM Mean
2.633	95% KM (BCA) UCL	2.596	90KM SD
2.556	95% KM (Percentile Bootstrap) UCL	2.534	95% KM (t) UCL
20.81	95% KM Bootstrap t UCL	2.415	95% KM (z) UCL
4.558	95% KM Chebyshev UCL	3.485	90% KM Chebyshev UCL
8.974	99% KM Chebyshev UCL	6.048	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only			
A-D Test Statistic	1.24	Anderson-Darling GOF Test	
5% A-D Critical Value	0.785	Detected Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.329	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.282	Detected Data Not Gamma Distributed at 5% Significance Level	
Detected Data Not	Gamma Distr	ibuted at 5% Significance Level	

Gamma Statistics on Detected Data Only				
k hat (MLE)	0.457	k star (bias corrected MLE)	0.387	
Theta hat (MLE)	2.905	Theta star (bias corrected MLE)	3.435	
nu hat (MLE)	9.148	nu star (bias corrected)	7.737	
Mean (detects)	1.329			

Gamma ROS	Statistics us	sing Imputed Non-Detects	
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is a	small such as	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS r	method may	yield incorrect values of UCLs and BTVs	
This is especi	ally true wher	n the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs may	y be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	1.109
Maximum	9.534	Median	0.17
SD	2.714	CV	2.447
k hat (MLE)	0.369	k star (bias corrected MLE)	0.332
Theta hat (MLE)	3.007	Theta star (bias corrected MLE)	3.338
nu hat (MLE)	8.852	nu star (bias corrected)	7.973
Adjusted Level of Significance (β)	0.029		
Approximate Chi Square Value (7.97, α)	2.719	Adjusted Chi Square Value (7.97, β)	2.274
95% Gamma Approximate UCL	3.252	95% Gamma Adjusted UCL	3.889
Estimates of G	amma Paran	neters using KM Estimates	
Mean (KM)	1.116	SD (KM)	2.596
Variance (KM)	6.737	SE of Mean (KM)	0.79
k hat (KM)	0.185	k star (KM)	0.194
nu hat (KM)	4.434	nu star (KM)	4.659
theta hat (KM)	6.039	theta star (KM)	5.747
80% gamma percentile (KM)	1.447	90% gamma percentile (KM)	3.373
95% gamma percentile (KM)	5.793	99% gamma percentile (KM)	12.49
Gamm	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (4.66, α)	0.998	Adjusted Chi Square Value (4.66, β)	0.769
95% KM Approximate Gamma UCL	5.208	95% KM Adjusted Gamma UCL	6.763
Lognormal GO	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.862	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.869	Detected Data Not Lognormal at 10% Significance Lev	el
Lilliefors Test Statistic	0.201	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.241	Detected Data appear Lognormal at 10% Significance Le	evel
Detected Data appear A	pproximate L	ognormal at 10% Significance Level	
	-	<u> </u>	
Lognormal ROS	S Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	1.109	Mean in Log Scale	-1.729
SD in Original Scale	2.714	SD in Log Scale	1.997
95% t UCL (assumes normality of ROS data)	2.516	95% Percentile Bootstrap UCL	2.559
95% BCA Bootstrap UCL	3.441	95% Bootstrap t UCL	19.72
95% H-UCL (Log ROS)	25.76		
(*****			
Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-1.436	KM Geo Mean	0.238
KM SD (logged)	1.512	95% Critical H Value (KM-Log)	3.922
KM Standard Error of Mean (logged)	0.46	95% H-UCL (KM -Log)	4.464
KM SD (logged)	1.512	95% Critical H Value (KM-Log)	3.922
(logged)	1.012	35% Childai Hi Value (RM-LOy)	5.522

	0.40		
KM Standard Error of Mean (logged)	0.46		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.112	Mean in Log Scale	-1.551
SD in Original Scale	2.713	SD in Log Scale	1.72
95% t UCL (Assumes normality)	2.518	95% H-Stat UCL	8.94
DL/2 is not a recommended m	ethod, provid	ded for comparisons and historical reasons	
Nonparame	etric Distribu	tion Free UCL Statistics	
Detected Data appear Approx	imate Logno	rmal Distributed at 10% Significance Level	
	Suggested	UCL to Use	
KM (t) UCL	2.534		
The calculated UCLs are based on assumption	tions that the	e data were collected in a random and unbiased manner.	
-		Ilected from random locations.	
If the data were collected	d using judgr	nental or other non-random methods,	
then contact a	statistician t	o correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data set	ts; for additional insight the user may want to consult a statisticia	an.
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	7
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	7
Warning: All observations are Non-Detect	ts (NDs), the	refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV)	
The data set for variable C	(groundwate	er   aniline   62-53-3) was not processed!	
(groundwater   anthracene   120-12-7)			
		Statistics	
Total Number of Observations	43	Number of Distinct Observations	18
Number of Detects	5	Number of Non-Detects	38
Number of Distinct Detects	5	Number of Distinct Non-Detects	13
Minimum Detect	3.4250E-5	Minimum Non-Detect	x u350E
Maximum Detect	1.6240E-4	Maximum Non-Detect	0.005
Maximum Detect Variance Detects Mean Detects	1.6240E-4 2.7907E-9		0.005

Madian Datasta			N1/A
Median Detects		CV Detects	N/A
Skewness Detects	1.618	Kurtosis Detects	2.35
Mean of Logged Detects	-9.68	SD of Logged Detects	0.628
		t on Detects Only	
Shapiro Wilk Test Statistic	0.812	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.686	Detected Data appear Normal at 1% Significance Le	vel
Lilliefors Test Statistic	0.29	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.396	Detected Data appear Normal at 1% Significance Le	vel
		nal at 1% Significance Level	
Note GOF tests r	may be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics usin	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	6.7932E-5	KM Standard Error of Mean	1.8670E-5
90KM SD	4.2392E-5	95% KM (BCA) UCL	1.0245E-4
95% KM (t) UCL	9.9333E-5	95% KM (Percentile Bootstrap) UCL	1.0284E-4
95% KM (z) UCL	9.8641E-5	95% KM Bootstrap t UCL	2.2840E-4
90% KM Chebyshev UCL	1.2394E-4	95% KM Chebyshev UCL	1.4931E-4
97.5% KM Chebyshev UCL	1.8452E-4	99% KM Chebyshev UCL	2.5369E-4
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.418	Anderson-Darling GOF Test	
5% A-D Critical Value	0.683	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.296	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.359	Detected data appear Gamma Distributed at 5% Significan	ce Level
		stributed at 5% Significance Level	
		liable for small sample sizes	
Gamma	Statistics or	Detected Data Only	
k hat (MLE)	3.062	k star (bias corrected MLE)	1.358
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)	30.62	nu star (bias corrected MLL)	13.58
Mean (detects)			13.36
	7.4230E-3		
	<u></u>		
		sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		n the sample size is small.	
		y be computed using gamma distribution on KM estimates	
Minimum		Mean	0.00885
Maximum	0.01	Median	0.01
SD	0.00322	CV	0.364
k hat (MLE)	1.209	k star (bias corrected MLE)	1.14
Theta hat (MLE)	0.00732	Theta star (bias corrected MLE)	0.00776
nu hat (MLE)	104	nu star (bias corrected)	98.05
Adjusted Level of Significance (β)	0.0444		

Approximate Chi Square Value (98.05, α)	76.21	Adjusted Chi Square Value (98.05, β)	75.54
95% Gamma Approximate UCL	0.0114	95% Gamma Adjusted UCL	0.0115
	0.0114	95 % Gamma Aujusteu UCL	0.0115
Estimates of G	amma Parar	neters using KM Estimates	
Mean (KM)			4.2392E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)	2.568	k star (KM)	2.404
nu hat (KM)	220.8	nu star (KM)	206.8
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		99% gamma percentile (KM)	
		<b>5 1 ( , )</b>	
Gamn	na Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (206.77, α)	174.5	Adjusted Chi Square Value (206.77, $\beta$ )	173.5
95% KM Approximate Gamma UCL	8.0497E-5	95% KM Adjusted Gamma UCL	8.0973E-5
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
		etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data appear Lognormal at 10% Significance L	_evel
Lilliefors Test Statistic		Lilliefors GOF Test	
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance L	_evel
		mal at 10% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
	S Statistics I	Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-9.761
SD in Original Scale		SD in Log Scale	0.485
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)			7.50742-5
	7.47202-5		
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-9.749	KM Geo Mean	5.8372E-5
KM SD (logged)	0.518	95% Critical H Value (KM-Log)	1.914
KM Standard Error of Mean (logged)	0.237	95% H-UCL (KM -Log)	
KM SD (logged)	0.518	95% Critical H Value (KM-Log)	1.914
KM Standard Error of Mean (logged)	0.237		
Note: KM UCLs may be biased low	<i>v</i> with this da	taset. Other substitution method recommended	
	DL/2 St	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.2428E-4	Mean in Log Scale	-7.785
SD in Original Scale	0.00106	SD in Log Scale	1.353
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.00186
DL/2 is not a recommended m	ethod, provid	led for comparisons and historical reasons	
Nonparame	etric Distribut	tion Free UCL Statistics	

	ear Normal Distributed at	•	
	Suggested UCL to Use	9	
95% KM (t) U(	CL 9.9333E-5		
Note: Suggestions regarding the selection of a 9	5% UCL are provided to be	Ip the user to select the most appropriate 95% UCL.	
		kewness using results from simulation studies.	
		onal insight the user may want to consult a statisticia	an.
oundwater   antimony   7440-36-0)			
	General Statistics		
Total Number of Observatio	ns 41	Number of Distinct Observations	6
Number of Detec	ts 2	Number of Non-Detects	39
Number of Distinct Detection	ts 2	Number of Distinct Non-Detects	4
Minimum Dete	ct 4.1000E-4	Minimum Non-Detect	0.001
Maximum Dete	ct 5.5000E-4	Maximum Non-Detect	0.05
Variance Detec	ts 9.8000E-9	Percent Non-Detects	95.12
Mean Detec	ts 4.8000E-4	SD Detects	9.8995E
Median Detec	ts 4.8000E-4	CV Detects	0.20
Skewness Detec	ts N/A	Kurtosis Detects	N/A
Mean of Logged Detect	ets -7.652	SD of Logged Detects	0.20
This is not enough to co	mpute meaningful or relial	cted Values. ble statistics and estimates.	
	mpute meaningful or relial	ble statistics and estimates.	
No	· · ·	ble statistics and estimates.	
No Not I	ormal GOF Test on Detects	ole statistics and estimates. s Only OF Test	
Not Not Kaplan-Meier (KM) Statistics u	ormal GOF Test on Detects Enough Data to Perform G using Normal Critical Value	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs	7.0000
No Not I Kaplan-Meier (KM) Statistics u KM Me	ormal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean	
Not I Not I Kaplan-Meier (KM) Statistics u KM Mea 90KM S	rmal GOF Test on Detects Enough Data to Perform G Ising Normal Critical Value an 4.8000E-4 ID 7.0000E-5	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	N/A
Not	an 4.8000E-4 District al Value District al Value	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A
Kaplan-Meier (KM) Statistics u           KM Mei           90KM S           95% KM (t) UC           95% KM (z) UC	rmal GOF Test on Detects Enough Data to Perform G Ising Normal Critical Value an 4.8000E-4 D 7.0000E-5 CL 5.9787E-4 CL 5.9514E-4	ble statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A
Not I Not I Kaplan-Meier (KM) Statistics ( KM Me 90KM S 95% KM (t) U( 95% KM (z) U( 90% KM Chebyshev U(	armal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4 5D 7.0000E-5 5L 5.9787E-4 5L 5.9514E-4 5L 5.9514E-4 5L 6.9000E-4	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	N/A N/A N/A 7.8512E
Kaplan-Meier (KM) Statistics u           KM Mei           90KM S           95% KM (t) UC           95% KM (z) UC	armal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4 5D 7.0000E-5 5L 5.9787E-4 5L 5.9514E-4 5L 5.9514E-4 5L 6.9000E-4	ble statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A 7.8512E
Not           Not I           Kaplan-Meier (KM) Statistics of KM Mea           90KM S           90KM S           95% KM (t) UC           95% KM (z) UC           90% KM Chebyshev UC           97.5% KM Chebyshev UC	armal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4 5D 7.0000E-5 5L 5.9787E-4 5L 5.9514E-4 5L 5.9514E-4 5L 6.9000E-4	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 7.8512E
Kaplan-Meier (KM) Statistics u           KM Meier           90KM S           90KM S           95% KM (t) UC           95% KM (z) UC           90% KM Chebyshev UC           97.5% KM Chebyshev UC	armal GOF Test on Detects         Enough Data to Perform G         asing Normal Critical Value         an 4.8000E-4         5D 7.0000E-5         CL 5.9787E-4         CL 5.9514E-4         CL 6.9000E-4         CL 9.1715E-4	ole statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 7.8512E
Not I Not I Kaplan-Meier (KM) Statistics u KM Mea 90KM S 95% KM (t) UC 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 97.5% KM Chebyshev UC 97.5% KM Chebyshev UC 97.5% KM Chebyshev UC	rmal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4 5D 7.0000E-5 5L 5.9787E-4 5L 5.9514E-4 5L 6.9000E-4 5L 9.1715E-4 5D Tests on Detected Obs Enough Data to Perform G	ervations Only OF Test OF Test OF Test OF Test M Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 7.8512E
Not I Not I Kaplan-Meier (KM) Statistics u KM Mei 90KM S 95% KM (t) UC 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 97.5% KM Chebyshev UC Gamma GC Not I	armal GOF Test on Detects Enough Data to Perform G asing Normal Critical Value an 4.8000E-4 D 7.0000E-5 CL 5.9787E-4 CL 5.9514E-4 CL 6.9000E-4 CL 9.1715E-4 DF Tests on Detected Obs Enough Data to Perform G an Statistics on Detected I	ble statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 90% Test Data Only	N/A N/A N/A 7.8512E 0.001
Not I Not I Kaplan-Meier (KM) Statistics u KM Mea 90KM S 95% KM (t) UC 95% KM (t) UC 95% KM (t) UC 95% KM (t) UC 95% KM Chebyshev UC 97.5% KM Chebyshev UC 97.5% KM Chebyshev UC 97.5% KM Chebyshev UC Gamma GC Not I Khat (ML	armal GOF Test on Detects Enough Data to Perform G Ising Normal Critical Value an 4.8000E-4 5D 7.0000E-5 CL 5.9787E-4 CL 5.9514E-4 CL 6.9000E-4 CL 9.1715E-4 DF Tests on Detected Obs Enough Data to Perform G In a Statistics on Detected I E) 46.68	s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 0F Test Data Only k star (bias corrected MLE)	N/A N/A 7.8512E 0.001
Not I Not I Kaplan-Meier (KM) Statistics u KM Mei 90KM S 90KM (t) UC 95% KM (t) UC 95% KM (z) UC 95% KM (z) UC 90% KM Chebyshev UC 97.5% KM Chebyshev UC 97.5% KM Chebyshev UC Gamma GC Not I Khat (ML	rmal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4 iD 7.0000E-5 CL 5.9787E-4 CL 5.9514E-4 CL 6.9000E-4 CL 9.1715E-4 DF Tests on Detected Obs Enough Data to Perform G na Statistics on Detected I E) 46.68 E) 1.0282E-5	ble statistics and estimates. s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 0 F Test Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	N/A N/A N/A 7.8512E 0.001
Not I Not I Kaplan-Meier (KM) Statistics u KM Mei 90KM S 90KM S 95% KM (t) UC 95% KM (z) UC 95% KM (z) UC 95% KM Chebyshev UC 97.5% KM Chebyshev UC 97.5% KM Chebyshev UC Gamma GC Not I Khat (ML	rmal GOF Test on Detects Enough Data to Perform G using Normal Critical Value an 4.8000E-4 iD 7.0000E-5 CL 5.9787E-4 CL 5.9514E-4 CL 6.9000E-4 CL 9.1715E-4 DF Tests on Detected Obs Enough Data to Perform G na Statistics on Detected I E) 46.68 E) 1.0282E-5	s Only OF Test es and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 0F Test Data Only k star (bias corrected MLE)	N/A N/A 7.8512E 0.001

Mean (KM)	4.8000E-4	SD (KM)	7.0000E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)	47.02	k star (KM)	43.6
nu hat (KM)	3856	nu star (KM)	3575
theta hat (KM)	1.0208E-5	theta star (KM)	1.1010E-5
80% gamma percentile (KM)	5.3987E-4	90% gamma percentile (KM)	5.7520E-4
95% gamma percentile (KM)	6.0550E-4	99% gamma percentile (KM)	6.6511E-4
		· · · · · · · · · · · · · · · · · · ·	
Gamn	na Kaplan-M	eier (KM) Statistics	0.0444
	0.407	Adjusted Level of Significance ( $\beta$ )	0.0441
Approximate Chi Square Value (N/A, α)		Adjusted Chi Square Value (N/A, β)	3432
95% KM Approximate Gamma UCL	4.9926E-4	95% KM Adjusted Gamma UCL	4.9998E-4
Lognormal GC	)F Test on D	Detected Observations Only	
-		p Perform GOF Test	
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale	4.9432E-4	Mean in Log Scale	-7.652
SD in Original Scale	1.4338E-4	SD in Log Scale	0.287
95% t UCL (assumes normality of ROS data)	5.3203E-4	95% Percentile Bootstrap UCL	5.3213E-4
95% BCA Bootstrap UCL	5.3260E-4	95% Bootstrap t UCL	5.3451E-4
95% H-UCL (Log ROS)	5.3623E-4		
_		Data and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	
KM SD (logged)	0.147	95% Critical H Value (KM-Log)	1.706
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	
KM SD (logged)	0.147	95% Critical H Value (KM-Log)	1.706
KM Standard Error of Mean (logged)		ataset. Other substitution method recommended	
Note. Nivi OCLS may be blased for			
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0181	Mean in Log Scale	-4.74
SD in Original Scale	0.011	SD in Log Scale	1.727
95% t UCL (Assumes normality)	0.021	95% H-Stat UCL	0.0946
DL/2 is not a recommended m	ethod, provi	ded for comparisons and historical reasons	
		tion Free UCL Statistics	
Data do n	ot follow a [	Discernible Distribution	
	Suggested	UCL to Use	
95% KM (t) UCL			
		xceeds the maximum observation	
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
· ·		ts; for additional insight the user may want to consult a statistici	an.

roundwater   arsenic   7440-38-2)			
	General S	Statistics	
Total Number of Observations	41	Number of Distinct Observations	13
Number of Detects	11	Number of Non-Detects	30
Number of Distinct Detects	11	Number of Distinct Non-Detects	2
Minimum Detect	7.1000E-4	Minimum Non-Detect	8.0000E
Maximum Detect	0.0115	Maximum Non-Detect	0.03
Variance Detects	1.1052E-5	Percent Non-Detects	73.17
Mean Detects	0.00417	SD Detects	0.003
Median Detects	0.00425	CV Detects	0.79
Skewness Detects	1.008	Kurtosis Detects	0.94
Mean of Logged Detects	-5.832	SD of Logged Detects	0.94
Norn	nal GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.9	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.792	Detected Data appear Normal at 1% Significance Lev	/el
Lilliefors Test Statistic	0.149	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.291	Detected Data appear Normal at 1% Significance Lev	/el
Detected Data	appear Norm	al at 1% Significance Level	
Kaplan-Meier (KM) Statistics usi	na Normal Ci	ritical Values and other Nonparametric UCLs	
KM Mean	-	KM Standard Error of Mean	9.6331
90KM SD	0.00318	95% KM (BCA) UCL	0.005
95% KM (t) UCL	0.0055	95% KM (Percentile Bootstrap) UCL	0.005
95% KM (z) UCL	0.00546	95% KM Bootstrap t UCL	0.006
90% KM Chebyshev UCL		95% KM Chebyshev UCL	0.008
97.5% KM Chebyshev UCL	0.0099	99% KM Chebyshev UCL	0.01
-		aset. Other substitution method recommended	
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significant	
K-S Test Statistic		Kolmogorov-Smirnov GOF	2010
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significant	
		tributed at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	1.2
Theta hat (MLE)	0.00266	Theta star (bias corrected MLE)	0.003
nu hat (MLE)		nu star (bias corrected MLL)	26.3
Mean (detects)	0.00417		20.3
Gamma ROS	Statistics us	ing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
Greecing not be used when total of detects is	unun suun da	$\sim$ 1.5, superior in the sumple size is small (e.g., $>10^{-2}$ U)	

This is especi	ally true whe	n the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs mag	y be computed using gamma distribution on KM estimates	
Minimum	7.1000E-4	Mean	0.00856
Maximum	0.0139	Median	0.01
SD	0.00323	CV	0.377
k hat (MLE)	3.226	k star (bias corrected MLE)	3.006
Theta hat (MLE)	0.00265	Theta star (bias corrected MLE)	0.00285
nu hat (MLE)	264.5	nu star (bias corrected)	246.5
Adjusted Level of Significance (β)	0.0441		
Approximate Chi Square Value (246.50, $\alpha$ )	211.1	Adjusted Chi Square Value (246.50, β)	210
95% Gamma Approximate UCL	0.00999	95% Gamma Adjusted UCL	0.0101
Estimates of Q			
	0.00388	neters using KM Estimates	0.00318
Mean (KM)		SD (KM)	
Variance (KM)		SE of Mean (KM)	
k hat (KM)	1.487 121.9	k star (KM)	1.395 114.4
nu hat (KM)	0.00261	nu star (KM)	0.00278
theta hat (KM) 80% gamma percentile (KM)	0.00201	theta star (KM) 90% gamma percentile (KM)	0.00278
95% gamma percentile (KM)	0.00005	99% gamma percentile (KM)	0.00823
	0.0104		0.0102
Gamm	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (114.35, α)	90.67	Adjusted Chi Square Value (114.35, β)	89.9
95% KM Approximate Gamma UCL	0.00489	95% KM Adjusted Gamma UCL	0.00494
Note: KM UCLs may be biased low	with this dat	taset. Other substitution method recommended	
_		etected Observations Only	
Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.876	Detected Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic	0.198	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.231	Detected Data appear Lognormal at 10% Significance	Level
Detected Data ap	pear Lognorr	mal at 10% Significance Level	
	C Statiatica I	Ising Imputed Nep Detecto	
Lognormal RO Mean in Original Scale	0.00409	Jsing Imputed Non-Detects Mean in Log Scale	-5.963
SD in Original Scale	0.00409	SD in Log Scale	
95% t UCL (assumes normality of ROS data)	0.00418	95% Percentile Bootstrap UCL	0.00523
95% I OCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.00537	95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.00553
95% H-UCL (Log ROS)	0.00627		0.00000
Statistics using KM estimates	on Logged C	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-5.95	KM Geo Mean	0.0026
KM SD (logged)	0.949	95% Critical H Value (KM-Log)	2.297
KM Standard Error of Mean (logged)	0.287	95% H-UCL (KM -Log)	0.00577
KM SD (logged)	0.949	95% Critical H Value (KM-Log)	2.297
KM Standard Error of Mean (logged)	0.287		
Note: KM UCLs may be biased low	with this dat	taset. Other substitution method recommended	1

	DL/2 Stat	tistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0117	Mean in Log Scale	-4.726
SD in Original Scale	0.00543	SD in Log Scale	1.001
95% t UCL (Assumes normality)	0.0132	95% H-Stat UCL	0.0212
DL/2 is not a recommended me	thod, provide	d for comparisons and historical reasons	
N			
· · · · ·		on Free UCL Statistics ributed at 1% Significance Level	
(	Suggested U	CL to Use	
95% KM (t) UCL	0.0055		
		vided to help the user to select the most appropriate 95% UCL.	
•		ion, and skewness using results from simulation studies.	
However, simulations results will not cover all Real Wo	orld data sets;	; for additional insight the user may want to consult a statistician	n.
C (groundwater   atrazine   1912-24-9)			
	General St	tatistics	
Total Number of Observations	30	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	30
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detects	(NDs), there	Number of Distinct Non-Detects         ofore all statistics and estimates should also be NDs!         ics are also NDs lying below the largest detection limit!	4
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	(NDs), there other statisti e specific val	fore all statistics and estimates should also be NDs!	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site	(NDs), there other statisti e specific val	ofore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV).	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (gro C (groundwater   barium   7440-39-3)	(NDs), there other statisti e specific val oundwater   a General St	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). atrazine   1912-24-9) was not processed!	
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (gro	(NDs), there other statisti e specific val	ofore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics	40
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (groundwater   barium   7440-39-3) C (groundwater   barium   7440-39-3)	(NDs), there other statisti e specific val oundwater   a General St 41	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations	40
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (gro C (groundwater   barium   7440-39-3) Total Number of Observations Minimum	(NDs), there other statisti e specific val pundwater   a General St 41 0.0098	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). atrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean	40 0 0.0824
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (groundwater   barium   7440-39-3) C (groundwater   barium   7440-39-3)	(NDs), there other statisti e specific val pundwater   a General St 41 0.0098 0.342	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median	40 0 0.0824 0.0495
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (gro C (groundwater   barium   7440-39-3) Total Number of Observations Minimum Maximum SD	(NDs), there other statisti e specific val oundwater   a General St 41 0.0098 0.342 0.0779	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). atrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean	40 0 0.0824 0.0495 0.0122
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative site The data set for variable C (groundwater   barium   7440-39-3) C (groundwater   barium   7440-39-3) Total Number of Observations Minimum Maximum	(NDs), there other statisti e specific val pundwater   a General St 41 0.0098 0.342	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median	40 0 0.0824 0.0495
Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (gro C (groundwater   barium   7440-39-3) Total Number of Observations Minimum Maximum SD	(NDs), there other statisti e specific val oundwater   a General St 41 0.0098 0.342 0.0779 0.946	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	40 0 0.0824 0.0495 0.0122
Warning: All observations are Non-Detects         Specifically, sample mean, UCLs, UPLs, and         The Project Team may decide to use alternative sit         The data set for variable C (groundwater   barium   7440-39-3)         C (groundwater   barium   7440-39-3)         Total Number of Observations         Minimum         SD         Coefficient of Variation	(NDs), there other statisti e specific val pundwater   a pundwater   a general St 41 0.0098 0.342 0.0779 0.946 Normal GC	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness DF Test	40 0 0.0824 0.0495 0.0122
Warning: All observations are Non-Detects         Specifically, sample mean, UCLs, UPLs, and         The Project Team may decide to use alternative sit         The data set for variable C (groundwater   barium   7440-39-3)         C (groundwater   barium   7440-39-3)         Total Number of Observations         Minimum         SD         Coefficient of Variation         Shapiro Wilk Test Statistic	(NDs), there other statisti e specific val bundwater   a bundwater   a coundwater   a coundwater	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness DF Test Shapiro Wilk GOF Test	40 0 0.0824 0.0495 0.0122
Warning: All observations are Non-Detects         Specifically, sample mean, UCLs, UPLs, and         The Project Team may decide to use alternative sit         The data set for variable C (groundwater   barium   7440-39-3)         C (groundwater   barium   7440-39-3)         Total Number of Observations         Minimum         Maximum         SD         Coefficient of Variation         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value	(NDs), there other statisti e specific val pundwater   a oundwater   a deneral St 41 0.0098 0.342 0.0779 0.946 Normal GC 0.807 0.92	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). atrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness DF Test Data Not Normal at 1% Significance Level	40 0 0.0824 0.0495 0.0122
Warning: All observations are Non-Detects         Specifically, sample mean, UCLs, UPLs, and         The Project Team may decide to use alternative sit         The data set for variable C (groundwater   barium   7440-39-3)         C (groundwater   barium   7440-39-3)         Total Number of Observations         Minimum         SD         Coefficient of Variation         Shapiro Wilk Test Statistic	(NDs), there other statisti e specific val bundwater   a bundwater   a coundwater   a coundwater	efore all statistics and estimates should also be NDs! ics are also NDs lying below the largest detection limit! lues to estimate environmental parameters (e.g., EPC, BTV). htrazine   1912-24-9) was not processed! tatistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness DF Test Shapiro Wilk GOF Test	40 0 0.0824 0.0495 0.0122

Ass	uming Norn	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.103	95% Adjusted-CLT UCL (Chen-1995)	0.106
		95% Modified-t UCL (Johnson-1978)	0.103
	Gamma C		
A-D Test Statistic	0.673	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.769	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.154	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.141	Data Not Gamma Distributed at 5% Significance Leve	el
Detected data follow App	or. Gamma L	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.405	k star (bias corrected MLE)	1.318
Theta hat (MLE)	0.0587	Theta star (bias corrected MLE)	0.0625
nu hat (MLE)	115.2	nu star (bias corrected)	108.1
MLE Mean (bias corrected)	0.0824	MLE Sd (bias corrected)	0.0718
		Approximate Chi Square Value (0.05)	85.08
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	84.34
Ass	uming Gam	ma Distribution	
95% Approximate Gamma UCL	0.105	95% Adjusted Gamma UCL	0.106
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.95	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.111	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.126	Data appear Lognormal at 10% Significance Level	
Data appear l	ognormal a	t 10% Significance Level	
	Lognormal		
Minimum of Logged Data	-4.625	Mean of logged Data	-2.893
Maximum of Logged Data	-1.073	SD of logged Data	0.913
	ming Logno	mol Distribution	
Assu		rmal Distribution 90% Chebyshev (MVUE) UCL	0.123
95% H-UCL	0.116		
95% Chebyshev (MVUE) UCL	0.142	97.5% Chebyshev (MVUE) UCL	0.167
			0.167
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.142 0.217	97.5% Chebyshev (MVUE) UCL	0.167
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet	0.142 0.217 tric Distribut	97.5% Chebyshev (MVUE) UCL	0.167
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet	0.142 0.217 tric Distribut	97.5% Chebyshev (MVUE) UCL	0.167
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data appear	0.142 0.217 tric Distribut	97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Discernible Distribution	0.167
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data appear Nonpara	0.142 0.217 tric Distribut r to follow a ametric Dist	97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Discernible Distribution	0.167
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data appear Nonpara 95% CLT UCL	0.142 0.217 tric Distribut	97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Discernible Distribution ribution Free UCLs 95% BCA Bootstrap UCL	
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparamet Data appear Nonpara	0.142 0.217 tric Distribut t to follow a ametric Dist 0.102	97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Discernible Distribution	0.107

	0.158	99% Chebyshev(Mean, Sd) UCL	0.203
	Suggested UC	L to Use	
95% Adjusted Gamma UCL	0.106		
		ution passing only one of the GOF tests,	
it is suggested to use a UCL bas	ed upon a distri	bution passing both GOF tests in ProUCL	
Note: Connections recording the collection of a QE0			
		ded to help the user to select the most appropriate 95% UCL. n, and skewness using results from simulation studies.	
		for additional insight the user may want to consult a statisticia	in.
(groundwater   benzaldehyde   100-52-7)			
	General Sta	tistics	
Total Number of Observations	30	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	30
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
	L.		
The data set for variable C (grou	undwater   benz	aldehyde   100-52-7) was not processed!	
	undwater   benz	aldehyde   100-52-7) was not processed!	
	undwater   benz		
			16
r (groundwater   benzene   71-43-2)	General Sta	tistics	16 34
(groundwater   benzene   71-43-2) Total Number of Observations	General Sta 43	tistics Number of Distinct Observations	
(groundwater   benzene   71-43-2) Total Number of Observations Number of Detects	General Sta 43 9 9	tistics Number of Distinct Observations Number of Non-Detects	34 8
(groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General Sta           43           9           9           2.0000E-4           0.007	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	34 8
r (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	General Sta           43           9           9           2.0000E-4           0.007           4.9950E-6	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	34 8 6.7000E 0.005 79.07
(groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	General Sta           43           9           9           2.0000E-4           0.007           4.9950E-6           0.00212	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	34 8 6.7000E 0.005 79.07 0.002
F (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	General State           43           9           9           2.0000E-4           0.007           4.9950E-6           0.00212           0.001	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	34 8 6.7000E 0.005 79.07 0.002 1.050
r (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	General Sta           43           9           9           2.0000E-4           0.007           4.9950E-6           0.00212           0.001           1.509	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	34 8 5.7000E 0.005 79.07 0.002 1.050 2.01
F (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	General State           43           9           9           2.0000E-4           0.007           4.9950E-6           0.00212           0.001	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	34 8 5.7000E 0.005 79.07 0.0022 1.056 2.015
c (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General Sta           43           9           9           2.0000E-4           0.007           4.9950E-6           0.00212           0.001           1.509	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	34 8 6.7000E
(groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General Sta         43         9         9         2.0000E-4         0.007         4.9950E-6         0.00212         0.001         1.509         -6.694	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	34 8 5.7000E 0.005 79.07 0.002 1.050 2.01
c (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm	General Sta         43         9         9         2.0000E-4         0.007         4.9950E-6         0.00212         0.001         1.509         -6.694	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects The Detects Only	34 8 5.7000E 0.005 79.07 0.0022 1.056 2.015 1.157
e (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic	General Sta         43         9         9         2.0000E-4         0.007         4.9950E-6         0.00212         0.001         1.509         -6.694	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects The Detects Only Shapiro Wilk GOF Test	34 8 5.7000E 0.005 79.07 0.0022 1.056 2.015 1.157
r (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	General Sta         43       9         9       9         2.0000E-4       0.007         4.9950E-6       0.00212         0.001       1.509         -6.694       -6.694         nal GOF Test or       0.829         0.764       -764	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev	34 8 5.7000E 0.005 79.07 0.0022 1.056 2.015 1.157 el
C (groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	General Sta         43       9         9       9         2.0000E-4       0.007         4.9950E-6       0.00212         0.001       1.509         -6.694       0.829         0.829       0.764         0.247       0.247	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test	34 8 5.7000E 0.005 79.0 0.002 1.05 2.01 1.15 el
(groundwater   benzene   71-43-2) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norr Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	General Sta         43       9         9       9         2.0000E-4       0.007         4.9950E-6       0.00212         0.001       1.509         -6.694       0.829         0.764       0.247         0.316       0.316	tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 1% Significance Lev Lilliefors GOF Test	34 8 5.7000E 0.005 79.0 0.002 1.05 2.01 1.15 el

.ge.	itical Values and other Nonparametric UCLs	
8.0293E-4	KM Standard Error of Mean	2.1321E-4
0.0012	95% KM (BCA) UCL	0.0012
0.00116	95% KM (Percentile Bootstrap) UCL	0.00119
0.00115	95% KM Bootstrap t UCL	0.0013
0.00144	95% KM Chebyshev UCL	0.00173
0.00213	99% KM Chebyshev UCL	0.00292
Tests on Det	tected Observations Only	
0.226	Anderson-Darling GOF Test	
0.742	Detected data appear Gamma Distributed at 5% Significance	ce Level
0.192	Kolmogorov-Smirnov GOF	
0.286	Detected data appear Gamma Distributed at 5% Significance	ce Level
	-	
may be unrel	iable for small sample sizes	
Statistics on	Detected Data Only	
1.069	k star (bias corrected MLE)	0.787
		0.00269
19.24	nu star (bias corrected)	14.16
0.00212		
Statistics us	ing Imputed Non-Detects	
et has > 50%	NDs with many tied observations at multiple DLs	
small such as	<1.0, especially when the sample size is small (e.g., <15-20)	
nethod may y	vield incorrect values of UCLs and BTVs	
	/ be computed using gamma distribution on KM estimates	
2.0000E-4	Mean	0.00835
0.01	Median	0.01
0.00339	CV	0.406
2.098	k star (bias corrected MLE)	1.967
0.00398	Theta star (bias corrected MLE)	0.00424
180.4	nu star (bias corrected)	169.2
0.0444		
140.1		139.2
0.0101	95% Gamma Adjusted UCL	0.0101
amma Pararr	neters using KM Estimates	
8.0293E-4	SD (KM)	0.0012
1.4443E-6	SE of Mean (KM)	2.1321E-4
0.446	k star (KM)	0.431
38.39	nu star (KM)	37.04
0.0018	theta star (KM)	0.00186
0.00131	90% gamma percentile (KM)	0.00224
		0.00578
0.00325	99% gamma percentile (KM)	0.0057
	0.0012 0.00116 0.00115 0.00144 0.00213 Tests on Der 0.226 0.742 0.192 0.286 Gamma Dis may be unrel Statistics on 1.069 0.00198 19.24 0.00212 Statistics us et has > 50% small such as method may y ally true wher nd UCLs may 2.0000E-4 0.01 0.00339 2.098 0.00398 180.4 0.001 0.00398 180.4 0.01 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.00398 180.4 0.011 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.00398 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0	0.0012         95% KM (BCA) UCL           0.00116         95% KM (Percentile Bootstrap) UCL           0.00115         95% KM Chebyshev UCL           0.00123         99% KM Chebyshev UCL           0.00213         99% KM Chebyshev UCL           0.00214         Detected Observations Only           0.226         Anderson-Darling GOF Test           0.742         Detected data appear Gamma Distributed at 5% Significance           0.192         Kolmogorov-Smirnov GOF           0.286         Detected Data appear Gamma Distributed at 5% Significance           "Gamma Distributed at 5% Significance Level         may be unreliable for small sample sizes           Statistics on Detected Data Only         1.069         k star (bias corrected MLE)           0.00198         Theta star (bias corrected MLE)         19.24           0.00192         nu star (bias corrected MLE)           19.24         nu star (bias corrected MLE)           0.00128         small such as <1.0, especially when the sample size is small (e.g., <15-20)

Approximate Chi Square Value (37.04, $\alpha$ )			
Approximate on Square value (57.04, u)	24.11	Adjusted Chi Square Value (37.04, $\beta$ )	23.75
95% KM Approximate Gamma UCL	0.00123	95% KM Adjusted Gamma UCL	0.0012
-		etected Observations Only Shapiro Wilk GOF Test	
Shapiro Wilk Test Statistic	0.981	•	l
10% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.129	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.252	Detected Data appear Lognormal at 10% Significance L	evel
		nal at 10% Significance Level	
Note GOF tests r	may be unrel	liable for small sample sizes	
Lognormal POS	Statistics I	Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-7.66
SD in Original Scale	0.00122	SD in Log Scale	0.96
		5	
95% t UCL (assumes normality of ROS data)	0.00112	95% Percentile Bootstrap UCL	0.001
95% BCA Bootstrap UCL	0.00124	95% Bootstrap t UCL	0.001
95% H-UCL (Log ROS)	0.00105		
Statistics using KM estimates	on Loaaed D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-7.591	KM Geo Mean	5.0494
KM SD (logged)	0.82	95% Critical H Value (KM-Log)	2.17
KM Standard Error of Mean (logged)	0.257	95% H-UCL (KM -Log)	
KM SD (logged)	0.82	95% Critical H Value (KM-Log)	2.17
KM Standard Error of Mean (logged)	0.257		2.17
	DL/2 Sta		
DL/2 Normal		DL/2 Log-Transformed	
DL/2 Normal Mean in Original Scale	9.2234E-4	DL/2 Log-Transformed Mean in Log Scale	-7.36
Mean in Original Scale SD in Original Scale	9.2234E-4 0.00123	_	
Mean in Original Scale		Mean in Log Scale	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	0.00123	Mean in Log Scale SD in Log Scale	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me	0.00123 0.00124 ethod, provid	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame	0.00123 0.00124 ethod, provid	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame	0.00123 0.00124 ethod, provid	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis	Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U	Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis	Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U 0.00116	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U 0.00116	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use data were collected in a random and unbiased manner.	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U 0.00116 ions that the lata were col	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use	-7.36 0.71 0.001
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected	0.00123 0.00124 ethod, provid tric Distribution Normal Dis Suggested U 0.00116 ions that the lata were col using judgm	Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use data were collected in a random and unbiased manner. lected from random locations.	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U 0.00116 ions that the ata were col using judgm statistician to	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use data were collected in a random and unbiased manner. lected from random locations. mental or other non-random methods, o correctly calculate UCLs.	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95%	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U 0.00116 ions that the ata were col using judgm statistician to	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use data were collected in a random and unbiased manner. lected from random locations. nental or other non-random methods, o correctly calculate UCLs.	0.71
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me Nonparame Detected Data appear 95% KM (t) UCL The calculated UCLs are based on assumpti Please verify the d If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	0.00123 0.00124 ethod, provid tric Distributi r Normal Dis Suggested U 0.00116 ions that the ata were col using judgm statistician to UCL are pro data distribu	Mean in Log Scale SD in Log Scale 95% H-Stat UCL led for comparisons and historical reasons ion Free UCL Statistics tributed at 1% Significance Level JCL to Use data were collected in a random and unbiased manner. lected from random locations. mental or other non-random methods, o correctly calculate UCLs.	0.71

	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
	I		
		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	).
The data act for variable Q (a			
	groundwater	benzidine   92-87-5) was not processed!	
C (groundwater   benzo(a)anthracene   56-55-3)			
	General	Statistics	
Total Number of Observations	43	Number of Distinct Observations	18
Number of Detects	4	Number of Non-Detects	39
Number of Distinct Detects	4	Number of Distinct Non-Detects	14
Minimum Detect	3.8000E-5	Minimum Non-Detect	9.2167E-5
Maximum Detect	1.1050E-4	Maximum Non-Detect	0.0056
Variance Detects	1.0262E-9	Percent Non-Detects	90.7%
Mean Detects	6.4375E-5	SD Detects	3.2035E-5
Median Detects	5.4500E-5	CV Detects	N/A
Skewness Detects	1.543	Kurtosis Detects	2.536
Mean of Logged Detects	-9.733	SD of Logged Detects	0.455
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.687	Detected Data appear Normal at 1% Significance Lev	vel
Lilliefors Test Statistic	0.304	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.413	Detected Data appear Normal at 1% Significance Lev	vel
Detected Data	appear Norm	nal at 1% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
	-	ritical Values and other Nonparametric UCLs	
	5.9250E-5	KM Standard Error of Mean	
	2.4342E-5	95% KM (BCA) UCL	N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL	1.3357E-4	99% KM Chebyshev UCL	1.7766E-4
		etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significant	ce Level

Detected data appear	Gamma Di	stributed at 5% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
		n Detected Data Only	
k hat (MLE)	6.22	k star (bias corrected MLE)	1.722
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)	49.76	nu star (bias corrected)	13.77
Mean (detects)	6.43/5E-5		
Gamma ROS	Statistics u	sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is a	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	nethod may	yield incorrect values of UCLs and BTVs	
This is especi	ally true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	3.8000E-5	Mean	0.00908
Maximum	0.01	Median	0.01
SD	0.00292	CV	0.322
k hat (MLE)	1.46	k star (bias corrected MLE)	1.374
Theta hat (MLE)	0.00622	Theta star (bias corrected MLE)	0.00661
nu hat (MLE)	125.5	nu star (bias corrected)	118.1
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (118.12, α)	94.03	Adjusted Chi Square Value (118.12, β)	93.28
95% Gamma Approximate UCL	0.0114	95% Gamma Adjusted UCL	N/A
		meters using KM Estimates	
Mean (KM)			2.4342E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)	5.925	k star (KM)	5.527
nu hat (KM)		nu star (KM) theta star (KM)	
theta hat (KM) 80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		99% gamma percentile (KM)	
	1.0000L-4		1.0200E-4
Gamm	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (475.31, α)	425.8	Adjusted Chi Square Value (475.31, β)	424.1
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	
Lognormal GC	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.947	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance	Level
Lilliefors Test Statistic	0.239	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance	Level
Detected Data ap	pear Lognor	mal at 10% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
		Using Imputed Non-Detects	
Mean in Original Scale	5.8077E-5	Mean in Log Scale	-9.813

SD in Original Scale			0.045
95% t UCL (assumes normality of ROS data)		SD in Log Scale 95% Percentile Bootstrap UCL	0.345
95% FOCE (assumes normality of ROS data) 95% BCA Bootstrap UCL		95% Percentile Bootstrap UCL 95% Bootstrap t UCL	
95% H-UCL (Log ROS)		95 % Bootstrap t OCL	0.4451E-5
-		a and Assuming Lognormal Distribution	
KM Mean (logged)	-9.803	KM Geo Mean	
KM SD (logged)	0.353	95% Critical H Value (KM-Log)	1.808
KM Standard Error of Mean (logged)	0.179	95% H-UCL (KM -Log)	
KM SD (logged)		95% Critical H Value (KM-Log)	1.808
KM Standard Error of Mean (logged)	0.179		
Note: KM UCLs may be biased low	v with this datase	et. Other substitution method recommended	
	DL/2 Statis	stics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.2365E-4	Mean in Log Scale	-7.782
SD in Original Scale	0.00106	SD in Log Scale	1.34
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.00182
DL/2 is not a recommended m	ethod, provided	for comparisons and historical reasons	
Nonparame	etric Distribution	Free UCL Statistics	
Detected Data appea	ar Normal Distrib	outed at 1% Significance Level	
	Suggested UC	L to Use	
95% KM (t) UCL	7.9267E-5		
Note: Suggestions reporting the selection of a 050			
		led to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size	, data distribution	n, and skewness using results from simulation studies.	
Recommendations are based upon data size	, data distribution		
Recommendations are based upon data size However, simulations results will not cover all Real W	, data distribution	n, and skewness using results from simulation studies.	
Recommendations are based upon data size However, simulations results will not cover all Real W	, data distribution	n, and skewness using results from simulation studies.	
Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   benzo(a)pyrene   50-32-8)	, data distributior /orld data sets; fo General Stat	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statistician tistics	an.
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations	, data distributior Vorld data sets; fo General Stat 43	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations	an. 18
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects	, data distributior /orld data sets; fo General Stat 43 7	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects	an. 18 36
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects	, data distribution Vorld data sets; fo General Stat 43 7 7 7	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	an. 18 36 11
Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	, data distribution /orld data sets; fo General Stat 43 7 7 2.2000E-5	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects	an. 18 36 11 5.0000E-4
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects	, data distribution /orld data sets; fo General Stat 43 7 7 2.2000E-5	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	an. 18 36 11
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	, data distribution Vorld data sets; for General Stat 43 7 7 2.2000E-5 7.2500E-5	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detects	an. 18 36 11 5.0000E-4 0.0056
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	, data distributior         /orld data sets; fr         General Stat         43         7         2.2000E-5         7.2500E-5         3.555E-10	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	an. 18 36 11 5.0000E-4 0.0056 83.729
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	, data distributior         /orld data sets; fr         General Stat         43         7         2.2000E-5         7.2500E-5         3.555E-10         4.8786E-5         5.4000E-5	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects	an. 18 36 11 5.0000E-4 0.0056 83.729 1.8854E-5 N/A
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	, data distribution /orld data sets; fo General Stat 43 7 7 2.2000E-5 7.2500E-5 3.555E-10 4.8786E-5	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	an. 18 36 11 5.0000E-4 0.0056 83.72% 1.8854E-5
Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects Mean Detects	, data distributior         /orld data sets; fr         General Stat         43         7         2.2000E-5         7.2500E-5         3.555E-10         4.8786E-5         5.4000E-5	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	an. 18 36 11 5.0000E-4 0.0056 83.729 1.8854E-5 N/A
Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	, data distributior         /orld data sets; for         /orld data sets; for         43         7         2.2000E-5         7.2500E-5         3.555E-10         4.8786E-5         5.4000E-5         -0.471         -10.01	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	an. 18 36 11 5.0000E-4 0.0056 83.72% 1.8854E-5 N/A -1.118
Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Norm	, data distribution         /orld data sets; for         General State         43         7         2.2000E-5         7.2500E-5         3.555E-10         4.8786E-5         5.4000E-5         -0.471         -10.01	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	an. 18 36 11 5.0000E-4 0.0056 83.72% 1.8854E-5 N/A -1.118
Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Norm	, data distribution         /orld data sets; for         General Stat         43         7         2.2000E-5         7.2500E-5         3.555E-10         4.8786E-5         5.4000E-5         -0.471         -10.01	n, and skewness using results from simulation studies. for additional insight the user may want to consult a statistician tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects SD Detects CV Detects SD of Logged Detects ND Detects SD of Logged Detects	an. 18 36 11 5.0000E-4 0.0056 83.72% 1.8854E-5 N/A -1.118 0.457
Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   benzo(a)pyrene   50-32-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Norm	, data distribution         /orld data sets; for         General State         43         7         2.2000E-5         7.2500E-5         3.555E-10         4.8786E-5         5.4000E-5         -0.471         -10.01	n, and skewness using results from simulation studies. For additional insight the user may want to consult a statisticity tistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects	an. 18 36 11 5.0000E-4 0.0056 83.72% 1.8854E-5 N/A -1.118 0.457

1% Lilliefors Critical Value	0.35	Detected Data appear Normal at 1% Significance Le	vol
		nal at 1% Significance Level	vei
		eliable for small sample sizes	
	may be unit		
Konlan Majar (KM) Statistics us	na Narmal C	vision Values and other Newsersotric LICLs	
	4.8786E-5	critical Values and other Nonparametric UCLs	7 10005 0
	4.8786E-5	KM Standard Error of Mean	
		95% KM (BCA) UCL	
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	
95% KM (z) UCL		95% KM Bootstrap t UCL	
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	1.1969E-4
Note: KM UCLs may be biased lov	v with this da	taset. Other substitution method recommended	
		etected Observations Only	
A-D Test Statistic	-	Anderson-Darling GOF Test	
5% A-D Critical Value	0.709	Detected data appear Gamma Distributed at 5% Significar	nce Level
K-S Test Statistic	0.224	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.313	Detected data appear Gamma Distributed at 5% Significar	nce Level
Detected data appea	r Gamma Di	stributed at 5% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	6.415	k star (bias corrected MLE)	3.761
Theta hat (MLE)	7.6055E-6	Theta star (bias corrected MLE)	1.2973E-5
nu hat (MLE)	89.8	nu star (bias corrected)	52.65
Mean (detects)	4.8786E-5		
Gamma ROS	Statistics u	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	by be computed using gamma distribution on KM estimates	
Minimum	2.2000E-5	Mean	0.00838
Maximum	0.01	Median	0.01
SD	0.00372	CV	0.444
k hat (MLE)		k star (bias corrected MLE)	0.796
Theta hat (MLE)	0.00999	Theta star (bias corrected MLE)	0.0105
nu hat (MLE)		nu star (bias corrected)	68.47
Adjusted Level of Significance (β)			
Approximate Chi Square Value (68.47, α)		Adjusted Chi Square Value (68.47, β)	49.89
95% Gamma Approximate UCL	0.0114	95% Gamma Adjusted UCL	0.0115
			5.0110
Estimates of (	amma Para	meters using KM Estimates	
	4.8786E-5	-	1.7456E-5
Variance (KM)		SD (KM) SE of Mean (KM)	
k hat (KM)		k star (KM)	7.1263E-6
nu hat (KM)	671.7	nu star (KM)	626.2

-		
(M) 8.1821E-5	99% gamma percentile (KM)	1.0034E-4
ımma Kaplan-Me	eier (KM) Statistics	
, α) 569.2	Adjusted Chi Square Value (626.21, β)	567.3
JCL 5.3676E-5	95% KM Adjusted Gamma UCL	5.3854E-5
low with this day	taset. Other substitution method recommended	
GOF Test on D	etected Observations Only	
	-	
	-	aval
		evei
		ovol
		evei
	-	
ROS Statistics l	Using Imputed Non-Detects	
ale 4.8604E-5	Mean in Log Scale	-10.01
ale 1.9539E-5	SD in Log Scale	0.399
ata) 5.3615E-5	95% Percentile Bootstrap UCL	5.3608E-
JCL 5.4028E-5	95% Bootstrap t UCL	5.4270E-
OS) 5.4589E-5		
ates on Logged [	Data and Assuming Lognormal Distribution	
		4.5036E-5
-		1.848
-		1.848
		1.040
	taset. Other substitution method recommended	
DL/2 St		
		-7.827
		1.413
57		0.0020
d method, provid	ded for comparisons and historical reasons	
ametric Distribut	tion Free UCL Statistics	
Suggested		
JCL 6.0772E-5		
95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
	, α)       569.2         JCL       5.3676E-5         Iow with this da         GOF Test on D         stic       0.873         alue       0.838         stic       0.233         alue       0.28         a appear Lognor         ststs may be unree         ROS Statistics         sale       4.8604E-5         cale       1.9539E-5         atal       5.3615E-5         JCL       5.4028E-5         DL       5.4589E-5         atal       0.173         ed)       0.173         ed)       0.173         aed)       0.173         aed)       0.173         aed)       0.173         aed)       0.173         aed)       0.173         aed)       0.1010         aed)       0.0106         lity)       0.00119         d       method, provid	KM)       6.2995E-5       90% gamma percentile (KM)         KM)       8.1821E-5       99% gamma percentile (KM)         Immark       Kaplan-Meier (KM) Statistics       99% gamma percentile (KM)         Immark       Kaplan-Meier (KM) Statistics       95% KM Adjusted Gamma UCL         ICL       5.3676E-5       95% KM Adjusted Gamma UCL         IOW with this dataset. Other substitution method recommended       0.873       Shapiro Wilk GOF Test         Idue       0.838       Detected Data appear Lognormal at 10% Significance Level         stic       0.233       Lilliefors GOF Test         Idue       0.28       Detected Data appear Lognormal at 10% Significance Level         ststs may be unreliable for small sample sizes       Statistics         ROS       Statistics Using Imputed Non-Detects         rate       1.8604E-5       Mean in Log Scale         rate       1.539E-5       SD in Log Scale         rate       1.539E-5       95% Percentile Bootstrap UCL         OL       5.4028E-5       95% Critical H Value (KM-Log)         red       0.423       95% Critical H Value (KM-Log)         red       0.173       95% Critical H Value (KM-Log)         red       0.173       95% Critical H Value (KM-Log)         red       0.173 </td

C (groundwater   benzo(b)fluoranthene   205-99-2)			
	General	Statistics	
Total Number of Observations	43	Number of Distinct Observations	18
Number of Detects	43	Number of Non-Detects	42
Number of Distinct Detects	1	Number of Non-Detects	42
	I		17
Warning: Only one distinct data value was detecte	d! ProUCL (	(or any other software) should not be used on such a data set	1
It is suggested to use alternative site specific values determ	nined by the	Project Team to estimate environmental parameters (e.g., El	PC, BTV).
The data set for variable C (groundw	vater   benzo	o(b)fluoranthene   205-99-2) was not processed!	
C (groundwater   benzo(e)pyrene   192-97-2)			
	General	Statistics	
Total Number of Observations	7	Number of Distinct Observations	7
Number of Detects	2	Number of Non-Detects	5
Number of Distinct Detects	2	Number of Distinct Non-Detects	5
Minimum Detect	3.0000E-5	Minimum Non-Detect	9.2167E-5
Maximum Detect		Maximum Non-Detect	1.0917E-4
Variance Detects	4.3245E-9	Percent Non-Detects	71.43%
Mean Detects	7.6500E-5	SD Detects	6.5761E-5
Median Detects	7.6500E-5	CV Detects	N/A
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-9.709	SD of Logged Detects	0.998
Warning: Da	ata set has o	only 2 Detected Values.	
		gful or reliable statistics and estimates.	
		-	
Note: Sample size is small (e.g., <10), if data a	re collected	using incremental sampling methodology (ISM) approach,	
refer also to ITRC Tech Reg Guide o	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
but note that ITRC may recommend the	e t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
The Chebyshev UCL of	ften results i	n gross overestimates of the mean.	
Refer to the ProUCL 5.2 Tech	hnical Guide	e for a discussion of the Chebyshev UCL.	
Norma	al GOF Tes	t on Detects Only	
		t on Detects Only Perform GOF Test	
Not Eno	ough Data to	Perform GOF Test	
Not Eno Kaplan-Meier (KM) Statistics usin	ough Data to ng Normal C	Perform GOF Test ritical Values and other Nonparametric UCLs	1.7395E-!
Not Eno Kaplan-Meier (KM) Statistics usin KM Mean	ng Normal C 4.3286E-5	Perform GOF Test ritical Values and other Nonparametric UCLs KM Standard Error of Mean	
Not Eno Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD	ng Normal C 4.3286E-5 3.2543E-5	ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	N/A
Not Eno Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL	ng Normal C 4.3286E-5 3.2543E-5 7.7087E-5	ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A
Not Eno Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD	ng Normal C 4.3286E-5 3.2543E-5 7.7087E-5 7.1898E-5	ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	N/A N/A N/A

	Tests on Detected C		
Not Enc	ough Data to Perforn	1 GOF Test	
Commo	Statiation on Datasta	ad Data Only	
k hat (MLE)	Statistics on Detecte	k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A
nu hat (MLE)	9.285	nu star (bias corrected MEL)	N/A
Mean (detects)			
Estimates of Ga	amma Parameters u	sing KM Estimates	
Mean (KM)		SD (KM)	3.2543E-
Variance (KM)		SE of Mean (KM)	
k hat (KM)	1.769	k star (KM)	1.106
nu hat (KM)	24.77	nu star (KM)	15.49
theta hat (KM)	2.4467E-5	theta star (KM)	3.9130E-
80% gamma percentile (KM)	6.9064E-5	90% gamma percentile (KM)	
95% gamma percentile (KM)	1.2515E-4	99% gamma percentile (KM)	1.8954E-
Gamma	a Kaplan-Meier (KM	) Statistics	
		Adjusted Level of Significance (β)	0.0158
Approximate Chi Square Value (15.49, $\alpha$ )	7.601	Adjusted Chi Square Value (15.49, β)	6.012
95% KM Approximate Gamma UCL	8.8189E-5 F Test on Detected ( ough Data to Perform	•	1.1150E-
95% KM Approximate Gamma UCL Lognormal GO Not Enc	F Test on Detected ough Data to Perforn	Observations Only n GOF Test	1.1150E-
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS	F Test on Detected o bugh Data to Perforn S Statistics Using Im	Observations Only n GOF Test puted Non-Detects	
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale	F Test on Detected o bugh Data to Perforn S Statistics Using Im 4.3286E-5	Observations Only n GOF Test puted Non-Detects Mean in Log Scale	-10.21
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5	Observations Only n GOF Test puted Non-Detects Mean in Log Scale SD in Log Scale	-10.21
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-10.21 0.533 N/A
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5 N/A	Observations Only n GOF Test puted Non-Detects Mean in Log Scale SD in Log Scale	-10.21
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5 N/A	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-10.21 0.533 N/A
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5 N/A 7.3415E-5	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-10.21 0.533 N/A
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5 N/A 7.3415E-5	Observations Only n GOF Test puted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	-10.21 0.533 N/A N/A
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5 N/A 7.3415E-5 on Logged Data and	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	-10.21 0.533 N/A N/A
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged)	F Test on Detected of bugh Data to Perform S Statistics Using Im 4.3286E-5 3.5151E-5 6.9102E-5 N/A 7.3415E-5 on Logged Data and -10.21	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	-10.21 0.533 N/A N/A 3.6700E- 2.45
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged)	F Test on Detected of bugh Data to Perform           S Statistics Using Im           4.3286E-5           3.5151E-5           6.9102E-5           N/A           7.3415E-5           on Logged Data and           -10.21           0.494	Observations Only n GOF Test puted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL	-10.21 0.533 N/A N/A 3.6700E- 2.45
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	F Test on Detected of bugh Data to Perform           S Statistics Using Im           4.3286E-5           3.5151E-5           6.9102E-5           N/A           7.3415E-5           on Logged Data and           -10.21           0.494           0.264	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL	-10.21 0.533 N/A N/A 3.6700E- 2.45 6.7934E-
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	F Test on Detected (         bugh Data to Perform         S Statistics Using Im         4.3286E-5         3.5151E-5         6.9102E-5         N/A         7.3415E-5         on Logged Data and         -10.21         0.494         0.264         0.494         0.264	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL	-10.21 0.533 N/A N/A 3.6700E- 2.45 6.7934E-
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	F Test on Detected of pugh Data to Perform         S Statistics Using Im         4.3286E-5         3.5151E-5         6.9102E-5         N/A         7.3415E-5         on Logged Data and         -10.21         0.494         0.264         0.494	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL I Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	-10.21 0.533 N/A N/A 3.6700E- 2.45 6.7934E-
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	F Test on Detected (         bugh Data to Perform         S Statistics Using Im         4.3286E-5         3.5151E-5         6.9102E-5         N/A         7.3415E-5         on Logged Data and         -10.21         0.494         0.264         0.494         0.264	Observations Only n GOF Test puted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 1 Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	-10.21 0.533 N/A N/A 3.6700E- 2.45 6.7934E- 2.45
95% KM Approximate Gamma UCL Lognormal GO Not Enc Description Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	F Test on Detected of pugh Data to Perform         S Statistics Using Im         4.3286E-5         3.5151E-5         6.9102E-5         N/A         7.3415E-5         on Logged Data and         -10.21         0.494         0.264         0.494         0.264         DL/2 Statistics         5.8969E-5	Observations Only n GOF Test aputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 1 Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	-10.21 0.533 N/A N/A 3.6700E- 2.45 6.7934E- 2.45 6.7934E- 2.45
95% KM Approximate Gamma UCL Lognormal GO Not Enc Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	F Test on Detected (         bugh Data to Perform         S Statistics Using Im         4.3286E-5         3.5151E-5         6.9102E-5         N/A         7.3415E-5         on Logged Data and         -10.21         0.494         0.264         0.494         0.264         DL/2 Statistics         5.8969E-5         2.9526E-5	Observations Only n GOF Test puted Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 1 Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	-10.21 0.533 N/A N/A 3.6700E- 2.45 6.7934E- 2.45 6.7934E- 2.45

Nonparame	ot follow a Discerr		
Data do n	lot follow a Discerr		
	Suggested UCL to	o Use	
Recommendation cannot be provided			
Recommendations are based upon data size	, data distribution, a	I to help the user to select the most appropriate 95% UCL and skewness using results from simulation studies. additional insight the user may want to consult a statistici	
proundwater   benzo(g,h,i)perylene   191-24-2)			
	General Statist	ine	
Total Number of Observations		Number of Distinct Observations	18
Number of Detects		Number of Non-Detects	41
Number of Distinct Detects		Number of Distinct Non-Detects	16
Minimum Detect	_	Minimum Non-Detect	
Maximum Detect		Maximum Non-Detect	0.0056
Variance Detects		Percent Non-Detects	95.35
Mean Detects		SD Detects	
Median Detects		CV Detects	N/A
Skewness Detects		Kurtosis Detects	N/A
Mean of Logged Detects	-9.293	SD of Logged Detects	0.252
Mean of Logged Detects	-9.293	SD of Logged Detects	0.252
	-9.293		0.252
Warning: D	Pata set has only 2		0.252
Warning: D	Pata set has only 2	Detected Values.	0.252
Warning: D This is not enough to comp	Pata set has only 2	Detected Values. reliable statistics and estimates.	0.252
Warning: D This is not enough to comp Norm	ata set has only 2 pute meaningful or	Detected Values. reliable statistics and estimates. etects Only	0.252
Warning: D This is not enough to comp Norm	ata set has only 2 pute meaningful or nal GOF Test on D	Detected Values. reliable statistics and estimates. etects Only	0.252
Warning: D This is not enough to comp Norm Not End	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfo	Detected Values. reliable statistics and estimates. etects Only	0.252
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfo ng Normal Critical 9.3500E-5	Detected Values. reliable statistics and estimates. etects Only orm GOF Test	
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean	pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfo	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs	
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfo ng Normal Critical 9.3500E-5 1.6500E-5	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean	1.6500E-
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.6500E-5 1.2125E-4	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	1.6500E- N/A
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	1.6500E N/A N/A N/A 1.6542E
Warning: D This is not enough to comp Norm Not Eno Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	1.6500E- N/A N/A N/A 1.6542E-
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4 1.9654E-4 Tests on Detected	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	1.6500E N/A N/A N/A 1.6542E
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4 1.9654E-4	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	1.6500E N/A N/A N/A 1.6542E
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4 1.9654E-4 Tests on Detected	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	1.6500E N/A N/A N/A 1.6542E
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4 1.9654E-4 Tests on Detected ough Data to Perfor Statistics on Detected	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	1.6500E N/A N/A N/A 1.6542E
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF Not End	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor ng Normal Critical 9.3500E-5 1.2125E-4 1.2064E-4 1.4300E-4 1.9654E-4 Tests on Detected ough Data to Perfor Statistics on Detected 31.77	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 90% Chebyshev UCL	1.6500E N/A N/A 1.6542E 2.5767E
Warning: D This is not enough to comp Norm Not End Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Gamma GOF Not End K hat (MLE)	Pata set has only 2 pute meaningful or nal GOF Test on D ough Data to Perfor 9.3500E-5 1.6500E-5 1.2125E-4 1.2064E-4 1.4300E-4 1.9654E-4 Tests on Detected ough Data to Perfor Statistics on Detected 31.77 2.9426E-6	Detected Values. reliable statistics and estimates. etects Only orm GOF Test Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 4 Observations Only orm GOF Test cted Data Only k star (bias corrected MLE)	1.6500E N/A N/A 1.6542E 2.5767E

Estimates of Gamma Parameters using KM Estimates					
Mean (KM)	9.3500E-5	SD (KM)	1.6500E-5		
Variance (KM)	2.723E-10	SE of Mean (KM)	1.6500E-5		
k hat (KM)	32.11	k star (KM)	29.89		
nu hat (KM)	2762	nu star (KM)	2570		
theta hat (KM)	2.9118E-6	theta star (KM)	3.1285E-6		
80% gamma percentile (KM)	1.0751E-4	90% gamma percentile (KM)	1.1598E-4		
95% gamma percentile (KM)	1.2330E-4	99% gamma percentile (KM)	1.3782E-4		
Gamn	na Kaplan-Me	eier (KM) Statistics			
		Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (N/A, α)	2453	Adjusted Chi Square Value (N/A, β)	2449		
95% KM Approximate Gamma UCL	9.7951E-5	95% KM Adjusted Gamma UCL	9.8108E-5		
		etected Observations Only			
•		Perform GOF Test			
Lognormal RO	S Statistics	Using Imputed Non-Detects			
Mean in Original Scale		Mean in Log Scale	-9.293		
SD in Original Scale		SD in Log Scale	0.276		
95% t UCL (assumes normality of ROS data)	1.0251E-4	95% Percentile Bootstrap UCL	1.0244E-4		
95% BCA Bootstrap UCL	1.0330E-4	95% Bootstrap t UCL	1.0344E-4		
95% H-UCL (Log ROS)	1.0303E-4				
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution			
KM Mean (logged)	-9.293	KM Geo Mean	9.2033E-5		
KM SD (logged)	0.178	95% Critical H Value (KM-Log)	1.701		
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)			
KM SD (logged)		95% Critical H Value (KM-Log)	1.701		
KM Standard Error of Mean (logged)					
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended			
	DL/2 St	tatistics			
DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	9.2735E-4	Mean in Log Scale	-7.725		
SD in Original Scale		SD in Log Scale	1.253		
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.00162		
DL/2 is not a recommended m	ethod, provid	ded for comparisons and historical reasons	1		
Nonparame	etric Distribut	tion Free UCL Statistics			
Data do n	ot follow a D	iscernible Distribution			
	Suggested	UCL to Use			
95% KM (t) UCL					
Warning: Recomme	nded UCL ex	cceeds the maximum observation			
Note: Suggestions regarding the selection of a 05%		puided to help the user to select the most expression $0.5\%$ $100$			
		ovided to help the user to select the most appropriate 95% UCL			
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.					

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

## C (groundwater | benzo(k)fluoranthene | 207-08-9) General Statistics **Total Number of Observations** 43 Number of Distinct Observations 18 Number of Detects 4 Number of Non-Detects 39 Number of Distinct Detects 4 Number of Distinct Non-Detects 14 Minimum Detect 3.6000E-5 Minimum Non-Detect 9.2167E-5 Maximum Detect 9.1500E-5 Maximum Non-Detect 0.0056 Variance Detects 5.758E-10 Percent Non-Detects 90.7% Mean Detects 5.8250E-5 SD Detects 2.3995E-5 Median Detects 5.2750E-5 **CV** Detects N/A **Skewness Detects** 1.174 Kurtosis Detects 1.416 Mean of Logged Detects 0.395 -9.811 SD of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.929 Shapiro Wilk GOF Test 1% Shapiro Wilk Critical Value 0.687 Detected Data appear Normal at 1% Significance Level Lilliefors Test Statistic 0.246 Lilliefors GOF Test 0.413 Detected Data appear Normal at 1% Significance Level 1% Lilliefors Critical Value Detected Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 5.8250E-5 KM Standard Error of Mean 1.1997E-5 90KM SD 2.0780E-5 95% KM (BCA) UCL N/A 95% KM (t) UCL 7.8429E-5 95% KM (Percentile Bootstrap) UCL N/A 95% KM (z) UCL 7.7984E-5 95% KM Bootstrap t UCL N/A 90% KM Chebyshev UCL 9.4242E-5 95% KM Chebyshev UCL 1.1055E-4 97.5% KM Chebyshev UCL 1.3317E-4 99% KM Chebyshev UCL 1.7762E-4 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.246 Anderson-Darling GOF Test 5% A-D Critical Value 0.658 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.199 Kolmogorov-Smirnov GOF 0.395 5% K-S Critical Value Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Note GOF tests may be unreliable for small sample sizes Gamma Statistics on Detected Data Only k hat (MLE) 8.499 k star (bias corrected MLE) 2.291 Theta hat (MLE) 6.8541E-6 Theta star (bias corrected MLE) 2.5422E-5 nu hat (MLE) 67.99 nu star (bias corrected) 18.33 Mean (detects) 5.8250E-5 Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is	small such as	s <1.0, especially when the sample size is small (e.g., <15-20)					
For such situations, GROS	method may y	vield incorrect values of UCLs and BTVs					
This is espec	ially true wher	n the sample size is small.					
For gamma distributed detected data, BTVs a	and UCLs may	y be computed using gamma distribution on KM estimates					
Minimum	3.6000E-5	Mean	0.00908				
Maximum	0.01	Median	0.01				
SD	0.00292	CV	0.322				
k hat (MLE)	1.435	k star (bias corrected MLE)	1.351				
Theta hat (MLE)	0.00632	Theta star (bias corrected MLE)	0.00672				
nu hat (MLE)	123.4	nu star (bias corrected)	116.1				
Adjusted Level of Significance (β)	0.0444						
Approximate Chi Square Value (116.15, α)	92.27	Adjusted Chi Square Value (116.15, $\beta$ )	91.53				
95% Gamma Approximate UCL	0.0114	95% Gamma Adjusted UCL	N/A				
		neters using KM Estimates	<u> </u>				
Mean (KM)			2.0780E-5				
Variance (KM)		SE of Mean (KM)					
k hat (KM)		k star (KM)	7.325				
nu hat (KM)		nu star (KM)	630				
theta hat (KM)		theta star (KM)					
80% gamma percentile (KM) 95% gamma percentile (KM)		90% gamma percentile (KM) 99% gamma percentile (KM)					
95% gamma percentile (KM)	9.7507E-5	99% gamma percentile (KM)	1.1959E-4				
Gamm	a Kanlan Me	er (KM) Statistics					
Approximate Chi Square Value (629.95, α)		Adjusted Chi Square Value (629.95, β)	570.8				
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL					
	0.40702.0		0.42022 0				
Lognormal GC	OF Test on De	etected Observations Only					
Shapiro Wilk Test Statistic	0.983	Shapiro Wilk GOF Test					
10% Shapiro Wilk Critical Value	0.792	Detected Data appear Lognormal at 10% Significance I	Level				
Lilliefors Test Statistic	0.185	Lilliefors GOF Test					
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance I	Level				
Detected Data ap	pear Lognorn	nal at 10% Significance Level					
Note GOF tests	may be unrel	liable for small sample sizes					
Lognormal RO	S Statistics U	Jsing Imputed Non-Detects					
Mean in Original Scale	5.8767E-5	Mean in Log Scale	-9.811				
SD in Original Scale	2.3066E-5	SD in Log Scale	0.374				
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL					
95% BCA Bootstrap UCL		95% Bootstrap t UCL	6.5707E-5				
95% H-UCL (Log ROS)	6.5357E-5						
	Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution						
KM Mean (logged)		KM Geo Mean					
KM SD (logged)		95% Critical H Value (KM-Log)	1.801				
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)					
KM SD (logged)		95% Critical H Value (KM-Log)	1.801				
KM Standard Error of Mean (logged)	0.197						

	DL/2 Sta	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.2308E-4	Mean in Log Scale	-7.789
SD in Original Scale	0.00106	SD in Log Scale	1.35
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.001
DL/2 is not a recommended me	thod, provide	ed for comparisons and historical reasons	
Nonparame	tric Distributi	ion Free UCL Statistics	
Detected Data appear	· Normal Dist	tributed at 1% Significance Level	
	Suggested L	JCL to Use	
95% KM (t) UCL			
Note: Suggestions regarding the selection of a 05%		vided to help the user to select the most appropriate 95% UCL.	
			-
•		tion, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data sets	s; for additional insight the user may want to consult a statisticia	an.
undwater   benzoic acid   65-85-0)			
	General S	Statistics	
Total Number of Observations		Number of Distinct Observations	6
	_		-
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	6
Warning: All observations are Non-Detects	s (NDs), ther	efore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	l other statist	tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific va	alues to estimate environmental parameters (e.g., EPC, BTV)	).
The data act for variable C (are	undurator I h	entrais said LCE QE () was not pressed	
The data set for variable C (gro	undwater   b	enzoic acid   65-85-0) was not processed!	
The data set for variable C (gro	undwater   b	enzoic acid   65-85-0) was not processed!	
¥	undwater   b	enzoic acid   65-85-0) was not processed!	
The data set for variable C (gro undwater   beryllium   7440-41-7)	undwater   b	enzoic acid   65-85-0) was not processed!	
¥	· ·		
undwater   beryllium   7440-41-7)	General S	Statistics	
undwater   beryllium   7440-41-7) Total Number of Observations	General S 41	Statistics Number of Distinct Observations	12
undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects	<b>General S</b> 41 10	Statistics	12 31
undwater   beryllium   7440-41-7) Total Number of Observations	General S 41	Statistics Number of Distinct Observations	
undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects	General S 41 10 10	Statistics Number of Distinct Observations Number of Non-Detects	31 2
undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects Number of Distinct Detects	General S 41 10 10	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	31 2 4.0000
undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General S 41 10 10 6.7000E-5 0.0089	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	31 2 4.0000 0.00
Undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General S 41 10 10 6.7000E-5 0.0089	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	31 2 4.0000 0.009 75.6
undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	General S 41 10 10 6.7000E-5 0.0089 6.7422E-6	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	31 2 4.0000 0.009 75.6 0.002
Undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	General S 41 10 6.7000E-5 0.0089 6.7422E-6 0.00211	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	31 2
undwater   beryllium   7440-41-7) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detects Maximum Detect Variance Detects Mean Detects Median Detects	General S           41           10           10           6.7000E-5           0.0089           6.7422E-6           0.00211           0.00135	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	31 2 4.0000 0.00 75.6 0.00

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.705	Shapiro Wilk GOF Test				
1% Shapiro Wilk Critical Value	0.781	Detected Data Not Normal at 1% Significance Leve	el			
Lilliefors Test Statistic	0.332	Lilliefors GOF Test				
1% Lilliefors Critical Value	0.304	Detected Data Not Normal at 1% Significance Leve	el			
Detected Dat	a Not Norma	l at 1% Significance Level				
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs				
KM Mean	0.00109	KM Standard Error of Mean	3.4626E-4			
90KM SD	0.00159	95% KM (BCA) UCL	0.00178			
95% KM (t) UCL	0.00168	95% KM (Percentile Bootstrap) UCL	0.00171			
95% KM (z) UCL	0.00166	95% KM Bootstrap t UCL	0.00193			
90% KM Chebyshev UCL	0.00213	95% KM Chebyshev UCL	0.0026			
97.5% KM Chebyshev UCL	0.00326	99% KM Chebyshev UCL	0.00454			
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended				
		tected Observations Only				
A-D Test Statistic	0.431	Anderson-Darling GOF Test				
5% A-D Critical Value	0.755	Detected data appear Gamma Distributed at 5% Significance Level				
K-S Test Statistic	0.189	Kolmogorov-Smirnov GOF				
	5% K-S Critical Value 0.275 Detected data appear Gamma Distributed at 5% Significance Lev		ice Level			
Detected data appea	r Gamma Dis	stributed at 5% Significance Level				
		Detected Data Only				
k hat (MLE)	0.821	k star (bias corrected MLE)	0.641			
Theta hat (MLE)	0.00257	Theta star (bias corrected MLE)	0.00328			
nu hat (MLE)	16.42	nu star (bias corrected)	12.83			
Mean (detects)	0.00211					
Commo POS	Statiation un	sing Imputed Non-Detects				
		NDs with many tied observations at multiple DLs				
		s < 1.0, especially when the sample size is small (e.g., <15-20)				
		yield incorrect values of UCLs and BTVs				
		n the sample size is small.				
	-	y be computed using gamma distribution on KM estimates				
	6.7000E-5	Mean	0.00807			
Maximum	0.01	Median	0.000			
SD	0.00365	CV	0.452			
k hat (MLE)	1.609	k star (bias corrected MLE)	1.508			
Theta hat (MLE)	0.00502	Theta star (bias corrected MLE)	0.00536			
nu hat (MLE)	132	nu star (bias corrected MEL)	123.6			
Adjusted Level of Significance (β)	0.0441		0.0			
Adjusted Level of Significance (β) Approximate Chi Square Value (123.64, α)	98.96	Adjusted Chi Square Value (123.64, β)	98.16			
95% Gamma Approximate UCL	0.0101	95% Gamma Adjusted UCL	0.0102			
	0.0101		0.0102			
Estimates of Gamma Parameters using KM Estimates						
Mean (KM)		SD (KM)	0.00159			
Variance (KM)		SE of Mean (KM)				
k hat (KM)	0.471	k star (KM)	0.453			
K lidt (Rivi)	0.471	r Stal (RW)	0.400			

nu hat (KM)	38.65	nu star (KM)	37.16
theta hat (KM)	0.00232	theta star (KM)	0.00241
80% gamma percentile (KM)	0.00179	90% gamma percentile (KM)	0.00302
95% gamma percentile (KM)	0.00435	99% gamma percentile (KM)	0.00766
	0.00100		0.00700
Gamm	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (37.16, α)	24.2	Adjusted Chi Square Value (37.16, β)	23.82
95% KM Approximate Gamma UCL	0.00168	95% KM Adjusted Gamma UCL	0.00171
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
Lognormal GO	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.869	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.248	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.241	Detected Data Not Lognormal at 10% Significance Lev	/el
Detected Data appear A	oproximate l	ognormal at 10% Significance Level	
		Using Imputed Non-Detects	
Mean in Original Scale	0.00109	Mean in Log Scale	-7.724
SD in Original Scale	0.00166	SD in Log Scale	1.434
95% t UCL (assumes normality of ROS data)	0.00152	95% Percentile Bootstrap UCL	0.00155
95% BCA Bootstrap UCL	0.00166	95% Bootstrap t UCL	0.00182
95% H-UCL (Log ROS)	0.00237		
Ctatistics using KM actimates	on Loggod F		
KM Mean (logged)	-7.861	Data and Assuming Lognormal Distribution KM Geo Mean	3 8552E-1
KM SD (logged)	1.569	95% Critical H Value (KM-Log)	3.046
KM Standard Error of Mean (logged)	0.427	95% H-UCL (KM -Log)	0.00281
KM SD (logged)	1.569	95% Critical H Value (KM-Log)	3.046
KM Standard Error of Mean (logged)	0.427		
	DL/2 St	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00212	Mean in Log Scale	-6.517
SD in Original Scale	0.00144	SD in Log Scale	1.101
95% t UCL (Assumes normality)	0.0025	95% H-Stat UCL	0.00416
DL/2 is not a recommended me	ethod, provid	ded for comparisons and historical reasons	
Nonparame	tric Distribu	tion Free UCL Statistics	
Detected Data appear	<b>Gamma Di</b>	stributed at 5% Significance Level	
	Suggested	UCL to Use	
95% KM Adjusted Gamma UCL	0.00171		
		e data were collected in a random and unbiased manner.	
		Ilected from random locations.	
		nental or other non-random methods,	
then contact a	statistician t	o correctly calculate UCLs.	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. C (groundwater | bis(2-chloroethoxy)methane | 111-91-1) General Statistics Total Number of Observations 42 Number of Distinct Observations 9 Number of Detects 0 Number of Non-Detects 42 Number of Distinct Detects 0 Number of Distinct Non-Detects 9 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | bis(2-chloroethoxy)methane | 111-91-1) was not processed! C (groundwater | bis(2-chloroethyl) ether | 111-44-4) General Statistics 42 Total Number of Observations Number of Distinct Observations 9 Number of Detects 0 Number of Non-Detects 42 Number of Distinct Detects 0 Number of Distinct Non-Detects 9 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | bis(2-chloroethyl) ether | 111-44-4) was not processed! C (groundwater | bis(2-ethylhexyl)phthalate | 117-81-7) **General Statistics** Total Number of Observations 42 Number of Distinct Observations 10 Number of Detects 0 Number of Non-Detects 42 Number of Distinct Detects 0 Number of Distinct Non-Detects 10 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | bis(2-ethylhexyl)phthalate | 117-81-7) was not processed! C (groundwater | bromobenzene | 108-86-1)

		Statistics	
Total Number of Observations	13	Number of Distinct Observations	3
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
Warning: All observations are Non-Detect	s (NDs), the	erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (grou	ndwater I h	romobenzene   108-86-1) was not processed!	
C (groundwater   bromochloromethane   74-97-5)			
		Statistics	
Total Number of Observations	13	Number of Distinct Observations	3
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
		erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	l other stat	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	water   bror	nochloromethane   74-97-5) was not processed!	
C (groundwater   bromodichloromethane   75-27-4)			
		Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
-		erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundw	ater   brom	odichloromethane   75-27-4) was not processed!	
C (groundwater   bromoform   75-25-2)			
		Statistics	
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	F
			5

		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	).
The data set for variable C (g	roundwater	bromoform   75-25-2) was not processed!	
C (groundwater   bromomethane   74-83-9)			
	General		
Total Number of Observations		Number of Distinct Observations	5
Number of Detects		Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	5
-		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	I.
The data set for variable C (gro	undwater   bi	romomethane   74-83-9) was not processed!	
C (groundwater   butylbenzylphthalate   85-68-7)			
	General		
Total Number of Observations		Number of Distinct Observations	9
Number of Detects		Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	I.
The data set for variable C (ground	dwater   buty	Ibenzylphthalate   85-68-7) was not processed!	
C (groundwater   cadmium   7440-43-9)			
	General		
Total Number of Observations		Number of Distinct Observations	22
Number of Detects		Number of Non-Detects	16
Number of Distinct Detects		Number of Distinct Non-Detects	1
Minimum Detect		Minimum Non-Detect	0.005
Maximum Detect		Maximum Non-Detect	0.005
Variance Detects		Percent Non-Detects	39.02%
Mean Detects		SD Detects	0.00261
Median Detects		CV Detects	1.195
Skewness Detects		Kurtosis Detects	6.484
Mean of Logged Detects	-6.898	SD of Logged Detects	1.512

Norr	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.733	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.886	Detected Data Not Normal at 1% Significance Leve	I
Lilliefors Test Statistic	0.246	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.201	Detected Data Not Normal at 1% Significance Leve	I
Detected Dat	a Not Norma	l at 1% Significance Level	
Kaplan-Meier (KM) Statistics us	-	ritical Values and other Nonparametric UCLs	
KM Mean		KM Standard Error of Mean	
90KM SD		95% KM (BCA) UCL	0.00253
95% KM (t) UCL	0.0025	95% KM (Percentile Bootstrap) UCL	0.00252
95% KM (z) UCL	0.00248	95% KM Bootstrap t UCL	0.00272
90% KM Chebyshev UCL	0.00298	95% KM Chebyshev UCL	0.00349
97.5% KM Chebyshev UCL	0.00419	99% KM Chebyshev UCL	0.00556
		etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appea	r Gamma Di	stributed at 5% Significance Level	
		Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.708
Theta hat (MLE)		Theta star (bias corrected MLE)	0.00308
nu hat (MLE)		nu star (bias corrected)	35.42
Mean (detects)	0.00218		
		sing Imputed Non-Detects	
-		5 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
	-	yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
-		y be computed using gamma distribution on KM estimates	
	4.2500E-5	Mean	0.00523
Maximum		Median	0.0028
SD		CV	0.833
k hat (MLE)		k star (bias corrected MLE)	0.751
Theta hat (MLE)		Theta star (bias corrected MLE)	0.00697
nu hat (MLE)		nu star (bias corrected)	61.54
Adjusted Level of Significance (β)			
Approximate Chi Square Value (61.54, α)		Adjusted Chi Square Value (61.54, β)	43.97
95% Gamma Approximate UCL	0.00724	95% Gamma Adjusted UCL	0.00732
		meters using KM Estimates	
Estimates of G Mean (KM) Variance (KM)	0.00187	meters using KM Estimates SD (KM) SE of Mean (KM)	0.00214

k hat (KM)	0.762	k star (KM)	0.723
nu hat (KM)	62.49	nu star (KM)	59.25
theta hat (KM)	0.00246	theta star (KM)	0.00259
80% gamma percentile (KM)	0.00307	90% gamma percentile (KM)	0.00466
95% gamma percentile (KM)	0.0063	99% gamma percentile (KM)	0.0102
Gamma	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (59.25, α)	42.55	Adjusted Chi Square Value (59.25, β)	42.04
95% KM Approximate Gamma UCL	0.00261	95% KM Adjusted Gamma UCL	0.00264
		etected Observations Only	
Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.931	Detected Data Not Lognormal at 10% Significance Lev	/el
Lilliefors Test Statistic	0.22	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.159	Detected Data Not Lognormal at 10% Significance Lev	/el
		al at 10% Significance Level	
L ognormal BOS	Statistics I	Jsing Imputed Non-Detects	
Mean in Original Scale	0.00181	Mean in Log Scale	-7.028
SD in Original Scale	0.00221	SD in Log Scale	1.371
95% t UCL (assumes normality of ROS data)	0.00239	95% Percentile Bootstrap UCL	0.00241
95% BCA Bootstrap UCL	0.00253	95% Bootstrap t UCL	0.00241
95% H-UCL (Log ROS)	0.00235	55% Boolstap ( 66)	0.00200
	0.00410		
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-7.005	KM Geo Mean	9.0762E-4
KM SD (logged)	1.442	95% Critical H Value (KM-Log)	2.88
KM Standard Error of Mean (logged)	0.291	95% H-UCL (KM -Log)	0.00495
KM SD (logged)	1.442	95% Critical H Value (KM-Log)	2.88
KM Standard Error of Mean (logged)	0.291		
I		1	
	DL/2 St		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00231	Mean in Log Scale	-6.544
SD in Original Scale	0.00202	SD in Log Scale	1.254
95% t UCL (Assumes normality)	0.00284	95% H-Stat UCL	0.00533
DL/2 is not a recommended me	sthod, provid	led for comparisons and historical reasons	
Nonparame	tric Distribut	tion Free UCL Statistics	
		stributed at 5% Significance Level	
	Suggested	UCL to Use	
95% KM Adjusted Gamma UCL	0.00264		
		· · · · · · · · · · · · · · · · · · ·	
		e data were collected in a random and unbiased manner.	
		llected from random locations.	
		nental or other non-random methods,	
then contact as	statistician te	o correctly calculate UCLs.	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. C (groundwater | caprolactam | 105-60-2) General Statistics 30 Total Number of Observations Number of Distinct Observations 5 Number of Detects 0 Number of Non-Detects 30 Number of Distinct Detects 0 Number of Distinct Non-Detects 5 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | caprolactam | 105-60-2) was not processed! C (groundwater | carbazole | 86-74-8) General Statistics Total Number of Observations 42 Number of Distinct Observations 11 Number of Detects Number of Non-Detects 2 40 2 Number of Distinct Detects Number of Distinct Non-Detects 9 Minimum Detect 8.0000E-4 Minimum Non-Detect 0.002 0.011 Maximum Detect 9.0000E-4 Maximum Non-Detect Variance Detects 5.0000E-9 95.24% Percent Non-Detects Mean Detects 8.5000E-4 SD Detects 7.0711E-5 Median Detects 8.5000E-4 CV Detects 0.0832 **Skewness Detects** N/A Kurtosis Detects N/A Mean of Logged Detects -7.072 SD of Logged Detects 0.0833 Warning: Data set has only 2 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates. Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 8.5000E-4 KM Standard Error of Mean 5.0000E-5 90KM SD 5.0000E-5 95% KM (BCA) UCL N/A 95% KM (t) UCL 9.3414E-4 95% KM (Percentile Bootstrap) UCL N/A 95% KM (z) UCL 9.3224E-4 95% KM Bootstrap t UCL N/A 90% KM Chebyshev UCL 0.001 95% KM Chebyshev UCL 0.00107 97.5% KM Chebyshev UCL 0.00116 99% KM Chebyshev UCL 0.00135

		etected Observations Only Perform GOF Test	
		Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A
nu hat (MLE) Mean (detects)		nu star (bias corrected)	N/A
Wearr (detects)	0.3000E-4		
Estimates of G	iamma Parai	meters using KM Estimates	
Mean (KM)	8.5000E-4	SD (KM)	5.0000E-
Variance (KM)	2.5000E-9	SE of Mean (KM)	5.0000E-
k hat (KM)		k star (KM)	268.4
nu hat (KM)		nu star (KM)	22543
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		99% gamma percentile (KM)	
Gamn	na Kaplan-Mo	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.0443
Approximate Chi Square Value (N/A, α)	22195	Adjusted Chi Square Value (N/A, β)	22183
95% KM Approximate Gamma UCL	8.6333E-4	95% KM Adjusted Gamma UCL	8.6381E-4
		etected Observations Only	
Not En	ough Data to	Perform GOF Test	
	C Ctatiation I	Joing Imputed New Detects	
		Using Imputed Non-Detects	7 070
Mean in Original Scale		Mean in Log Scale	-7.072
SD in Original Scale		SD in Log Scale	0.104
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	8.7771E-4
95% H-UCL (Log ROS)	8.7681E-4		
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	8 4853E-4
KM SD (logged)		95% Critical H Value (KM-Log)	N/A
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	N/A
KM Standard Error of Mean (logged) KM SD (logged)	0.0589	95% Critical H Value (KM-Log)	
KM Standard Error of Mean (logged)			N/A
	0.0000		
	DL/2 St	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00232	Mean in Log Scale	-6.371
SD in Original Scale	0.0019	SD in Log Scale	0.763
95% t UCL (Assumes normality)	0.00281	95% H-Stat UCL	0.0029
DL/2 is not a recommended m	ethod, provid	ded for comparisons and historical reasons	
Nonparame	etric Distribu	tion Free UCL Statistics	

Data do no	t follow a	a Discernible Distribution	
	Suggoot	ed UCL to Use	
95% KM (t) UCL	••		
		exceeds the maximum observation	
Note: Suggestions regarding the selection of a 95%	UCL are	provided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size,	data dist	ribution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real Wo	orld data	sets; for additional insight the user may want to consult a statisticia	n.
C (groundwater   carbon disulfide   75-15-0)			
		ral Statistics	
Total Number of Observations	36	Number of Distinct Observations	3
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	3
Man land All also model and blan Data de		the section will statistic and estimate school distance in AID-1	
		therefore all statistics and estimates should also be NDs! atistics are also NDs lying below the largest detection limit!	
		ic values to estimate environmental parameters (e.g., EPC, BTV).	
		ic values to estimate environmental parameters (e.g., EFC, BTV).	
The data set for variable C (group	ndwater '	carbon disulfide   75-15-0) was not processed!	
C (groundwater   carbon tetrachloride   56-23-5)			
	Gener	ral Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detects	<b>s (NDs),</b> f	therefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	l other st	atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	te specifi	ic values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	water   c	arbon tetrachloride   56-23-5) was not processed!	
C (groundwater   chlorobenzene   108-90-7)			
	Gener	ral Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	1	Number of Non-Detects	35
Number of Distinct Detects	1	Number of Distinct Non-Detects	4
Warning: Only one distinct data value was detecte	d! ProUC	CL (or any other software) should not be used on such a data set!	
It is suggested to use alternative site specific values determ	ined by '	the Project Team to estimate environmental parameters (e.g., EP	C, BTV).

The data set for variable C (groundwater | chlorobenzene | 108-90-7) was not processed! C (groundwater | chloroethane | 75-00-3) **General Statistics** Total Number of Observations 36 Number of Distinct Observations 5 Number of Detects 0 Number of Non-Detects 36 Number of Distinct Detects 0 Number of Distinct Non-Detects 5 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | chloroethane | 75-00-3) was not processed! C (groundwater | chloroform | 67-66-3) **General Statistics Total Number of Observations** 36 Number of Distinct Observations 5 Number of Detects 0 Number of Non-Detects 36 Number of Distinct Detects 0 Number of Distinct Non-Detects 5 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | chloroform | 67-66-3) was not processed! C (groundwater | chloromethane | 74-87-3) **General Statistics** Total Number of Observations 36 Number of Distinct Observations 5 Number of Detects 0 Number of Non-Detects 36 Number of Distinct Detects 0 Number of Distinct Non-Detects 5 Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV). The data set for variable C (groundwater | chloromethane | 74-87-3) was not processed! C (groundwater | chromium (total) | 7440-47-3) **General Statistics** 

Total Number of Observations	<u>/1</u>	Number of Distinct Observations	10
Total Number of Observations		Number of Distinct Observations	18
Number of Detects		Number of Non-Detects	22
Number of Distinct Detects		Number of Distinct Non-Detects	3
Minimum Detect		Minimum Non-Detect	0.001
Maximum Detect		Maximum Non-Detect	0.015
Variance Detects		Percent Non-Detects	53.66%
Mean Detects		SD Detects	0.00785
Median Detects		CV Detects	1.937
Skewness Detects	4.169	Kurtosis Detects	17.77
Mean of Logged Detects	-6.053	SD of Logged Detects	0.807
Norn	nal GOF Tes	st on Detects Only	
Shapiro Wilk Test Statistic	0.364	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.863	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.402	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.229	Detected Data Not Normal at 1% Significance Level	
Detected Dat	a Not Norma	al at 1% Significance Level	
Kaplan-Meier (KM) Statistics usi	ng Normal C	Critical Values and other Nonparametric UCLs	
KM Mean	0.00285	KM Standard Error of Mean	8.8194E-4
90KM SD	0.00539	95% KM (BCA) UCL	0.00457
95% KM (t) UCL	0.00433	95% KM (Percentile Bootstrap) UCL	0.00444
95% KM (z) UCL		95% KM Bootstrap t UCL	0.00911
90% KM Chebyshev UCL	0.00549	95% KM Chebyshev UCL	0.00669
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	0.0116
-		ataset. Other substitution method recommended	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected Data Not Gamma Distributed at 5% Significance	
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected Data Not Gamma Distributed at 5% Significance	
			Level
	Gamma Dist	tributed at 5% Significance Level	
	<u></u>		
		n Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.923
Theta hat (MLE)		Theta star (bias corrected MLE)	0.00439
nu hat (MLE)		nu star (bias corrected)	35.06
Mean (detects)	0.00405		
		sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	9.6000E-4	Mean	0.00728
Maximum	0.036	Median	0.01
L	<u> </u>		

SD	0.00609	CV	0.835
k hat (MLE)	1.573	k star (bias corrected MLE)	1.474
Theta hat (MLE)	0.00463	Theta star (bias corrected MLE)	0.00494
nu hat (MLE)	129	nu star (bias corrected)	120.9
Adjusted Level of Significance (β)	0.0441	, , , , , , , , , , , , , , , , , , ,	
Approximate Chi Square Value (120.88, α)	96.49	Adjusted Chi Square Value (120.88, β)	95.69
95% Gamma Approximate UCL	0.00913	95% Gamma Adjusted UCL	0.0092
Estimates of G	iamma Para	meters using KM Estimates	
Mean (KM)	0.00285	SD (KM)	0.00539
Variance (KM)	2.9039E-5	SE of Mean (KM)	8.8194E-4
k hat (KM)	0.279	k star (KM)	0.275
nu hat (KM)	22.89	nu star (KM)	22.55
theta hat (KM)	0.0102	theta star (KM)	0.0104
80% gamma percentile (KM)	0.00426	90% gamma percentile (KM)	0.00848
95% gamma percentile (KM)	0.0134	99% gamma percentile (KM)	0.0263
	na Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (22.55, α)	12.75	Adjusted Chi Square Value (22.55, β)	12.48
95% KM Approximate Gamma UCL	0.00503	95% KM Adjusted Gamma UCL	0.00514
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
		etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.917 0.247	Detected Data Not Lognormal at 10% Significance Le	evel
10% Lilliefors Critical Value	0.247	Detected Data Not Lognormal at 10% Significance Le	wol
		al at 10% Significance Level	
	tot Lognorm		
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-6.311
SD in Original Scale	0.00547	SD in Log Scale	0.786
95% t UCL (assumes normality of ROS data)	0.00431	95% Percentile Bootstrap UCL	0.00452
95% BCA Bootstrap UCL	0.00552	95% Bootstrap t UCL	0.00817
95% H-UCL (Log ROS)	0.00322		
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-6.271	KM Geo Mean	0.00189
KM SD (logged)	0.679	95% Critical H Value (KM-Log)	2.037
KM Standard Error of Mean (logged)	0.129	95% H-UCL (KM -Log)	0.00296
KM SD (logged)	0.679	95% Critical H Value (KM-Log)	2.037
KM Standard Error of Mean (logged)	0.129		
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00506	Mean in Log Scale	-5.74
SD in Original Scale	0.00576	SD in Log Scale	1.008

95% t UCL (Assumes normality)	0.00658	95% H-Stat UCL	0.00779
		ded for comparisons and historical reasons	0.00779
DL/2 IS not a recommended m	etnoa, provid	ded for comparisons and historical reasons	
Namana	tuis Distribu		
		tion Free UCL Statistics	
Data do n	IOT TOILOW & L		
	Quanastad		
95% KM (t) UCL	0.00433	UCL to Use	1
95% KW (t) UCL	0.00433		
The coloulated UCLs are based on ecouran	tions that the	e data were collected in a random and unbiased manner.	
-		illected from random locations.	
		nental or other non-random methods,	
		to correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 95%		ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statistic	ian
	vonu uata se	to, for additional moight the user may wallt to consult a Statistic	all.
C (groundwater   chrysene   218-01-9)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	18
Number of Detects	_	Number of Non-Detects	39
Number of Distinct Detects		Number of Distinct Non-Detects	14
Minimum Detect		Minimum Non-Detect	
Maximum Detect		Maximum Non-Detect	0.0056
Variance Detects		Percent Non-Detects	90.7%
Mean Detects		SD Detects	
Median Detects		CV Detects	N/A
Skewness Detects		Kurtosis Detects	
Mean of Logged Detects		SD of Logged Detects	0.424
	-3.004		0.424
Norn		t on Detects Only	
Shapiro Wilk Test Statistic	r	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data appear Normal at 1% Significance Le	vel
Lilliefors Test Statistic		Lilliefors GOF Test	
1% Lilliefors Critical Value		Detected Data appear Normal at 1% Significance Le	vel
		nal at 1% Significance Level	
		eliable for small sample sizes	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
	6.1889E-5	KM Standard Error of Mean	1.1623F-5
	2.3953E-5	95% KM (BCA) UCL	N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	r	Anderson-Darling GOF Test	
5% A-D Critical Value	0.658	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.28	Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significan	ce l evel
		stributed at 5% Significance Level	
		eliable for small sample sizes	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	1.925
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected MLL)	15.4
			15.4
Mean (detects)	6.7000E-5		
		sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
· · ·		en the sample size is small.	
		by be computed using gamma distribution on KM estimates	
Minimum	4.3000E-5	Mean	0.00908
Maximum	0.01	Median	0.01
SD	0.00292	CV	0.322
k hat (MLE)	1.476	k star (bias corrected MLE)	1.389
Theta hat (MLE)	0.00615	Theta star (bias corrected MLE)	0.00654
nu hat (MLE)	127	nu star (bias corrected)	119.4
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (119.43, α)	95.2	Adjusted Chi Square Value (119.43, β)	94.45
95% Gamma Approximate UCL	0.0114	95% Gamma Adjusted UCL	N/A
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	6.1889E-5	SD (KM)	2.3953E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)		k star (KM)	6.225
nu hat (KM)		nu star (KM)	535.4
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		90% gamma percentile (KM)	
95 % gamma percendie (KM)	1.0752E-4	55 % garnina percenule (KM)	1.5505E-4
	a Kanlan M	ciar (VAI) Statistica	
	-	eier (KM) Statistics	404
Approximate Chi Square Value (535.38, α)		Adjusted Chi Square Value (535.38, β)	481
95% KM Approximate Gamma UCL	6.8641E-5	95% KM Adjusted Gamma UCL	6.8888E-5
		etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 10% Significance I	_evel
Lilliefors Test Statistic	0.255	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.346	Detected Data appear Lognormal at 10% Significance I	_evel
		·	

Detected Data ap	pear Lognor	mal at 10% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
	2 Statistics I	Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-9.75
SD in Original Scale		SD in Log Scale	0.31
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)			
Statistics using KM estimates KM Mean (logged)	on Logged L -9.75	Data and Assuming Lognormal Distribution KM Geo Mean	E 0210
	-9.75	95% Critical H Value (KM-Log)	5.8310
KM SD (logged)	0.326	· •	
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	
KM SD (logged) KM Standard Error of Mean (logged)	0.326	95% Critical H Value (KM-Log)	1.7
		taset. Other substitution method recommended	
	DL/2 SI	latiation	
DL/2 Normal	DL/2 31	DL/2 Log-Transformed	
Mean in Original Scale	9 2390F-4	Mean in Log Scale	-7.7
SD in Original Scale	0.00106	SD in Log Scale	1.3
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.00
		led for comparisons and historical reasons	
		tion Free UCL Statistics	
	r Normai Dis	stributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL			
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size,	data distribu	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	orld data set	ts; for additional insight the user may want to consult a statisticia	an.
undwater   cis-1,2-dichloroethene   156-59-2)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detect	s (NDe) the	refore all statistics and estimates should also be NDs!	
-		stics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV)	).
The Flueur feath may decide to use alternative st			1.1
	•		

	General	Statistics	
Total Number of Observations	41	Number of Distinct Observations	35
Number of Detects	35	Number of Non-Detects	6
Number of Distinct Detects	34	Number of Distinct Non-Detects	1
Minimum Detect	0.0024	Minimum Non-Detect	0.00
Maximum Detect	0.805	Maximum Non-Detect	0.00
Variance Detects	0.0315	Percent Non-Detects	14.0
Mean Detects	0.108	SD Detects	0.1
Median Detects	0.024	CV Detects	1.6
Skewness Detects	2.532	Kurtosis Detects	6.8
Mean of Logged Detects	-3.443	SD of Logged Detects	1.6
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.64	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.91	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.277	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.172	Detected Data Not Normal at 1% Significance Level	
Kaplan-Meier (KM) Statistics usir	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	0.0923	KM Standard Error of Mean	0.0
90KM SD	0.166	95% KM (BCA) UCL	0.1
95% KM (t) UCL	0.137	95% KM (Percentile Bootstrap) UCL	0.1
95% KM (z) UCL	0.136	95% KM Bootstrap t UCL	0.1
90% KM Chebyshev UCL	0.171	95% KM Chebyshev UCL	0.2
97.5% KM Chebyshev UCL	0.256	99% KM Chebyshev UCL	0.3
Gamma GOF	Tests on De	stected Observations Only	
A-D Test Statistic	1.215	Anderson-Darling GOF Test	
5% A-D Critical Value	0.81	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.161	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.157	Detected Data Not Gamma Distributed at 5% Significance	Leve
Detected Data Not C	amma Dist	ributed at 5% Significance Level	
Gamma	Statistics or	Detected Data Only	
k hat (MLE)	0.52	k star (bias corrected MLE)	0.4
Theta hat (MLE)	0.207	Theta star (bias corrected MLE)	0.2
nu hat (MLE)	36.43	nu star (bias corrected)	34.0
Mean (detects)	0.108		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such a	s <1.0, especially when the sample size is small (e.g., <15-20)	

For gamma distributed detected data, BTVs an	nd UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	0.0024	Mean	0.0933
Maximum	0.805	Median	0.0182
SD	0.167	CV	1.794
k hat (MLE)	0.51	k star (bias corrected MLE)	0.489
Theta hat (MLE)	0.183	Theta star (bias corrected MLE)	0.191
nu hat (MLE)	41.85	nu star (bias corrected)	40.12
Adjusted Level of Significance (β)	0.0441		
Approximate Chi Square Value (40.12, α)	26.6	Adjusted Chi Square Value (40.12, β)	26.2
95% Gamma Approximate UCL	0.141	95% Gamma Adjusted UCL	0.143
		meters using KM Estimates	0.100
Mean (KM)	0.0923	SD (KM)	0.166
Variance (KM)	0.0275	SE of Mean (KM)	0.0263
k hat (KM)	0.31	k star (KM)	0.304
nu hat (KM)	25.43	nu star (KM)	24.9
theta hat (KM)	0.298	theta star (KM)	0.304
80% gamma percentile (KM)	0.142	90% gamma percentile (KM)	0.272
95% gamma percentile (KM)	0.421	99% gamma percentile (KM)	0.807
Gamma	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (24.90, α)	14.53	Adjusted Chi Square Value (24.90, β)	14.24
95% KM Approximate Gamma UCL	0.158	95% KM Adjusted Gamma UCL	0.161
Lognormal GOI	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.944	Detected Data Not Lognormal at 10% Significance Lev	/el
Lilliefors Test Statistic	0.132	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.136	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data appear Ap	proximate l	Lognormal at 10% Significance Level	
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	0.0922	Mean in Log Scale	-3.852
SD in Original Scale	0.168	SD in Log Scale	1.846
95% t UCL (assumes normality of ROS data)	0.136	95% Percentile Bootstrap UCL	0.138
95% BCA Bootstrap UCL	0.148	95% Bootstrap t UCL	0.16
95% H-UCL (Log ROS)	0.317	· · ·	
		I	
		Data and Assuming Lognormal Distribution	0.005
KM Mean (logged)	-3.771	KM Geo Mean	0.023
KM SD (logged)	1.708	95% Critical H Value (KM-Log)	3.235
KM Standard Error of Mean (logged)	0.272	95% H-UCL (KM -Log)	0.238
KM SD (logged)	1.708	95% Critical H Value (KM-Log)	3.235
KM Standard Error of Mean (logged)	0.272		
		tatistics	
DL/2 Normal	002 3	DL/2 Log-Transformed	
Mean in Original Scale	0.0922	Mean in Log Scale	-3.816

	0.100		1.781
SD in Original Scale 95% t UCL (Assumes normality)	0.168	SD in Log Scale 95% H-Stat UCL	0.275
	0.136		0.275
DL/2 is not a recommended m	etnoa, provid	ded for comparisons and historical reasons	
Nonporom	trio Diotribut	tion Free UCL Statistics	
-			
Detected Data appear Approx	Imate Logno	rmal Distributed at 10% Significance Level	
	Oursested		
		UCL to Use	
KM H-UCL	0.238		
· · · · · · · · · · · · · · · · · · ·		e data were collected in a random and unbiased manner.	
		llected from random locations.	
		nental or other non-random methods,	
then contact a	statistician t	o correctly calculate UCLs.	
		ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data set	ts; for additional insight the user may want to consult a statistician	n.
C (groundwater   copper   7440-50-8)			
	General	Statistics	
Total Number of Observations	41	Number of Distinct Observations	17
Number of Detects	16	Number of Non-Detects	25
Number of Distinct Detects	16	Number of Distinct Non-Detects	1
Minimum Detect	6.6500E-4	Minimum Non-Detect	0.02
Maximum Detect	0.11	Maximum Non-Detect	0.02
Variance Detects	7.5242E-4	Percent Non-Detects	60.98%
Mean Detects	0.0184	SD Detects	0.0274
Median Detects	0.0106	CV Detects	1.488
Skewness Detects	2.771	Kurtosis Detects	8.804
Mean of Logged Detects	-4.883	SD of Logged Detects	1.454
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.645	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.844	Detected Data Not Normal at 1% Significance Level	
	0.301	Lilliefors GOF Test	
Lilliefors Test Statistic	0.301 0.248	Lilliefors GOF Test Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic 1% Lilliefors Critical Value	0.248	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic 1% Lilliefors Critical Value	0.248		
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Date	0.248 a Not Norma	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level	
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usi	0.248 a Not Norma ng Normal C	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level ritical Values and other Nonparametric UCLs	0.00317
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usi KM Mean	0.248 a Not Norma ng Normal C 0.0112	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level ritical Values and other Nonparametric UCLs KM Standard Error of Mean	
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usi KM Mean 90KM SD	0.248 a Not Norma ng Normal C 0.0112 0.0181	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	0.0169
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usi KM Mean 90KM SD 95% KM (t) UCL	0.248 a Not Norma ng Normal C 0.0112 0.0181 0.0166	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.0169 0.0168
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usi KM Mean 90KM SD 95% KM (t) UCL 95% KM (z) UCL	0.248 a Not Normal ng Normal C 0.0112 0.0181 0.0166 0.0165	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	0.0169 0.0168 0.0198
Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usi KM Mean 90KM SD 95% KM (t) UCL	0.248 a Not Norma ng Normal C 0.0112 0.0181 0.0166	Detected Data Not Normal at 1% Significance Level I at 1% Significance Level ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.0168

Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.457	Anderson-Darling GOF Test	
5% A-D Critical Value	0.78	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.157	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.224	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appea	r Gamma Di	stributed at 5% Significance Level	
		Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.596
Theta hat (MLE)		Theta star (bias corrected MLE)	0.0309
nu hat (MLE)	21.83	nu star (bias corrected)	19.07
Mean (detects)	0.0184		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		5 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	en the sample size is small.	
		y be computed using gamma distribution on KM estimates	
	6.6500E-4	Mean	0.015
Maximum	0.11	Median	0.01
SD	0.0176	CV	1.171
k hat (MLE)	1.379	k star (bias corrected MLE)	1.294
Theta hat (MLE)	0.0109	Theta star (bias corrected MLE)	0.0116
nu hat (MLE)	113.1	nu star (bias corrected)	106.1
Adjusted Level of Significance (β)	0.0441		
Approximate Chi Square Value (106.12, α)	83.34	Adjusted Chi Square Value (106.12, β)	82.61
95% Gamma Approximate UCL	0.0192	95% Gamma Adjusted UCL	0.0193
		meters using KM Estimates	
Mean (KM)	0.0112	SD (KM)	0.0181
Variance (KM)	3.2763E-4	SE of Mean (KM)	0.00317
k hat (KM)	0.386	k star (KM)	0.374
nu hat (KM)	31.62	nu star (KM)	30.64
theta hat (KM)	0.0291	theta star (KM)	0.0301
80% gamma percentile (KM)	0.018	90% gamma percentile (KM)	0.0321
95% gamma percentile (KM)	0.0478	99% gamma percentile (KM)	0.0875
		eier (KM) Statistics	10.00
Approximate Chi Square Value (30.64, α)		Adjusted Chi Square Value (30.64, β)	18.66
95% KM Approximate Gamma UCL	0.0181	95% KM Adjusted Gamma UCL	0.0185
Lognormal GC	OF Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.963	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.906	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.16	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.196	Detected Data appear Lognormal at 10% Significance L	evel
Detected Data ap	pear Lognor	mal at 10% Significance Level	
	-		

Lognormal RO			
		Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-5.276
SD in Original Scale	0.0184	SD in Log Scale	1.254
95% t UCL (assumes normality of ROS data)	0.0159	95% Percentile Bootstrap UCL	0.0163
95% BCA Bootstrap UCL		95% Bootstrap t UCL	0.0206
95% H-UCL (Log ROS)	0.019		
Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-5.252	KM Geo Mean	0.0052
KM SD (logged)	1.236	95% Critical H Value (KM-Log)	2.624
KM Standard Error of Mean (logged)	0.305	95% H-UCL (KM -Log)	0.018
KM SD (logged)	1.236	95% Critical H Value (KM-Log)	2.624
KM Standard Error of Mean (logged)	0.305		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0133	Mean in Log Scale	-4.714
SD in Original Scale	0.0173	SD in Log Scale	0.901
95% t UCL (Assumes normality)	0.0178	95% H-Stat UCL	0.018
-		tion Free UCL Statistics	
Detected Data appea	r Gamma Dis	stributed at 5% Significance Level	
	Suggested	UCL to Use	
95% KM Adjusted Gamma UCL	0.0185		
-	0.0105		
The calculated UCLs are based on assumpt		data were collected in a random and unbiased manner.	
	tions that the	e data were collected in a random and unbiased manner. Ilected from random locations.	
Please verify the o	tions that the data were co		
Please verify the o If the data were collected	tions that the data were co d using judgn	llected from random locations.	
Please verify the of the data were collected then contact a	tions that the data were co I using judgn statistician to	llected from random locations. nental or other non-random methods, o correctly calculate UCLs.	
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95%	tions that the data were co d using judgn statistician to 6 UCL are pro	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL.	
Please verify the of If the data were collected then contact a then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	tions that the data were co d using judgn statistician to b UCL are pro- d data distribu	llected from random locations. nental or other non-random methods, o correctly calculate UCLs.	
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	tions that the data were co d using judgn statistician to b UCL are pro- d data distribu	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	tions that the data were co d using judgn statistician to b UCL are pro- d data distribu	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	tions that the data were co d using judgn statistician to b UCL are pro- d data distribu	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. rs; for additional insight the user may want to consult a statisticia	
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) Total Number of Observations	tions that the data were co d using judgn statistician to 6 UCL are pro , data distribu /orld data set General 3 36	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. rs; for additional insight the user may want to consult a statistician Statistics Number of Distinct Observations	an. 7
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) Total Number of Observations Number of Detects	tions that the data were co d using judgn statistician to b UCL are pro data distribu /orld data set General S 36 5	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. rs; for additional insight the user may want to consult a statistician Statistics Number of Distinct Observations Number of Non-Detects	an. 7 31
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) Total Number of Observations Number of Detects Number of Distinct Detects	tions that the data were co d using judgn statistician to 6 UCL are pro , data distribu /orld data set General 3 36 5 4	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. by ided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statistician Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	an. 7 31 4
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) (groundwater   cumene   98-82-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	tions that the data were co d using judgn statistician to b UCL are pro- data distribu /orld data set 36 5 4 4.0000E-4	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. povided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. as; for additional insight the user may want to consult a statistician Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detects	an. 7 31 4 0.001
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) (groundwater   cumene   98-82-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	tions that the data were co d using judgn statistician to b UCL are pro- d data distribut /orld data set 36 5 4 4.0000E-4 0.002	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. by ided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statistician Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	an. 7 31 4 0.001 0.025
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) (groundwater   cumene   98-82-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects	tions that the data were co d using judgn statistician to b UCL are pro- data distribu /orld data set 36 5 4 4.0000E-4 0.002 3.4800E-7	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Divided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. (s; for additional insight the user may want to consult a statistician (s; for additional insight the user may want to consult a statistician (s) Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects (s) Percent Non-Detec	7 31 4 0.001 0.025 86.11 ⁴
Please verify the of If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W (groundwater   cumene   98-82-8) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	tions that the data were co d using judgn statistician to b UCL are pro- d data distribut /orld data set 36 5 4 4.0000E-4 0.002 3.4800E-7 0.00104	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. by ided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. is; for additional insight the user may want to consult a statistician Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	7 31 4 0.001 0.025 86.11

	1.005		0 500
Skewness Detects		Kurtosis Detects	2.533
Mean of Logged Detects	-6.997	SD of Logged Detects	0.577
Nom		t on Detects Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data appear Normal at 1% Significance Lev	vol
Lilliefors Test Statistic		Lilliefors GOF Test	
1% Lilliefors Critical Value			(al
		Detected Data appear Normal at 1% Significance Lev	/ei
		nal at 1% Significance Level	
	may be unre	eliable for small sample sizes	
Konlan Majar (KM) Statiation usi		witige Voluce and other Nonnersmatric LICLs	
	7.2941E-4	ritical Values and other Nonparametric UCLs	1 50055 4
		KM Standard Error of Mean	
	3.8770E-4	95% KM (BCA) UCL	N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.00121	95% KM Chebyshev UCL	0.00143
97.5% KM Chebyshev UCL	0.00173	99% KM Chebyshev UCL	0.00232
Gamma GOE	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significant	
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
		stributed at 5% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	1.754
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected)	17.54
Mean (detects)			17.04
	0.00104		
Gamma ROS	Statistics u	sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
•		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
	-	be computed using gamma distribution on KM estimates	
	4.0000E-4	Mean	0.00876
Maximum		Median	0.00876
SD	0.001	CV	0.01
k hat (MLE)		k star (bias corrected MLE)	2.46
Theta hat (MLE)	0.00329	Theta star (bias corrected MLE)	0.00356
nu hat (MLE)		nu star (bias corrected)	177.1
Adjusted Level of Significance (β)	0.0428		
Approximate Chi Square Value (177.13, α)		Adjusted Chi Square Value (177.13, β)	146.1
95% Gamma Approximate UCL	0.0105	95% Gamma Adjusted UCL	0.0106

		neters using KM Estimates	0.07705 4
Mean (KM)		SD (KM) SE of Mean (KM)	3.8770E-4
Variance (KM) k hat (KM)	3.54		1.5995E-4 3.263
nu hat (KM)	254.9	k star (KM) nu star (KM)	234.9
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)	0.00103	90% gamma percentile (KM)	0.00127
95% gamma percentile (KM)	0.00103	99% gamma percentile (KM)	0.00127
	0.00143		0.00130
Gamm	na Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (234.95, $\alpha$ )	200.5	Adjusted Chi Square Value (234.95, $\beta$ )	199
95% KM Approximate Gamma UCL	8.5488E-4	95% KM Adjusted Gamma UCL	8.6108E-4
Lognormal GC	DF Test on D	etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data appear Lognormal at 10% Significance I	Level
Lilliefors Test Statistic	0.238	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.319	Detected Data appear Lognormal at 10% Significance I	Level
Detected Data ap	pear Lognori	nal at 10% Significance Level	
	-	liable for small sample sizes Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-7.407
SD in Original Scale		SD in Log Scale	0.468
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)			0.00772 1
Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-7.336	KM Geo Mean	6.5155E-4
KM SD (logged)	0.459	95% Critical H Value (KM-Log)	1.881
KM Standard Error of Mean (logged)	0.243	95% H-UCL (KM -Log)	8.3783E-4
KM SD (logged)	0.459	95% Critical H Value (KM-Log)	1.881
KM Standard Error of Mean (logged)	0.243		
Note: KM UCLs may be biased low	<i>v</i> with this dat	taset. Other substitution method recommended	
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00272	Mean in Log Scale	-6.499
SD in Original Scale	0.00362	SD in Log Scale	1.051
95% t UCL (Assumes normality)	0.00374	95% H-Stat UCL	0.00404
DL/2 is not a recommended m	ethod, provid	led for comparisons and historical reasons	
Nonparame	etric Distribut	ion Free UCL Statistics	
		tributed at 1% Significance Level	
	Suggested	UCL to Use	

55% KW (t) OCE	9.9967E-4	
	5.5507L-4	
Note: Suggestions regarding the selection of a 95%		vided to help the user to select the most appropriate 95% UCL.
		tion, and skewness using results from simulation studies.
		s; for additional insight the user may want to consult a statistician.
		s, for additional insight the user may want to consult a statistician.
(groundwater   cyclohexane   110-82-7)		
	General S	Statistics
Total Number of Observations	24	Number of Distinct Observations 2
Number of Detects	0	Number of Non-Detects 24
Number of Distinct Detects	0	Number of Distinct Non-Detects 2
Warning: All observations are Non-Detect	s (NDs), ther	efore all statistics and estimates should also be NDs!
-		tics are also NDs lying below the largest detection limit!
		alues to estimate environmental parameters (e.g., EPC, BTV).
		(
The data set for variable C (gro	undwater   cy	/clohexane   110-82-7) was not processed!
(groundwater   dibenz(a,h)anthracene   53-70-3)		
(3		
	General S	Statistics
Total Number of Observations	43	
		Number of Distinct Observations 18
Number of Detects	5	Number of Distinct Observations         18           Number of Non-Detects         38
Number of Detects	5 5	Number of Non-Detects         38           Number of Distinct Non-Detects         13
Number of Detects Number of Distinct Detects	5 5 2.4000E-5	Number of Non-Detects         38           Number of Distinct Non-Detects         13           Minimum Non-Detect         1.0620E
Number of Detects Number of Distinct Detects Minimum Detect	5 5 2.4000E-5 5.2500E-5	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	5 5 2.4000E-5 5.2500E-5 1.327E-10	Number of Non-Detects     38       Number of Distinct Non-Detects     13       Minimum Non-Detect     1.0620E       Maximum Non-Detect     0.0056       Percent Non-Detects     88.37
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5	Number of Non-Detects     38       Number of Distinct Non-Detects     13       Minimum Non-Detect     1.0620E       Maximum Non-Detect     0.0056       Percent Non-Detects     88.37
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5	Number of Non-Detects38Number of Distinct Non-Detects13Minimum Non-Detect1.0620EMaximum Non-Detect0.0056Percent Non-Detects88.37SD Detects1.1520ECV DetectsN/AKurtosis Detects-1.275
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 nal GOF Test	Number of Non-Detects     38       Number of Distinct Non-Detects     13       Minimum Non-Detect     1.0620E       Maximum Non-Detect     0.0056       Percent Non-Detects     88.37       SD Detects     1.1520E       CV Detects     N/A       Kurtosis Detects     -1.275       SD of Logged Detects     0.314
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 al GOF Test 0.959	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detects       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only       Shapiro Wilk GOF Test
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 mal GOF Test 0.959 0.686	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         On Detects Only         Shapiro Wilk GOF Test         Detected Data appear Normal at 1% Significance Level
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 <b>nal GOF Test</b> 0.959 0.686 0.193	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detects       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Shapiro Wilk GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Norm         Shapiro Wilk Test Statistic         1% Shapiro Scritical Value         1% Lilliefors Critical Value	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 mal GOF Test 0.959 0.686 0.193 0.396	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detects       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value         Lilliefors Test Statistic         1% Lilliefors Critical Value	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 <b>nal GOF Test</b> 0.959 0.686 0.193 0.396 <b>appear Norm</b>	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detects       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Shapiro Wilk GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         al at 1% Significance Level
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Norm         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value         Lilliefors Test Statistic         1% Lilliefors Critical Value         Detected Data         Note GOF tests	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 mal GOF Test 0.959 0.686 0.193 0.396 appear Norma	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Shapiro Wilk GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         al at 1% Significance Level       al at 1% Significance Level         iable for small sample sizes
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Norm         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value         Lilliefors Test Statistic         1% Lilliefors Critical Value         Detected Data at Note GOF tests         Kaplan-Meier (KM) Statistics using	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 al GOF Test 0.959 0.686 0.193 0.396 appear Norma may be unrel	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test       Detected Data appear Normal at 1% Significance Level         al at 1% Significance Level       iable for small sample sizes         itical Values and other Nonparametric UCLs       UCLs
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Norm         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value         Lilliefors Test Statistic         1% Lilliefors Critical Value         Detected Data at Note GOF tests         Kaplan-Meier (KM) Statistics usin	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 nal GOF Test 0.959 0.686 0.193 0.396 appear Normal may be unrel may be unrel 3.6700E-5	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test       Detected Data appear Normal at 1% Significance Level         al at 1% Significance Level       iable for small sample sizes         itical Values and other Nonparametric UCLs       KM Standard Error of Mean         KM Standard Error of Mean       5.1517E
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Norm         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value         Lilliefors Test Statistic         1% Lilliefors Critical Value         Detected Data at         Note GOF tests         Kaplan-Meier (KM) Statistics usin         KM Mean         90KM SD	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 al GOF Test 0.959 0.686 0.193 0.396 appear Norma may be unrel mg Normal Cr 3.6700E-5 1.0303E-5	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         al at 1% Significance Level       iable for small sample sizes         itical Values and other Nonparametric UCLs         KM Standard Error of Mean       5.1517E         95% KM (BCA) UCL       4.5750E
Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data a Note GOF tests Kaplan-Meier (KM) Statistics usin KM Mean 90KM SD 95% KM (t) UCL	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 mal GOF Test 0.959 0.686 0.193 0.396 appear Normal may be unrel ng Normal Cr 3.6700E-5 1.0303E-5 4.5365E-5	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only       -1.275         SD of Logged Detects       0.314         Detected Data appear Normal at 1% Significance Level       -1.275         Detected Data appear Normal at 1% Significance Level       -1.275         Detected Data appear Normal at 1% Significance Level       -1.275         at 1% Significance Level       -1.275         iable for small sample sizes       -1.275         Stapiro Wilk GOF Test       -1.275         Detected Data appear Normal at 1% Significance Level       -1.275         at 1% Significance Level
Number of Detects         Number of Distinct Detects         Minimum Detect         Maximum Detect         Variance Detects         Mean Detects         Median Detects         Skewness Detects         Mean of Logged Detects         Norm         Shapiro Wilk Test Statistic         1% Shapiro Wilk Critical Value         Lilliefors Test Statistic         1% Lilliefors Critical Value         Detected Data at         Note GOF tests         Kaplan-Meier (KM) Statistics usin         KM Mean         90KM SD	5 5 2.4000E-5 5.2500E-5 1.327E-10 3.6700E-5 3.4000E-5 0.493 -10.25 mal GOF Test 0.959 0.686 0.193 0.396 appear Normal may be unrel ng Normal Cr 3.6700E-5 1.0303E-5 4.5365E-5	Number of Non-Detects       38         Number of Distinct Non-Detects       13         Minimum Non-Detect       1.0620E         Maximum Non-Detect       0.0056         Percent Non-Detects       88.37         SD Detects       1.1520E         CV Detects       N/A         Kurtosis Detects       -1.275         SD of Logged Detects       0.314         on Detects Only         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         Lilliefors GOF Test         Detected Data appear Normal at 1% Significance Level         al at 1% Significance Level       iable for small sample sizes         itical Values and other Nonparametric UCLs         KM Standard Error of Mean       5.1517E         95% KM (BCA) UCL       4.5750E

97.5% KM Chebyshev UCL	6.8872E-5	99% KM Chebyshev UCL	8.7959E-5
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.213	Anderson-Darling GOF Test	
5% A-D Critical Value	0.679	Detected data appear Gamma Distributed at 5% Significan	ice Level
K-S Test Statistic	0.177	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.357	Detected data appear Gamma Distributed at 5% Significan	ice Level
Detected data appea	r Gamma Dis	stributed at 5% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	12.84	k star (bias corrected MLE)	5.271
Theta hat (MLE)	2.8574E-6	Theta star (bias corrected MLE)	6.9628E-6
nu hat (MLE)	128.4	nu star (bias corrected)	52.71
Mean (detects)	3.6700E-5		
Gamma ROS	Statistics u	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
		y be computed using gamma distribution on KM estimates	
Minimum	2.4000E-5	Mean	0.00884
Maximum	0.01	Median	0.01
SD	0.00323	CV	0.366
k hat (MLE)	1.073	k star (bias corrected MLE)	1.014
Theta hat (MLE)	0.00824	Theta star (bias corrected MLE)	0.00872
nu hat (MLE)	92.3	nu star (bias corrected)	87.19
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (87.19, $\alpha$ )	66.66	Adjusted Chi Square Value (87.19, β)	66.04
95% Gamma Approximate UCL	0.0116	95% Gamma Adjusted UCL	0.0117
		·	
Estimates of G	iamma Parai	meters using KM Estimates	
Mean (KM)		SD (KM)	1.0303E-5
Variance (KM)	1.062E-10	SE of Mean (KM)	5.1517E-6
k hat (KM)	12.69	k star (KM)	11.82
nu hat (KM)	1091	nu star (KM)	1016
theta hat (KM)		theta star (KM)	3.1055E-6
80% gamma percentile (KM)	4.5253E-5	90% gamma percentile (KM)	5.0873E-5
95% gamma percentile (KM)	5.5841E-5	99% gamma percentile (KM)	6.5979E-5
		eier (KM) Statistics	
Approximate Chi Square Value (N/A, $\alpha$ )	943.3	Adjusted Chi Square Value (N/A, β)	940.9
95% KM Approximate Gamma UCL	3.9540E-5	95% KM Adjusted Gamma UCL	3.9642E-5
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	<u>.</u>
Lognormal GC	F Test on D	etected Observations Only	

Shapiro Wilk Test Statistic	0.976	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data appear Lognormal at 10% Significance I	_evel
Lilliefors Test Statistic	0.159	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.319	Detected Data appear Lognormal at 10% Significance I	_evel
Detected Data ap	pear Lognor	mal at 10% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale	3.6786E-5	Mean in Log Scale	-10.25
SD in Original Scale	1.1018E-5	SD in Log Scale	0.292
95% t UCL (assumes normality of ROS data)	3.9612E-5	95% Percentile Bootstrap UCL	3.9575E-5
95% BCA Bootstrap UCL	3.9894E-5	95% Bootstrap t UCL	3.9899E-5
95% H-UCL (Log ROS)	3.9878E-5		
Statistics using KM estimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-10.25	KM Geo Mean	3.5281E-5
KM SD (logged)	0.281	95% Critical H Value (KM-Log)	1.759
KM Standard Error of Mean (logged)	0.141	95% H-UCL (KM -Log)	3.9613E-5
KM SD (logged)	0.281	95% Critical H Value (KM-Log)	1.759
KM Standard Error of Mean (logged)	0.141		
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.2086E-4	Mean in Log Scale	-7.837
SD in Original Scale	0.00106	SD in Log Scale	1.427
95% t UCL (Assumes normality)	0.00119	95% H-Stat UCL	0.00206
DL/2 is not a recommended m	ethod, provi	ded for comparisons and historical reasons	
Nonparamo	etric Distribu	tion Free UCL Statistics	
Detected Data appea	ar Normal Dis	stributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL	4.5365E-5		
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real V	Vorld data se	ts; for additional insight the user may want to consult a statistici	an.
C (groundwater   dibenzofuran   132-64-9)			
	General	Statistics	
Total Number of Observations	43	Number of Distinct Observations	18
Number of Detects	5	Number of Non-Detects	38
Number of Distinct Detects	5	Number of Distinct Non-Detects	13
Minimum Detect	2.0000E-5	Minimum Non-Detect	9.2167E-5
Maximum Detect		Maximum Non-Detect	0.01
Variance Detects		Percent Non-Detects	88.37%

Mean Detects	1 3013F-4	SD Detects 1	6733E-4
Median Detects		CV Detects	1.203
Skewness Detects		Kurtosis Detects	4.185
Mean of Logged Detects		SD of Logged Detects	1.139
Mean of Logged Delects	-9.402	SD of Logged Delects	1.139
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data appear Normal at 1% Significance Leve	<u>ə</u> ]
Lilliefors Test Statistic		Lilliefors GOF Test	51
1% Lilliefors Critical Value		Detected Data appear Normal at 1% Significance Leve	
		nal at 1% Significance Level	51
		liable for small sample sizes	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
	1.1249E-4	KM Standard Error of Mean 5	7106E-5
	1.3422E-4	95% KM (BCA) UCL 2	
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL 2	
95% KM (z) UCL		95% KM Bootstrap t UCL 4	
90% KM Chebyshev UCL			
-		95% KM Chebyshev UCL 3	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL 6	0.8069E-4
Note: KM UCLS may be blased low	v with this da	taset. Other substitution method recommended	
Commo COE	Tooto on Do	etected Observations Only	
A-D Test Statistic		-	
5% A-D Critical Value		Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance	
			e Levei
K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov GOF	<u> </u>
		Detected data appear Gamma Distributed at 5% Significance	e Level
		stributed at 5% Significance Level	
	may be unre		
Gamma	Statistics on	Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.571
Theta hat (MLE)		Theta star (bias corrected MLE) 2	
nu hat (MLE)		nu star (bias corrected)	5.712
Mean (detects)			0.712
	1.53156-4		
Gamma POS	Statistics u	sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
GROS fildy flot be used when ksidi of delects is	Sinali Such a	s < 1.0, especially when the sample size is small (e.g., < 15-20)	
For such situations, CDOS	mothed mov	viold incorrect volume of UCLs and PTVs	
	-	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	n the sample size is small.	
This is espec For gamma distributed detected data, BTVs a	ially true whe	n the sample size is small. y be computed using gamma distribution on KM estimates	0.0000=
This is espec For gamma distributed detected data, BTVs a Minimum	and UCLs ma	n the sample size is small. y be computed using gamma distribution on KM estimates Mean	0.00885
This is espec For gamma distributed detected data, BTVs a Minimum Maximum	and UCLs ma 2.0000E-5 0.01	n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median	0.01
This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD	ially true whe and UCLs ma 2.0000E-5 0.01 0.0032	y be computed using gamma distribution on KM estimates Mean Median CV	0.01 0.361
This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	ially true whe and UCLs ma 2.0000E-5 0.01 0.0032 1.288	y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.01 0.361 1.214
This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD	ially true whe and UCLs ma 2.0000E-5 0.01 0.0032 1.288 0.00687	y be computed using gamma distribution on KM estimates Mean Median CV	0.01 0.361

Adjusted Level of Significance (β)	0.0444		
Aujusted Level of Significance (β) Approximate Chi Square Value (104.37, α)	81.8	Adjusted Chi Square Value (104.37, β)	81.1
	0.0113	95% Gamma Adjusted UCL	0.0114
95% Gamma Approximate UCL	0.0113	95% Gamma Adjusted UCL	0.0114
Estimatos of O	ommo Doror	neters using KM Estimates	
Mean (KM)			1 24225 4
			1.3422E-4
Variance (KM)		SE of Mean (KM)	
k hat (KM)	0.702	k star (KM)	0.669
nu hat (KM)	60.41	nu star (KM)	57.52
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)	3.8920E-4	99% gamma percentile (KM)	6.3800E-4
	-	eier (KM) Statistics	40.01
Approximate Chi Square Value (57.52, α)	41.09	Adjusted Chi Square Value (57.52, β)	40.61
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	1.5935E-4
Note: KM UCLs may be blased low	with this da	taset. Other substitution method recommended	
		etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data appear Lognormal at 10% Significance I	_evel
Lilliefors Test Statistic	0.233	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.319	Detected Data appear Lognormal at 10% Significance I	_evel
		mal at 10% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
	0.04444444	Ising Inserted New Detecto	
		Jsing Imputed Non-Detects Mean in Log Scale	0.656
Mean in Original Scale		0	-9.656
SD in Original Scale		SD in Log Scale	0.879
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	1.3298E-4
95% H-UCL (Log ROS)	1.2749E-4		
		Data and Assuming Lognormal Distribution	0 0000 5 5
KM Mean (logged)	-9.623	KM Geo Mean	
KM SD (logged)	0.983	95% Critical H Value (KM-Log)	2.343
KM Standard Error of Mean (logged)	0.442	95% H-UCL (KM -Log)	
KM SD (logged)	0.983	95% Critical H Value (KM-Log)	2.343
KM Standard Error of Mean (logged)	0.442		
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
	DL/2 St		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00142	Mean in Log Scale	-7.01
SD in Original Scale	0.00103	SD in Log Scale	1.271
95% t UCL (Assumes normality)	0.00169	95% H-Stat UCL	0.00343
DL/2 is not a recommended m	ethod, provid	led for comparisons and historical reasons	

Nonparamet	tric Distribu	tion Free UCL Statistics	
Detected Data appear	Normal Di	stributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL			
I			
-		e data were collected in a random and unbiased manner.	
		llected from random locations.	
		nental or other non-random methods,	
then contact a s	statistician	to correctly calculate UCLs.	
Note: Suggestions regarding the selection of a 05%		ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statisticial	n
(groundwater   dibenzothiophene   132-65-0)			
	General	Statistics	
Total Number of Observations	3	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	3
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	te specific v	erefore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!	
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground	d other stati te specific v dwater   dib	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!	
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1)	d other stati te specific v dwater   dib General	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed! Statistics	
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations	d other stati te specific v dwater   dib General 36	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed! Statistics	4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects	d other stati te specific v dwater   dib General	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed! Statistics Number of Distinct Observations Number of Non-Detects	
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations	d other stati te specific v dwater   dib General 36 0	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed! Statistics	4 36
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects	d other stati te specific v dwater   dib General 36 0 0	stics are also NDs lying below the largest detection limit! ralues to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed! Statistics Number of Distinct Observations Number of Non-Detects	4 36
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects	d other stati te specific v dwater   dib dwater   dib General 36 0 0 s (NDs), the	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	4 36
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	d other stati te specific v dwater   dib dwater   dib General 36 0 0 0 s (NDs), the d other stati	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Prefore all statistics and estimates should also be NDs!	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and	d other stati te specific v dwater   dib dwater   dib General 36 0 0 0 s (NDs), the d other stati	stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).         enzothiophene   132-65-0) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         refore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	d other stati te specific v dwater   dib dwater   dib dwater   dib General 36 0 0 0 s (NDs), the d other stati te specific v	stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV).         enzothiophene   132-65-0) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         refore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	d other stati te specific v dwater   dib dwater   dib dwater   dib General 36 0 0 0 s (NDs), the d other stati te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects erefore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit	d other stati te specific v dwater   dib dwater   dib dwater   dib General 36 0 0 0 s (NDs), the d other stati te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects erefore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwa	d other stati te specific v dwater   dib dwater   dib dwater   dib General 36 0 0 0 s (NDs), the d other stati te specific v	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects erefore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwater   dibromomethane   74-95-3)	d other stati te specific v dwater   dib General 36 0 0 s (NDs), the d other stati te specific v ater   dibror	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects  refore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).  nochloromethane   124-48-1) was not processed!  Statistics	4 36 4
Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (ground (groundwater   dibromochloromethane   124-48-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detects Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative sit The data set for variable C (groundwa	d other stati te specific v dwater   dib General 36 0 0 s (NDs), the d other stati te specific v ater   dibror	stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV). enzothiophene   132-65-0) was not processed!  Statistics  Statistics  Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects  refore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit! values to estimate environmental parameters (e.g., EPC, BTV).  nochloromethane   124-48-1) was not processed!	4 36 4

Number of Distinct Detects	0	Number of Distinct Non-Detects	3
	(15.)		
		erefore all statistics and estimates should also be NDs!	
		tistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (grour	ndwater   c	libromomethane   74-95-3) was not processed!	
groundwater   dichlorodifluoromethane   75-71-8)			
	Genera	I Statistics	
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	5
_		erefore all statistics and estimates should also be NDs!	
		tistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The data act for verichin O (group du	eter I diebi	orodifluoromethane   75-71-8) was not processed!	
I në data sët for variable C (groundw	ater   dichi	orodinuorometnane   /5-/1-8) was not processed!	
groundwater   diethyl ether   60-29-7)			
	Conoro	I Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
	-		
Warning: All observations are Non-Detects	s (NDs), th	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other sta	tistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (gro	oundwater	diethyl ether   60-29-7) was not processed!	
groundwater   diethylphthalate   84-66-2)			
	Genera	I Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
Woming All choosystians are blas. Detect		erefore all statistics and estimates should also be NDs!	
	a unus), ff	iciciole all statistics and estimates should also de INUS!	
-		tistics are also NDs lying below the largest detection limit!	

# The data set for variable C (groundwater | diethylphthalate | 84-66-2) was not processed!

Г

The data set for variable C (grou	undwater   di	ethylphthalate   84-66-2) was not processed!	
C (groundwater   diisopropyl ether   108-20-3)			
	Canaral	Statistics	
Total Number of Observations		Number of Distinct Observations	5
Number of Detects		Number of Distinct Observations	11
Number of Distinct Detects		Number of Distinct Non-Detects	3
Minimum Detect		Minimum Non-Detect	
Maximum Detect		Maximum Non-Detect	0.001
Variance Detects		Percent Non-Detects	84.62%
Mean Detects		SD Detects	0.00165
Median Detects		CV Detects	1.015
Skewness Detects		Kurtosis Detects	N/A
Mean of Logged Detects	-6.781	SD of Logged Detects	1.277
Warning: D	ata set has	only 2 Detected Values.	
-		gful or reliable statistics and estimates.	
· · · · · ·		-	
Norn	nal GOF Tes	t on Detects Only	
		Perform GOF Test	
	-		
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
	6.1462E-4	KM Standard Error of Mean	2.4874E-4
90KM SD	6.3142E-4	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.00106	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.00102	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.00136	95% KM Chebyshev UCL	0.0017
97.5% KM Chebyshev UCL	0.00217	99% KM Chebyshev UCL	0.00309
Gamma GOF	Tests on De	etected Observations Only	
Not En	ough Data to	Perform GOF Test	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	1.526	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00107	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	6.105	nu star (bias corrected)	N/A
Mean (detects)	0.00163		
	1	1	<u> </u>
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	6.1462E-4	SD (KM)	6.3142E-4
Variance (KM)	3.9869E-7	SE of Mean (KM)	2.4874E-4
k hat (KM)	0.947	k star (KM)	0.78
nu hat (KM)	24.63	nu star (KM)	20.28
theta hat (KM)	6.4868E-4	theta star (KM)	7.8785E-4
80% gamma percentile (KM)	0.00101	90% gamma percentile (KM)	0.0015
,	1	,	1

95% gamma percentile (KM)	0.00201	99% gamma percentile (KM)	0.0032
Gamm	a Kaplan-Mei	Adjusted Level of Significance (β)	0.030
Approximate Chi Square Value (20.28, $\alpha$ )	11.06	Adjusted Level of Significance (β) Adjusted Chi Square Value (20.28, β)	10.1
95% KM Approximate Gamma UCL	0.00113	95% KM Adjusted Gamma UCL	0.001
	0.00113		0.001
-		tected Observations Only	
Not End	ough Data to I	Perform GOF Test	
Lognormal ROS	S Statistics U	sing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-8.36
SD in Original Scale	7.3935E-4	SD in Log Scale	1.19
95% t UCL (assumes normality of ROS data)	8.3911E-4	95% Percentile Bootstrap UCL	8.3957E
95% BCA Bootstrap UCL	0.00105	95% Bootstrap t UCL	0.001
95% H-UCL (Log ROS)	0.00143		
		ata and Assuming Lognormal Distribution	4 00205
KM Mean (logged)	-7.604	KM Geo Mean	
KM SD (logged)	0.502	95% Critical H Value (KM-Log)	2.11
KM Standard Error of Mean (logged)	0.204	95% H-UCL (KM -Log)	
KM SD (logged)	0.502	95% Critical H Value (KM-Log)	2.11
KM Standard Error of Mean (logged)	0.204		
	DL/2 Sta	itistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	4.7788E-4	Mean in Log Scale	-8.024
SD in Original Scale	7.0334E-4	SD in Log Scale	0.69
95% t UCL (Assumes normality)		95% H-Stat UCL	5.6923E
DL/2 is not a recommended me	ethod, provide	ed for comparisons and historical reasons	
Nonparame	trio Distributio	on Free UCL Statistics	
		scernible Distribution	
	ot follow a Dis	scernible Distribution	
Data do n	ot follow a Dis Suggested U	scernible Distribution	
	ot follow a Dis	scernible Distribution	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt	Suggested U 0.00106	ICL to Use	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the c	Suggested U 0.00106 ions that the o	ICL to Use data were collected in a random and unbiased manner. ected from random locations.	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the c If the data were collected	Suggested U 0.00106 ions that the o lata were collo	Access Second Se	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the c If the data were collected	Suggested U 0.00106 ions that the o lata were collo	ICL to Use data were collected in a random and unbiased manner. ected from random locations.	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a	Suggested U 0.00106 ions that the o lata were collo using judgmo statistician to	Access Second Se	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95%	Suggested U 0.00106 ions that the o lata were collo using judgmo statistician to	Scernible Distribution         ICL to Use         data were collected in a random and unbiased manner.         ected from random locations.         ental or other non-random methods,         correctly calculate UCLs.	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested U 0.00106 ions that the o lata were collo using judgmo statistician to UCL are prov data distribut	Access of the second se	
Data do n 95% KM (t) UCL The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested U 0.00106 ions that the o lata were collo using judgmo statistician to UCL are prov data distribut	ICL to Use data were collected in a random and unbiased manner. ected from random locations. ental or other non-random methods, correctly calculate UCLs.	

	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
_		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	dwater   dim	ethylphthalate   131-11-3) was not processed!	
C (groundwater   di-n-butylphthalate   84-74-2)			
	General	Statistica	
Total Number of Observations	42	Number of Distinct Observations	10
Number of Detects	1	Number of Distinct Observations	41
Number of Distinct Detects	1	Number of Distinct Non-Detects	9
	I		9
Warning: Only one distinct data value was detected		(or any other software) should not be used on such a data set!	
		Project Team to estimate environmental parameters (e.g., EP	
The data set for variable C (group	dwater I di-r	-butylphthalate   84-74-2) was not processed!	
C (groundwater   di-n-octylphthalate   117-84-0)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detects	s (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	Jwater   di-n	-octylphthalate   117-84-0) was not processed!	
C (groundwater   ethanol   64-17-5)			
	General	Statistics	
Total Number of Observations	6		
Number of Detects	1	Number of Distinct Observations	1
	0	Number of Distinct Observations Number of Non-Detects	1 6
Number of Distinct Detects	0		
	0	Number of Non-Detects Number of Distinct Non-Detects	6
Warning: All observations are Non-Detect	0 s (NDs), the	Number of Non-Detects	6

#### The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

### The data set for variable C (groundwater | ethanol | 64-17-5) was not processed!

## C (groundwater | ethyl benzene | 100-41-4)

	General S	tatistics
Total Number of Observations	43	Number of Distinct Observations 10
Number of Detects	4	Number of Non-Detects 39
Number of Distinct Detects	2	Number of Distinct Non-Detects 9
Minimum Detect	0.001	Minimum Non-Detect 6.5000
Maximum Detect	0.002	Maximum Non-Detect 0.00
Variance Detects	2.5000E-7	Percent Non-Detects 90.
Mean Detects	0.00175	SD Detects 5.000
Median Detects	0.002	CV Detects 0.2
Skewness Detects	-2	Kurtosis Detects 4
Mean of Logged Detects	-6.388	SD of Logged Detects 0.3
Norn	nal GOF Test	on Detects Only
Shapiro Wilk Test Statistic	0.63	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.687	Detected Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.441	Lilliefors GOF Test
1% Lilliefors Critical Value	0.413	Detected Data Not Normal at 1% Significance Level
Detected Dat	a Not Normal	at 1% Significance Level
Kaplan-Meier (KM) Statistics usi	ng Normal Cr	itical Values and other Nonparametric UCLs
KM Mean	7.6308E-4	KM Standard Error of Mean 6.6853
90KM SD	3.6144E-4	95% KM (BCA) UCL N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL N/A
95% KM (z) UCL	8.7304E-4	95% KM Bootstrap t UCL N/A
90% KM Chebyshev UCL	9.6363E-4	95% KM Chebyshev UCL 0.00
97.5% KM Chebyshev UCL	0.00118	99% KM Chebyshev UCL 0.00
	Tests on Det	ected Observations Only
Gamma GOF		Anderson Darling COE Test
Gamma GOF A-D Test Statistic	0.962	Anderson-Darling GOF Test
		Detected Data Not Gamma Distributed at 5% Significance Leve
A-D Test Statistic	0.657	-
A-D Test Statistic 5% A-D Critical Value	0.657 0.469	Detected Data Not Gamma Distributed at 5% Significance Leve
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.657 0.469 0.395	Detected Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov GOF
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not	0.657 0.469 0.395 Gamma Distri	Detected Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Leve buted at 5% Significance Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma	0.657 0.469 0.395 Gamma Distri Statistics on	Detected Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Leve buted at 5% Significance Level Detected Data Only
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma k hat (MLE)	0.657 0.469 0.395 Gamma Distri Statistics on 12.74	Detected Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Leve buted at 5% Significance Level Detected Data Only k star (bias corrected MLE) 3.3
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma k hat (MLE) Theta hat (MLE)	0.657 0.469 0.395 Gamma Distri Statistics on 12.74 1.3735E-4	Detected Data Not Gamma Distributed at 5% Significance Level         Kolmogorov-Smirnov GOF         Detected Data Not Gamma Distributed at 5% Significance Level         buted at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         3.3         Theta star (bias corrected MLE)
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Not Gamma k hat (MLE)	0.657 0.469 0.395 Gamma Distri Statistics on 12.74 1.3735E-4	Detected Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Leve buted at 5% Significance Level Detected Data Only k star (bias corrected MLE) 3.3

### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	ay be computed using gamma distribution on KM estimates	
Minimum	0.001	Mean	0.00923
Maximum	0.01	Median	0.01
SD	0.00243	CV	0.263
k hat (MLE)	5.977	k star (bias corrected MLE)	5.575
Theta hat (MLE)	0.00154	Theta star (bias corrected MLE)	0.00166
nu hat (MLE)		nu star (bias corrected)	479.5
Adjusted Level of Significance (β)			
Approximate Chi Square Value (479.46, α)		Adjusted Chi Square Value (479.46, β)	428.1
95% Gamma Approximate UCL	0.0103	95% Gamma Adjusted UCL	N/A
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	7.6308E-4	SD (KM)	3.6144E-4
Variance (KM)	1.3064E-7	SE of Mean (KM)	6.6853E-5
k hat (KM)	4.457	k star (KM)	4.162
nu hat (KM)	383.3	nu star (KM)	357.9
theta hat (KM)			1.8335E-4
80% gamma percentile (KM)	0.00105	90% gamma percentile (KM)	0.00126
95% gamma percentile (KM)	0.00146	99% gamma percentile (KM)	0.00189
	-	eier (KM) Statistics	
Approximate Chi Square Value (357.92, α)		Adjusted Chi Square Value (357.92, β)	313.7
95% KM Approximate Gamma UCL	8.6684E-4	95% KM Adjusted Gamma UCL	8.7068E-4
		etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test Detected Data Not Lognormal at 10% Significance Le	
10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	ivei
10% Lilliefors Critical Value		Detected Data Not Lognormal at 10% Significance Le	wol
		al at 10% Significance Level	
	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-7.795
SD in Original Scale		SD in Log Scale	0.718
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)		······································	
, , , , , , , , , , , , , , , , , , ,			<u> </u>
Statistics using KM estimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	7.1679E-4
KM SD (logged)	0.304	95% Critical H Value (KM-Log)	1.778
KM Standard Error of Mean (logged)	0.0563	95% H-UCL (KM -Log)	8.1607E-4
KM SD (logged)	0.304	95% Critical H Value (KM-Log)	1.778
KM Standard Error of Mean (logged)	0.0563		
Ļ	1		

DI /O Normal	DL/2 5	tatistics	
DL/2 Normal		DL/2 Log-Transformed	7 077
Mean in Original Scale		Mean in Log Scale	-7.377
SD in Original Scale		SD in Log Scale	0.602
95% t UCL (Assumes normality)		95% H-Stat UCL	9.0124E-4
DL/2 is not a recommended m	ethod, provid	ded for comparisons and historical reasons	
N			
		tion Free UCL Statistics	
Data do n	ot follow a D	iscernible Distribution	
	<u> </u>		
		UCL to Use	
95% KM (t) UCL	8.7552E-4		
		ovided to help the user to select the most appropriate 95% UCL	
· · ·		ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data set	ts; for additional insight the user may want to consult a statistici	an.
C (groundwater   ethyl tert-butyl ether   637-92-3)			
		Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
		refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	values to estimate environmental parameters (e.g., EPC, BTV)	).
The data set for variable C (ground	lwater   ethy	tert-butyl ether   637-92-3) was not processed!	
C (groundwater   ethylene glycol   107-21-1)			
	General	Statistics	
Total Number of Observations	6	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	6
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Warning: All observations are Non-Detect	ts (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	).
The data set for variable C (grou	indwater   et	hylene glycol   107-21-1) was not processed!	
C (groundwater   fluoranthene   206-44-0)			

	General	Statistics	
Total Number of Observations	43	Number of Distinct Observations	19
Number of Detects	7	Number of Non-Detects	36
Number of Distinct Detects	7	Number of Distinct Non-Detects	12
Minimum Detect	5.4000E-5	Minimum Non-Detect	9.2167E-5
Maximum Detect	2.0000E-4	Maximum Non-Detect	0.0056
Variance Detects	2.9294E-9	Percent Non-Detects	83.72%
Mean Detects		SD Detects	5.4124E-5
Median Detects		CV Detects	0.518
Skewness Detects		Kurtosis Detects	0.0106
Mean of Logged Detects		SD of Logged Detects	0.506
Nor		t on Detects Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data appear Normal at 1% Significance Lev	
Lilliefors Test Statistic		Lilliefors GOF Test	vei
1% Lilliefors Critical Value		Detected Data appear Normal at 1% Significance Lev	
		nal at 1% Significance Level	vei
		eliable for small sample sizes	
Kaplan-Meier (KM) Statistics us	ing Normal C	ritical Values and other Nonparametric UCLs	
	9.8736E-5	KM Standard Error of Mean	1 8857E-5
	4.9366E-5	95% KM (BCA) UCL	
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	
95% KM (z) UCL		95% KM Bootstrap t UCL	
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	
-		taset. Other substitution method recommended	2.0030L-4
Note. Nel OOLS may be blased for	v with this da		
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significan	ce l evel
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significan	
		stributed at 5% Significance Level	
		eliable for small sample sizes	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	2.76
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected MLL)	38.64
Mean (detects)			50.04
	1.0-1002-4		
Gamma ROS	Statistics u	sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
-		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		en the sample size is small.	
This is espec	any nue whe	สา เมษ อิสที่มีมีษ อเรีย เอ อิทีได้มี.	

<b>• •</b> * •	-	y be computed using gamma distribution on KM estimates	
Minimum	5.4000E-5	Mean	0.00839
Maximum	0.01	Median	0.01
SD	0.0037	CV	0.441
k hat (MLE)	0.988	k star (bias corrected MLE)	0.935
Theta hat (MLE)	0.00849	Theta star (bias corrected MLE)	0.00897
nu hat (MLE)	85	nu star (bias corrected)	80.4
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (80.40, $\alpha$ )	60.74	Adjusted Chi Square Value (80.40, $\beta$ )	60.15
95% Gamma Approximate UCL	0.0111	95% Gamma Adjusted UCL	0.0112
Estimates of G	amma Paran	neters using KM Estimates	
Mean (KM)		-	4.9366E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)	4	k star (KM)	3.737
nu hat (KM)	344	nu star (KM)	321.4
theta hat (KM)	-	theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		99% gamma percentile (KM)	
	-	er (KM) Statistics	
Approximate Chi Square Value (321.37, $\alpha$ )	280.8	Adjusted Chi Square Value (321.37, $\beta$ )	279.5
95% KM Approximate Gamma UCL	1.1299E-4	95% KM Adjusted Gamma UCL	1.1352E-4
Lognormal GC Shapiro Wilk Test Statistic	0F Test on De 0.909	etected Observations Only Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.838	Detected Data appear Lognormal at 10% Significance L	evel
		Detected Data appear Lognormal at 10% Orginicance L	
Lilliefors Test Statistic	0.239	Lilliefors GOF Test	
Lilliefors Test Statistic		Lilliefors GOF Test	
Lilliefors Test Statistic 10% Lilliefors Critical Value	0.28		
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap	0.28 pear Lognorr	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L	
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests	0.28 pear Lognorr may be unre	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes	
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO	0.28 pear Lognorr may be unrel S Statistics L	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L nal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects	.evel
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale	-9.337
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale	-9.337 0.417
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-9.337 0.417 1.0686E-4
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale	-9.337 0.417 1.0686E-4
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	-9.337 0.417 1.0686E-4
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	-9.337 0.417 1.0686E-4 1.0838E-4
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4 on Logged D	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L nal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL	-9.337 0.417 1.0686E-4 1.0838E-4
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4 on Logged D -9.337 0.466	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Data and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	-9.337 0.417 1.0686E-4 1.0838E-4 8.8110E-5 1.877
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4 on Logged D -9.337 0.466 0.178	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 0ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	-9.337 0.417 1.0686E-4 1.0838E-4 8.8110E-5 1.877 1.1244E-4
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4 on Logged D -9.337 0.466 0.178 0.466	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Using Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL Data and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	-9.337 0.417 1.0686E-4 1.0838E-4 8.8110E-5 1.877
Lilliefors Test Statistic 10% Lilliefors Critical Value Detected Data ap Note GOF tests Lognormal RO Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged)	0.28 pear Lognorr may be unrel S Statistics L 9.6034E-5 4.2248E-5 1.0687E-4 1.0781E-4 1.0823E-4 on Logged D -9.337 0.466 0.178 0.466 0.178	Lilliefors GOF Test Detected Data appear Lognormal at 10% Significance L mal at 10% Significance Level liable for small sample sizes Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 0ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	-9.337 0.417 1.0686E- 1.0838E- 8.8110E- 1.877 1.1244E-

	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.2565E-4	Mean in Log Scale	-7.747
SD in Original Scale	0.00106	SD in Log Scale	1.288
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.00169
	thod, provid	led for comparisons and historical reasons	
-		tion Free UCL Statistics	
Detected Data appear	· Normal Dis	tributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL			
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size,	data distribu	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real We	orld data set	s; for additional insight the user may want to consult a statisticia	an.
C (groundwater   fluorene   86-73-7)			
	General		
Total Number of Observations	43	Number of Distinct Observations	22
Number of Detects	11	Number of Non-Detects	32
Number of Distinct Detects	9	Number of Distinct Non-Detects	13
Minimum Detect		Minimum Non-Detect	
Maximum Detect	0.002	Maximum Non-Detect	0.0056
Variance Detects		Percent Non-Detects	74.42%
Mean Detects		SD Detects	
Median Detects		CV Detects	0.874
Skewness Detects	1.825	Kurtosis Detects	4.509
Mean of Logged Detects	-7.798	SD of Logged Detects	1.066
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.828	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.792	Detected Data appear Normal at 1% Significance Lev	el
Lilliefors Test Statistic	0.205	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.291	Detected Data appear Normal at 1% Significance Lev	el
		nal at 1% Significance Level	
Kaplan-Meier (KM) Statistics usin	g Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	3.4217E-4	KM Standard Error of Mean	8.6287E-5
90KM SD :	3.9744E-4	95% KM (BCA) UCL	4.9845E-4
95% KM (t) UCL	4.8731E-4	95% KM (Percentile Bootstrap) UCL	4.9051E-4
95% KM (z) UCL	4.8410E-4	95% KM Bootstrap t UCL	5.3413E-4
90% KM Chebyshev UCL	6.0104E-4	95% KM Chebyshev UCL	7.1829E-4
97.5% KM Chebyshev UCL	8.8104E-4	99% KM Chebyshev UCL	0.0012
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
Gamma GOF	Tests on De	tected Observations Only	

A-D Test Statistic	0.308	Anderson-Darling GOF Test	
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.148	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.26	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appea	<b>r Gamma Di</b> s	stributed at 5% Significance Level	
		Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	1.071
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected)	23.56
Mean (detects)	6.1312E-4		
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		n the sample size is small.	
		y be computed using gamma distribution on KM estimates	
-	5.0000E-5	Mean	0.0076
Maximum		Median	0.01
SD		CV	0.546
k hat (MLE)	1.058	k star (bias corrected MLE)	0.999
Theta hat (MLE)		Theta star (bias corrected MLE)	0.0076
nu hat (MLE)	90.96	nu star (bias corrected)	85.95
Adjusted Level of Significance (β)	0.0444		00.00
Approximate Chi Square Value (85.95, α)		Adjusted Chi Square Value (85.95, β)	64.96
95% Gamma Approximate UCL		95% Gamma Adjusted UCL	0.0101
Estimates of G	iamma Parai	meters using KM Estimates	
Mean (KM)	3.4217E-4	SD (KM)	3.9744E-4
Variance (KM)	1.5796E-7	SE of Mean (KM)	8.6287E-5
k hat (KM)	0.741	k star (KM)	0.705
nu hat (KM)	63.75	nu star (KM)	60.63
theta hat (KM)	4.6164E-4	theta star (KM)	4.8535E-4
80% gamma percentile (KM)	5.6233E-4	90% gamma percentile (KM)	8.5748E-4
95% gamma percentile (KM)	0.00116	99% gamma percentile (KM)	0.00189
Gamm	na Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (60.63, α)	•	Adjusted Chi Square Value (60.63, $\beta$ )	43.23
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	
		taset. Other substitution method recommended	
Lognormal GC	DF Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	r	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 10% Significance I	_evel
Lilliefors Test Statistic		Lilliefors GOF Test	
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance I	_evel
		mal at 10% Significance Level	
	- •	-	

Logionial RO	S Statistice Lie	sing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-8.545
SD in Original Scale		SD in Log Scale	0.884
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)			4.3023
Statistics using KM estimates	on Logged Da	ta and Assuming Lognormal Distribution	
KM Mean (logged)	-8.549	KM Geo Mean	1.9372E
KM SD (logged)	1.09	95% Critical H Value (KM-Log)	2.463
KM Standard Error of Mean (logged)	0.313	95% H-UCL (KM -Log)	5.3089E·
KM SD (logged)	1.09	95% Critical H Value (KM-Log)	2.463
KM Standard Error of Mean (logged)	0.313		
Note: KM UCLs may be biased low	v with this data	set. Other substitution method recommended	
		i-si-a	
DL/2 Normal	DL/2 Stat	DL/2 Log-Transformed	
Mean in Original Scale	0.00104	Mean in Log Scale	-7.496
_		_	-7.490
SD in Original Scale 95% t UCL (Assumes normality)		SD in Log Scale 95% H-Stat UCL	0.0019
		d for comparisons and historical reasons	0.0019
	ar Normal Distr	ibuted at 1% Significance Level	
	Suggested U	-	
95% KM (t) UCL	Suggested U	-	
95% KM (t) UCL	Suggested U( 4.8731E-4	CL to Use	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95%	Suggested UG 4.8731E-4 6 UCL are prov	CL to Use ided to help the user to select the most appropriate 95% UCL	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	Suggested U( 4.8731E-4 6 UCL are prov data distribution	CL to Use	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real V	Suggested U( 4.8731E-4 6 UCL are prov data distribution	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies.	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	Suggested U( 4.8731E-4 6 UCL are prov data distribution	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies.	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real V	Suggested U( 4.8731E-4 6 UCL are prov data distribution	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistici	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real V	Suggested U( 4.8731E-4 6 UCL are prov data distribution Vorld data sets; General St	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistici	
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W groundwater   hexachlorobenzene   118-74-1)	Suggested U( 4.8731E-4 6 UCL are prov data distribution Vorld data sets; General St 42	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistician ratistics	an.
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W groundwater   hexachlorobenzene   118-74-1) Total Number of Observations	Suggested U( 4.8731E-4 6 UCL are prov 6, data distributi Vorld data sets; General St 42 0	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistician ratistics Number of Distinct Observations	an. 10
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real V groundwater   hexachlorobenzene   118-74-1) Total Number of Observations Number of Detects Number of Distinct Detects	Suggested U( 4.8731E-4 6 UCL are prov , data distributi Vorld data sets; General St 42 0 0	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticit ratistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	an. 10 42
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W groundwater   hexachlorobenzene   118-74-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect	Suggested U( 4.8731E-4 6 UCL are prov 4, data distribution Vorld data sets; General St 42 0 0 0 ts (NDs), there	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistici atistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs!	an. 10 42
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real V groundwater   hexachlorobenzene   118-74-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detecc Specifically, sample mean, UCLs, UPLs, an	Suggested U( 4.8731E-4 6 UCL are prov 4, data distribution Vorld data sets; General St 42 0 0 0 ts (NDs), there and other statistic	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistician for additional insight the user may want to consult a statistician mumber of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs! cs are also NDs lying below the largest detection limit!	an. 10 42 10
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real V groundwater   hexachlorobenzene   118-74-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detecc Specifically, sample mean, UCLs, UPLs, an	Suggested U( 4.8731E-4 6 UCL are prov 4, data distribution Vorld data sets; General St 42 0 0 0 ts (NDs), there and other statistic	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistici atistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs!	an. 10 42 10
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W groundwater   hexachlorobenzene   118-74-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detecc Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s	Suggested U( 4.8731E-4 6 UCL are prov , data distribution Vorld data sets; General St 42 0 0 0 ts (NDs), there id other statistic ite specific val	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statistician for additional insight the user may want to consult a statistician mumber of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs! cs are also NDs lying below the largest detection limit!	an. 10 42 10
95% KM (t) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W groundwater   hexachlorobenzene   118-74-1) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detecc Specifically, sample mean, UCLs, UPLs, an The Project Team may decide to use alternative s	Suggested U( 4.8731E-4 6 UCL are prov , data distribution Vorld data sets; General St 42 0 0 0 ts (NDs), there id other statistic ite specific val	CL to Use ided to help the user to select the most appropriate 95% UCL on, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia for additional insight the user may want to consult a statisticia matistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects fore all statistics and estimates should also be NDs! cs are also NDs lying below the largest detection limit! ues to estimate environmental parameters (e.g., EPC, BTV)	an. 10 42 10

	General		
Total Number of Observations		Number of Distinct Observations	6
Number of Detects	-	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	6
Warning: All observations are Non-Detect	ts (NDs). the	refore all statistics and estimates should also be NDs!	
-		tics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	dwater I hexa	chlorobutadiene   87-68-3) was not processed!	
C (groundwater   hexachlorocyclopentadiene   77-47-4)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	10
Number of Detects		Number of Non-Detects	42
Number of Distinct Detects	-	Number of Distinct Non-Detects	10
	-		-
Warning: All observations are Non-Detect	ts (NDs). the	refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV).	
C (groundwater   hexachloroethane   67-72-1)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
-	· · · · ·	refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groun	ndwater   he>	achloroethane   67-72-1) was not processed!	
C (groundwater   indeno(1,2,3-cd)pyrene   193-39-5)			
	General		
Total Number of Observations		Number of Distinct Observations	18
Number of Detects	2	Number of Non-Detects	
			41
Number of Distinct Detects		Number of Distinct Non-Detects Minimum Non-Detect 1	16

Maximum Detect	1.1000E-4	Maximum Non-Detect	0.0056
Variance Detects	2.880E-10	Percent Non-Detects	95.35%
Mean Detects	9.8000E-5	SD Detects	1.6971E-5
Median Detects	9.8000E-5	CV Detects	N/A
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-9.238	SD of Logged Detects	0.174
Warning: D	ata set has o	only 2 Detected Values.	
This is not enough to comp	oute meaning	gful or reliable statistics and estimates.	
		t on Detects Only Perform GOF Test	
	Sugn Data to		
Kaplan-Meier (KM) Statistics usir	na Normal C	ritical Values and other Nonparametric UCLs	
	9.8000E-5	KM Standard Error of Mean	1.2000E-5
90KM SD	1.2000E-5	95% KM (BCA) UCL	N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	
, ,		· · · · ·	
Gamma GOF	Tests on De	tected Observations Only	
Not End	ough Data to	Perform GOF Test	
		Detected Data Only	
k hat (MLE)	66.36	k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A
nu hat (MLE)		nu star (bias corrected)	N/A
Mean (detects)	9.8000E-5		
Estimates of G	amma Darar	neters using KM Estimates	
Mean (KM)		-	1.2000E-5
Variance (KM)		SD (KM) SE of Mean (KM)	
k hat (KM)	66.69	k star (KM)	62.06
nu hat (KM)	5736	nu star (KM)	5337
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		99% gamma percentile (KM)	
	1.1952E-4		1.29246-4
Gamm	a Kaplan-Me	eier (KM) Statistics	
	•	Adjusted Level of Significance $(\beta)$	0.0444
Approximate Chi Square Value (N/A, α)	5168	Adjusted Chi Square Value (N/A, β)	5162
95% KM Approximate Gamma UCL	1.0120E-4	95% KM Adjusted Gamma UCL	1.0131E-4
Lognormal GO	F Test on De	etected Observations Only	
Not End	ough Data to	Perform GOF Test	

	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale	9.9005E-5	Mean in Log Scale	-9.238
SD in Original Scale	1.9142E-5	SD in Log Scale	0.19
95% t UCL (assumes normality of ROS data)	1.0391E-4	95% Percentile Bootstrap UCL	1.0382E-
95% BCA Bootstrap UCL	1.0428E-4	95% Bootstrap t UCL	1.0434E
95% H-UCL (Log ROS)	1.0413E-4		
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-9.238	KM Geo Mean	9.7263E
KM SD (logged)	0.123	95% Critical H Value (KM-Log)	1.69
KM Standard Error of Mean (logged)	0.123	95% H-UCL (KM -Log)	1.0120E
KM SD (logged)		95% Critical H Value (KM-Log)	1.69
KM Standard Error of Mean (logged)			
		taset. Other substitution method recommended	
DL/2 Normal	DL/2 S	tatistics DL/2 Log-Transformed	
Mean in Original Scale	9 3080F-4	Mean in Log Scale	-7.687
SD in Original Scale		SD in Log Scale	1.20
95% t UCL (Assumes normality)	0.0012	95% H-Stat UCL	0.001
		ded for comparisons and historical reasons	0.001
	<u> </u>		
		UCL to Use	
95% KM (t) UCL Warning: Recommen	1.1818E-4	UCL to Use	
Warning: Recommen	1.1818E-4 nded UCL ex	cceeds the maximum observation	
Warning: Recomment Note: Suggestions regarding the selection of a 95%	1.1818E-4 nded UCL ex	cceeds the maximum observation ovided to help the user to select the most appropriate 95% UCL	
Warning: Recommendations are based upon data size	1.1818E-4 <b>nded UCL e</b> 6 UCL are pr , data distrib	cceeds the maximum observation ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies.	
Warning: Recommendations are based upon data size	1.1818E-4 <b>nded UCL e</b> 6 UCL are pr , data distrib	cceeds the maximum observation ovided to help the user to select the most appropriate 95% UCL	· an.
Warning: Recomment           Note: Suggestions regarding the selection of a 95%           Recommendations are based upon data size	1.1818E-4 <b>nded UCL e</b> 6 UCL are pr , data distrib	cceeds the maximum observation ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies.	an.
Warning: Recomment           Note: Suggestions regarding the selection of a 95%           Recommendations are based upon data size	1.1818E-4 <b>nded UCL e</b> 6 UCL are pr , data distrib	cceeds the maximum observation ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies.	an.
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	1.1818E-4 add UCL ex 6 UCL are pr , data distrib /orld data se	covided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	an.
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	1.1818E-4 nded UCL ex 6 UCL are pr , data distrib /orld data se General	xceeds the maximum observation ovided to help the user to select the most appropriate 95% UCL ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics	
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	1.1818E-4 add UCL ex 6 UCL are pr , data distrib /orld data se	exceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations	28
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W nundwater   iron   7439-89-6) Total Number of Observations	1.1818E-4 nded UCL ex 6 UCL are pr , data distrib /orld data se General 28	xceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statistician         Statistics         Number of Distinct Observations         Number of Missing Observations	28 0
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W nundwater   iron   7439-89-6) Total Number of Observations Minimum	1.1818E-4 nded UCL ex 6 UCL are pr , data distrib /orld data se General 28 0.16	xceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean	28 0 53.54
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pundwater   iron   7439-89-6) Total Number of Observations Minimum Maximum	1.1818E-4 add UCL ex 6 UCL are pr , data distrib /orld data se General 28 0.16 178.3	sceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean         Median	28 0 53.54 46.98
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W bundwater   iron   7439-89-6) Total Number of Observations Minimum Maximum	1.1818E-4 nded UCL ex 6 UCL are pr , data distrib /orld data se General 28 0.16 178.3 47.61	xceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean         Median         Std. Error of Mean	28 0 53.54 46.98 8.99
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W pundwater   iron   7439-89-6) Total Number of Observations Minimum Maximum	1.1818E-4 add UCL ex 6 UCL are pr , data distrib /orld data se General 28 0.16 178.3	sceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean         Median	28 0 53.5- 46.90 8.99
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W bundwater   iron   7439-89-6) Total Number of Observations Minimum Maximum	1.1818E-4 <b>inded UCL example</b> 6 UCL are pr , data distrib /orld data se	xceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean         Median         Std. Error of Mean	28 0 53.54 46.98 8.99
Warning: Recomment Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W bundwater   iron   7439-89-6) Total Number of Observations Minimum Maximum	1.1818E-4 nded UCL ex 6 UCL are pr , data distrib /orld data se 28 0.16 178.3 47.61 0.889 Normal (	xceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean         Median         Std. Error of Mean         Skewness	28
Warning: Recommendations regarding the selection of a 95%         Recommendations are based upon data size         However, simulations results will not cover all Real W         pundwater   iron   7439-89-6)         Total Number of Observations         Minimum         SD         Coefficient of Variation	1.1818E-4 nded UCL ex 6 UCL are pr , data distrib /orld data se 28 0.16 178.3 47.61 0.889 Normal (	xceeds the maximum observation         ovided to help the user to select the most appropriate 95% UCL         ution, and skewness using results from simulation studies.         ts; for additional insight the user may want to consult a statisticia         Statistics         Number of Distinct Observations         Number of Missing Observations         Mean         Median         Std. Error of Mean         Skewness	28 0 53.54 46.98 8.99

1% Lilliefors Critical Value	0.191	Data appear Normal at 1% Significance Level	
Data appea	ar Normal at	1% Significance Level	
Ass	suming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	68.86	95% Adjusted-CLT UCL (Chen-1995)	69.78
		95% Modified-t UCL (Johnson-1978)	69.09
	_		
		GOF Test	
A-D Test Statistic	0.961	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.795	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.151	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.173	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data follow App	or. Gamma I	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.648	k star (bias corrected MLE)	0.603
Theta hat (MLE)	82.56	Theta star (bias corrected MLE)	88.82
nu hat (MLE)	36.31	nu star (bias corrected MEL)	33.76
MLE Mean (bias corrected)	53.54	MLE Sd (bias corrected)	68.96
		Approximate Chi Square Value (0.05)	21.47
Adjusted Level of Significance	0.0404	Adjusted Chi Square Value	20.86
		· · · · · · · · · · · · · · · · · · ·	
Ass	uming Gam	ma Distribution	
95% Approximate Gamma UCL	84.18	95% Adjusted Gamma UCL	86.63
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.818	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.936	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.234	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.151	Data Not Lognormal at 10% Significance Level	
Data Not Lo	gnormal at	10% Significance Level	
		I Statistics	2.000
Minimum of Logged Data	-1.833	Mean of logged Data	3.038
Maximum of Logged Data	5.184	SD of logged Data	2.017
Δεοιι	mina Loana	rmal Distribution	
95% H-UCL	728.2	90% Chebyshev (MVUE) UCL	333.1
95% Chebyshev (MVUE) UCL	424.1	97.5% Chebyshev (MVUE) UCL	550.3
99% Chebyshev (MVUE) UCL	798.3		
Nonparame	tric Distribu	tion Free UCL Statistics	
		Discernible Distribution	
Nonpar	ametric Dist	tribution Free UCLs	
95% CLT UCL	68.34	95% BCA Bootstrap UCL	69.75
95% Standard Bootstrap UCL	68.04	95% Bootstrap-t UCL	70.81

95% Hall's Bootstrap UCL	70.11	0E% Dereentile Restation LICI	68.65
95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	80.53	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	92.75
97.5% Chebyshev(Mean, Sd) UCL	109.7	99% Chebyshev(Mean, Sd) UCL	143.1
	Suggested	UCL to Use	
95% Student's-t UCL	68.86		
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies.	
		ts; for additional insight the user may want to consult a statisticiz	an.
(groundwater   isophorone   78-59-1)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	9
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
-		erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	ite specific v	values to estimate environmental parameters (e.g., EPC, BTV)	).
The data set for variable C (gr	roundwater	isophorone   78-59-1) was not processed!	
The data set for variable C (gr (groundwater   isopropanol   67-63-0)	roundwater	isophorone   78-59-1) was not processed!	
		isophorone   78-59-1) was not processed! Statistics	
			1
(groundwater   isopropanol   67-63-0)	General 6	Statistics	1 6
(groundwater   isopropanol   67-63-0) Total Number of Observations	General 6	Statistics Number of Distinct Observations	
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects	General 6 0 0	Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect	General 6 0 0	Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and	General 6 0 0 s (NDs), the d other stati	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and	General 6 0 0 s (NDs), the d other stati	Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si	General 6 0 0 is (NDs), the d other stati ite specific v	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           erefore all statistics and estimates should also be NDs!           stics are also NDs lying below the largest detection limit!           values to estimate environmental parameters (e.g., EPC, BTV)	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si	General 6 0 0 is (NDs), the d other stati ite specific v	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (groups)	General 6 0 0 is (NDs), the d other stati ite specific v	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           erefore all statistics and estimates should also be NDs!           stics are also NDs lying below the largest detection limit!           values to estimate environmental parameters (e.g., EPC, BTV)	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si	General 6 0 0 is (NDs), the d other stati ite specific v	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           erefore all statistics and estimates should also be NDs!           stics are also NDs lying below the largest detection limit!           values to estimate environmental parameters (e.g., EPC, BTV)	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (groups)	General 6 0 0 ss (NDs), the d other stati ite specific v	Statistics           Statistics           Number of Distinct Observations           Number of Non-Detects           Number of Distinct Non-Detects           erefore all statistics and estimates should also be NDs!           stics are also NDs lying below the largest detection limit!           values to estimate environmental parameters (e.g., EPC, BTV)	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (groups)	General 6 0 0 s (NDs), the d other stati ite specific v oundwater   General	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV)         isopropanol   67-63-0) was not processed!	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (gr (groundwater   lead   7439-92-1)	General 6 0 0 s (NDs), the d other stati ite specific v oundwater   General	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV)         isopropanol   67-63-0) was not processed!         Statistics	6
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (groundwater   lead   7439-92-1) Total Number of Observations	General 6 0 0 is (NDs), the d other stati ite specific v oundwater   General 41	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV)         isopropanol   67-63-0) was not processed!         Statistics         Number of Distinct Observations	6 1
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (gr (groundwater   lead   7439-92-1) Total Number of Observations Number of Detects	General 6 0 0 is (NDs), the d other stati- ite specific v oundwater   General 41 17	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV)         isopropanol   67-63-0) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects	6 1
(groundwater   isopropanol   67-63-0) Total Number of Observations Number of Detects Number of Distinct Detects Warning: All observations are Non-Detect Specifically, sample mean, UCLs, UPLs, and The Project Team may decide to use alternative si The data set for variable C (groundwater   lead   7439-92-1) Total Number of Observations Number of Detects Number of Distinct Detects	General 6 0 0 ss (NDs), the d other stati ite specific v oundwater   General 41 17 17 1.6000E-4	Statistics         Number of Distinct Observations         Number of Non-Detects         Number of Distinct Non-Detects         erefore all statistics and estimates should also be NDs!         stics are also NDs lying below the largest detection limit!         values to estimate environmental parameters (e.g., EPC, BTV)         isopropanol   67-63-0) was not processed!         Statistics         Number of Distinct Observations         Number of Non-Detects	6 1

Mean Detects	0.00767	SD Detects	0.00888
Median Detects	0.0016	CV Detects	1.158
Skewness Detects	0.845	Kurtosis Detects	-0.591
Mean of Logged Detects	-6.168	SD of Logged Detects	1.987
Norm	al GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.806	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.851	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.282	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.241	Detected Data Not Normal at 1% Significance Level	
	Not Normal	at 1% Significance Level	
		-	
Kaplan-Meier (KM) Statistics usin	g Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	0.00489	KM Standard Error of Mean	0.00139
90KM SD	0.00691	95% KM (BCA) UCL	0.00731
95% KM (t) UCL	0.00724	95% KM (Percentile Bootstrap) UCL	0.00721
95% KM (z) UCL	0.00718	95% KM Bootstrap t UCL	0.00778
90% KM Chebyshev UCL	0.00907	95% KM Chebyshev UCL	0.011
97.5% KM Chebyshev UCL	0.0136	99% KM Chebyshev UCL	0.0188
-		aset. Other substitution method recommended	
·			
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	1.086	Anderson-Darling GOF Test	
5% A-D Critical Value	0.8	Detected Data Not Gamma Distributed at 5% Significance	
	0.0	Delected Data Not Gamma Distributed at 5% Significance	LEVEI
		-	Level
K-S Test Statistic 5% K-S Critical Value	0.8	Kolmogorov-Smirnov GOF	
K-S Test Statistic 5% K-S Critical Value	0.212 0.221	Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance	
K-S Test Statistic 5% K-S Critical Value	0.212 0.221	Kolmogorov-Smirnov GOF	
K-S Test Statistic 5% K-S Critical Value Detected data follow App	0.212 0.221 or. Gamma D	Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance	
K-S Test Statistic 5% K-S Critical Value Detected data follow App	0.212 0.221 or. Gamma D	Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only	
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S	0.212 0.221 or. Gamma D	Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level	e Level
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE)	0.212 0.221 or. Gamma D Statistics on 0.491	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)	e Level
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE)	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)	e Level 0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.212 0.221 or. Gamma E Statistics on 0.491 0.0156 16.69	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)	e Level 0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)	e Level 0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected)	0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data se	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50%	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected)         sing Imputed Non-Detects	0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data se GROS may not be used when kstar of detects is s	0.212 0.221 or. Gamma E Statistics on 0.491 0.0156 16.69 0.00767 Statistics us at has > 50% mall such as	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected)         ing Imputed Non-Detects         NDs with many tied observations at multiple DLs	0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m	0.212 0.221 or. Gamma C Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50% mall such as nethod may y	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected)         Significance         Significance         Detected Data Only         k star (bias corrected MLE)         nu star (bias corrected)         Significance         Significance         Significance         Significance         Level         Significance         Significance         Level         Significance         Level         NDs with many tied observations at multiple DLs         Significance         Significance         Level         Level         Significance         Level         Level         Level         Level         Significance         Level         Level         Level         Level         Level         Level         Level	e Level 0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us at has > 50% mall such as nethod may y ally true when	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50% mall such as nethod may y ally true when nd UCLs may	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	0.443 0.0173
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50% mall such as nethod may y ally true when nd UCLs may	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         star (bias corrected MLE)         star (bias corrected MLE)         nu star (bias corrected)         star (bias corrected)         star (bias corrected)         star (bias corrected)         nu star (bias corrected)         nu star (bias corrected)         st	e Level
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us at has > 50% mall such as nethod may y ally true when nd UCLs may 1.6000E-4	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	e Level
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50% mall such as nethod may y ally true when d UCLs may 1.6000E-4 0.025 0.00575	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	e Level
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE)	0.212 0.221 or. Gamma E Statistics on 0.491 0.0156 16.69 0.00767 Statistics us at has > 50% mall such as nethod may y ally true when nd UCLs may 1.6000E-4 0.025 0.00575 1.049	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	20.443 0.0173 15.08 0.00907 0.01 0.634 0.989
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE)	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50% mall such as nethod may y ally true when nd UCLs may 1.6000E-4 0.025 0.00575 1.049 0.00864	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	e Level 0.443 0.0173 15.08 0.00907 0.00907 0.01 0.634 0.989 0.00917
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.212 0.221 or. Gamma E Statistics on 0.491 0.0156 16.69 0.00767 Statistics us at has > 50% mall such as nethod may y ally true when nd UCLs may 1.6000E-4 0.025 0.00575 1.049 0.00864 86.04	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	20.443 0.0173 15.08 0.00907 0.01 0.634 0.989
K-S Test Statistic 5% K-S Critical Value Detected data follow App Gamma S k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS m This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE)	0.212 0.221 or. Gamma D Statistics on 0.491 0.0156 16.69 0.00767 Statistics us et has > 50% mall such as nethod may y ally true when nd UCLs may 1.6000E-4 0.025 0.00575 1.049 0.00864	Kolmogorov-Smirnov GOF         Detected data appear Gamma Distributed at 5% Significance         Distribution at 5% Significance Level         Detected Data Only         k star (bias corrected MLE)         Theta star (bias corrected MLE)         nu star (bias corrected MLE)         nu star (bias corrected MLE)         sing Imputed Non-Detects         NDs with many tied observations at multiple DLs         s <1.0, especially when the sample size is small (e.g., <15-20)	e Level 0.443 0.0173 15.08 0.00907 0.00907 0.00907 0.01 0.634 0.989 0.00917

95% Gamma Approximate UCL	0.012	95% Gamma Adjusted UCL	0.0121
E			
		meters using KM Estimates	0.00001
Mean (KM)	0.00489	SD (KM)	0.00691
Variance (KM)		SE of Mean (KM)	0.00139
k hat (KM)	0.501	k star (KM)	0.48
nu hat (KM)	41.06	nu star (KM)	39.39
theta hat (KM)	0.00976	theta star (KM)	0.0102
80% gamma percentile (KM)	0.00801	90% gamma percentile (KM)	0.0133
95% gamma percentile (KM)	0.019	99% gamma percentile (KM)	0.0331
Gamm	a Kanlan-M	eier (KM) Statistics	
Approximate Chi Square Value (39.39, α)	26.01	Adjusted Chi Square Value (39.39, β)	25.62
95% KM Approximate Gamma UCL	0.0074	95% KM Adjusted Gamma UCL	0.00752
		taset. Other substitution method recommended	0.00702
Lognormal GC	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.847	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.91	Detected Data Not Lognormal at 10% Significance Lev	vel
Lilliefors Test Statistic	0.234	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.19	Detected Data Not Lognormal at 10% Significance Lev	vel
Detected Data N	Not Lognorm	al at 10% Significance Level	
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale	0.00415	Mean in Log Scale	-6.77
SD in Original Scale	0.00656	SD in Log Scale	1.72
95% t UCL (assumes normality of ROS data)	0.00588	95% Percentile Bootstrap UCL	0.00592
95% BCA Bootstrap UCL	0.00617	95% Bootstrap t UCL	0.00643
95% H-UCL (Log ROS)	0.0122		
		Data and Assuming Lognormal Distribution	0.00117
KM Mean (logged)	-6.754	KM Geo Mean	0.00117
KM SD (logged)	1.811	95% Critical H Value (KM-Log)	3.376
KM Standard Error of Mean (logged)	0.421	95% H-UCL (KM -Log)	0.0158
KM SD (logged)	1.811	95% Critical H Value (KM-Log)	3.376
KM Standard Error of Mean (logged)	0.421		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00722	Mean in Log Scale	-5.588
SD in Original Scale	0.00584	SD in Log Scale	1.534
95% t UCL (Assumes normality)	0.00875	95% H-Stat UCL	0.0252
· · · · · · · · · · · · · · · · · · ·	ethod, provi	ded for comparisons and historical reasons	
-		tion Free UCL Statistics	
Detected Data appear Appro	oximate Gan	nma Distributed at 5% Significance Level	
	Suggested	UCL to Use	

	0.00750		
95% KM Adjusted Gamma UCL	0.00752		
The coloulated LICLs are based on accumpt	ione that the	e data were collected in a random and unbiased manner.	
· · · · · · · · · · · · · · · · · · ·		blected from random locations.	
		mental or other non-random methods,	
		to correctly calculate UCLs.	
	Statistician		
When a data set follows an app	proximate dis	stribution passing only one of the GOF tests,	
		istribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size,	, data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statisticia	n.
C (groundwater   manganese   7439-96-5)			
	General	Statistics	
Total Number of Observations	28	Number of Distinct Observations	27
		Number of Missing Observations	0
Minimum	0.032	Mean	8.402
Maximum	28.1	Median	5.61
SD	7.941	Std. Error of Mean	1.501
Coefficient of Variation	0.945	Skewness	1.286
		GOF Test	
Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.896	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.211	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.191	Data Not Normal at 1% Significance Level	
Data Not	Normal at 1	1% Significance Level	
A.			
	suming Nori	mal Distribution	
95% Normal UCL	10.00	95% UCLs (Adjusted for Skewness)	11.00
95% Student's-t UCL	10.96	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	11.26
		95% Modified-t OCE (Johnson-1978)	11.02
	Gamma	GOF Test	
A-D Test Statistic	0.21	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.21	Detected data appear Gamma Distributed at 5% Significance	
K-S Test Statistic	0.0806	Kolmogorov-Smirnov Gamma GOF Test	0 2010
5% K-S Critical Value	0.171	Detected data appear Gamma Distributed at 5% Significance	e Level
		stributed at 5% Significance Level	
		•	
	Gamma	Statistics	
k hat (MLE)	0.956	k star (bias corrected MLE)	0.878
Theta hat (MLE)	8.786	Theta star (bias corrected MLE)	9.574
nu hat (MLE)	53.55	nu star (bias corrected)	49.15
		. ,	

MLE Mean (bias corrected)	8.402	MLE Sd (bias corrected)	8.969
		Approximate Chi Square Value (0.05)	34.05
Adjusted Level of Significance	0.0404	Adjusted Chi Square Value	33.28
As	suming Gam	ma Distribution	
95% Approximate Gamma UCL	12.13	95% Adjusted Gamma UCL	12.41
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.877	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.936	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.155	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.151	Data Not Lognormal at 10% Significance Level	
Data Not L	ognormal at	10% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	-3.442	Mean of logged Data	1.522
Maximum of Logged Data	3.336	SD of logged Data	1.442
		ormal Distribution	
95% H-UCL	30.14	90% Chebyshev (MVUE) UCL	24.33
95% Chebyshev (MVUE) UCL	29.88	97.5% Chebyshev (MVUE) UCL	37.58
99% Chebyshev (MVUE) UCL	52.71		
Nonporomo	tria Diatribu	tion Free UCL Statistics	
-		Discernible Distribution	
Data appea			
Nonpa	rametric Dis	tribution Free UCLs	
95% CLT UCL	10.87	95% BCA Bootstrap UCL	11.27
95% Standard Bootstrap UCL	10.84	95% Bootstrap-t UCL	11.59
95% Hall's Bootstrap UCL	11.29	95% Percentile Bootstrap UCL	10.94
90% Chebyshev(Mean, Sd) UCL	12.9	95% Chebyshev(Mean, Sd) UCL	14.94
97.5% Chebyshev(Mean, Sd) UCL	17.77	99% Chebyshev(Mean, Sd) UCL	23.33
	Suggested	UCL to Use	
	Cuggoolou		
95% Adjusted Gamma UCL	12.41		
95% Adjusted Gamma UCL			
	12.41	ovided to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a 95%	12.41		
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	12.41 6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	n.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	12.41 6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	n.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	12.41 6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	n.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	12.41 6 UCL are pri , data distribu /orld data se	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistician	n.
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W c (groundwater   mercury   7439-97-6)	12.41 5 UCL are pr , data distrib /orld data se General	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics	
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   mercury   7439-97-6) Total Number of Observations	12.41 6 UCL are pro- data distribution /orld data se General 41	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistician Statistics	7
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   mercury   7439-97-6) Total Number of Observations Number of Detects	12.41 5 UCL are provided and the second sec	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Non-Detects	7 36
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   mercury   7439-97-6) Total Number of Observations Number of Detects Number of Distinct Detects	12.41 5 UCL are pro- data distribution forld data se General 41 5 4	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistician Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	7 36 3
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W C (groundwater   mercury   7439-97-6) Total Number of Observations Number of Detects	12.41 b UCL are pro- data distribution /orld data se General 41 5 4 5.3000E-5	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Non-Detects	7 36 3 .0000E-4

Verience Detecto		Demonst New Detector	07.00/
Variance Detects		Percent Non-Detects	87.8%
Mean Detects		SD Detects	
Median Detects		CV Detects	N/A
Skewness Detects		Kurtosis Detects	4.835
Mean of Logged Detects	-9.452	SD of Logged Detects	0.585
Norr	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.633	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.686	Detected Data Not Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.42	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.396	Detected Data Not Normal at 1% Significance Leve	el
Detected Dat	a Not Norma	I at 1% Significance Level	
Kanlan-Majer (KM) Statistics us	ing Normal C	ritical Values and other Nonparametric UCLs	
	6.4878E-5	KM Standard Error of Mean	5 5301E 6
	0.4878E-5 2.5339E-5	95% KM (BCA) UCL	0.0094L-0 N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	
	9.947TE-3		1.1999⊏-4
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.941	Anderson-Darling GOF Test	
5% A-D Critical Value	0.682	Detected Data Not Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.403	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.359	Detected Data Not Gamma Distributed at 5% Significance	e Level
Detected Data Not	Gamma Dist	ributed at 5% Significance Level	
	Otatiatian an	Protocolo d Deste Onde	
		Detected Data Only	1 201
k hat (MLE)		k star (bias corrected MLE)	
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE) Mean (detects)		nu star (bias corrected)	13.91
	9.2000E-5		
Gamma ROS	6 Statistics u	sing Imputed Non-Detects	
GROS may not be used when data s	set has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	5.3000E-5	Mean	0.00879
Maximum	0.01	Median	0.01
SD	0.00328	CV	0.373
k hat (MLE)	1.221	k star (bias corrected MLE)	1.148
Theta hat (MLE)	0.0072	Theta star (bias corrected MLE)	0.00766
nu hat (MLE)	100.1	nu star (bias corrected)	94.14
Adjusted Level of Significance (β)			
Approximate Chi Square Value (94.14, α)		Adjusted Chi Square Value (94.14, β)	72.08

95% Gamma Approximate UCL	0.0114	05% Commo Adjusted LICI	0.0115		
95% Gamma Approximate UCL	0.0114	95% Gamma Adjusted UCL	0.0115		
Estimates of G	amma Para	meters using KM Estimates			
Mean (KM)	6.4878E-5	SD (KM)	2.5339E-5		
Variance (KM)	6.421E-10	SE of Mean (KM)	5.5394E-6		
k hat (KM)	6.556	k star (KM)			
nu hat (KM)	537.6	nu star (KM)	499.6		
theta hat (KM)	9.8964E-6	theta star (KM)	1.0649E-5		
80% gamma percentile (KM)	8.5348E-5	90% gamma percentile (KM)	1.0001E-4		
95% gamma percentile (KM)		99% gamma percentile (KM)			
Gamn	na Kaplan-M	eier (KM) Statistics			
Approximate Chi Square Value (499.57, α)	448.7	Adjusted Chi Square Value (499.57, β)	447		
95% KM Approximate Gamma UCL	7.2227E-5	95% KM Adjusted Gamma UCL	7.2510E-5		
Lognormal GC	DF Test on D	Petected Observations Only			
Shapiro Wilk Test Statistic	0.71	Shapiro Wilk GOF Test			
10% Shapiro Wilk Critical Value	0.806	Detected Data Not Lognormal at 10% Significance Le	evel		
Lilliefors Test Statistic	0.368	Lilliefors GOF Test			
10% Lilliefors Critical Value	0.319	Detected Data Not Lognormal at 10% Significance Le	evel		
Detected Data	Not Lognorm	al at 10% Significance Level			
Lognormal RO	S Statistics	Using Imputed Non-Detects			
Mean in Original Scale	7.0891E-5	Mean in Log Scale	-9.641		
SD in Original Scale	3.3907E-5	SD in Log Scale	0.408		
95% t UCL (assumes normality of ROS data)	7.9808E-5	95% Percentile Bootstrap UCL	8.0355E-5		
95% BCA Bootstrap UCL	8.1899E-5	95% Bootstrap t UCL	8.2897E-5		
95% H-UCL (Log ROS)	7.9498E-5				
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution			
KM Mean (logged)	-9.679	KM Geo Mean	6.2604E-5		
KM SD (logged)	0.224	95% Critical H Value (KM-Log)	1.737		
KM Standard Error of Mean (logged)	0.0665	95% H-UCL (KM -Log)	6.8258E-5		
KM SD (logged)	0.224	95% Critical H Value (KM-Log)	1.737		
KM Standard Error of Mean (logged)	0.0665				
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	<u>I</u>		
	DL/2 S	tatistics			
DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	8.8268E-5	Mean in Log Scale	-9.39		
SD in Original Scale	3.0427E-5	SD in Log Scale	0.337		
95% t UCL (Assumes normality)	9.6270E-5	95% H-Stat UCL	9.7340E-5		
DL/2 is not a recommended m	ethod, provi	ded for comparisons and historical reasons	1		
Nonparame	etric Distribu	tion Free UCL Statistics			
Data do n	not follow a D	Discernible Distribution			
	Suggested	UCL to Use			

95% KM (t) UCL	7.4205E-	5	
		provided to help the user to select the most appropriate 95% UCL.	
		ribution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real Wo	orid data	sets; for additional insight the user may want to consult a statisticia	an.
C (groundwater   methanol   67-56-1)			
	Gener	al Statistics	
Total Number of Observations	6	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	6
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Warning: All observations are Non-Detects	; (NDs), 1	therefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	i other st	atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specifi	c values to estimate environmental parameters (e.g., EPC, BTV)	
The data set for variable C (g	roundwat	ter   methanol   67-56-1) was not processed!	
C (groundwater   methyl acetate   79-20-9)			
	Gener	al Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
		therefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specifi	c values to estimate environmental parameters (e.g., EPC, BTV)	•
The data and formed all a Q (and			
I he data set for variable C (grou	ndwater	methyl acetate   79-20-9) was not processed!	
C (groundwater   methyl tert-butyl ether   1634-04-4)			
	Gener	al Statistics	
Total Number of Observations	43	Number of Distinct Observations	8
Number of Detects	0	Number of Non-Detects	43
Number of Distinct Detects	0	Number of Distinct Non-Detects	8
Warning: All observations are Non-Detects	; (NDs), t	therefore all statistics and estimates should also be NDs!	
-		atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV)	
	· · · · ·		
The data set for variable C (groundwa	ater   met	thyl tert-butyl ether   1634-04-4) was not processed!	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·		

C (groundwater   methylcyclohexane   108-87-2)			
<b>T</b>	General		
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	1	Number of Non-Detects	35
Number of Distinct Detects	1	Number of Distinct Non-Detects	4
Warning: Only one distinct data value was detected	d! ProUCL (	or any other software) should not be used on such a data set!	
It is suggested to use alternative site specific values detern	nined by the	Project Team to estimate environmental parameters (e.g., EP	C, BTV).
The data set for variable C (ground	water   meth	nylcyclohexane   108-87-2) was not processed!	
C (groundwater   methylene chloride   75-09-2)			
	General	Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
-		refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	
I në data set for variable C (groun	dwater   met	hylene chloride   75-09-2) was not processed!	
C (groundwater   molybdenum   7439-98-7)			
	General	Statistics	
Total Number of Observations	31	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	31
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detect	s (NDs), the	refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	•
The data set for variable C (grou	indwater   m	olybdenum   7439-98-7) was not processed!	
C (groundwater   naphthalene   91-20-3)			
	General		
Total Number of Observations	50	Number of Distinct Observations	36
Number of Detects	15	Number of Non-Detects	35
Number of Distinct Detects	15	Number of Distinct Non-Detects	22
Minimum Detect	1.9000E-4	Minimum Non-Detect 2	2.5883E-4

	0.036	Maximum Non-Detect	0.002
Maximum Detect Variance Detects		Percent Non-Detects	70%
Mean Detects			
		SD Detects	0.00928
Median Detects		CV Detects	1.802
Skewness Detects		Kurtosis Detects	9.739
Mean of Logged Detects	-6.35	SD of Logged Detects	1.514
Nam		han Datasta Only	
		t on Detects Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value		Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
1% Lilliefors Critical Value		Detected Data Not Normal at 1% Significance Level	
Detected Dat	a Not Norma	l at 1% Significance Level	
	-	ritical Values and other Nonparametric UCLs	
KM Mean		KM Standard Error of Mean	
90KM SD		95% KM (BCA) UCL	0.00327
95% KM (t) UCL	0.00308	95% KM (Percentile Bootstrap) UCL	0.00314
95% KM (z) UCL		95% KM Bootstrap t UCL	0.00589
90% KM Chebyshev UCL	0.00412	95% KM Chebyshev UCL	0.0052
97.5% KM Chebyshev UCL	0.00669	99% KM Chebyshev UCL	0.00962
		tected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appea	r Gamma Dis	stributed at 5% Significance Level	
		Detected Data Only	
k hat (MLE)		k star (bias corrected MLE)	0.504
Theta hat (MLE)	0.00896	Theta star (bias corrected MLE)	0.0102
nu hat (MLE)		nu star (bias corrected)	15.13
Mean (detects)	0.00515		
		sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when data s GROS may not be used when kstar of detects is	et has > 50% small such as	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS	et has > 50% small such as method may	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec	et has > 50% small such as method may ially true whe	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small.	
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a	et has > 50% small such as method may ially true whe and UCLs ma	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a Minimum	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean	0.00855
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4 0.036	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates	0.01
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4 0.036 0.00545	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean	0.01 0.637
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a Minimum Maximum	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4 0.036 0.00545	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median	0.01
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4 0.036 0.00545 1.51	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV	0.01 0.637
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE)	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4 0.036 0.00545 1.51	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.01 0.637 1.433
GROS may not be used when data s GROS may not be used when kstar of detects is For such situations, GROS This is espec For gamma distributed detected data, BTVs a Minimum Maximum SD k hat (MLE) Theta hat (MLE)	et has > 50% small such as method may ially true whe and UCLs ma 1.9000E-4 0.036 0.00545 1.51 0.00566 151	NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.01 0.637 1.433 0.0059

Approximate Chi Square Value (143.28, $\alpha$ )	116.6	Adjusted Chi Square Value (143.28, β)	115.9
95% Gamma Approximate UCL	0.0105	95% Gamma Adjusted UCL	0.0106
Estimates of G	amma Paran	neters using KM Estimates	
Mean (KM)	0.00175	SD (KM)	0.0054
Variance (KM)	2.9121E-5	SE of Mean (KM)	7.9084E-4
k hat (KM)	0.105	k star (KM)	0.112
nu hat (KM)	10.53	nu star (KM)	11.23
theta hat (KM)	0.0166	theta star (KM)	0.0156
80% gamma percentile (KM)	0.00142	90% gamma percentile (KM)	0.00486
95% gamma percentile (KM)	0.0101	99% gamma percentile (KM)	0.0262
Gamm	a Kaplan-Me	er (KM) Statistics	
Approximate Chi Square Value (11.23, α)	4.725	Adjusted Chi Square Value (11.23, $\beta$ )	4.599
95% KM Approximate Gamma UCL	0.00416	95% KM Adjusted Gamma UCL	0.00428
Lognormal GC	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.972	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.901	Detected Data appear Lognormal at 10% Significance L	evel
Lilliefors Test Statistic	0.0952	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 10% Significance L	evel
		nal at 10% Significance Level	
		Jsing Imputed Non-Detects	
Mean in Original Scale	0.00172	Mean in Log Scale	-7.951
SD in Original Scale	0.00546	SD in Log Scale	1.484
95% t UCL (assumes normality of ROS data)	0.00301	95% Percentile Bootstrap UCL	0.00313
95% BCA Bootstrap UCL	0.00396	95% Bootstrap t UCL	0.0057
95% H-UCL (Log ROS)	0.00197		
Statistics using KM estimates	on Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-7.708	KM Geo Mean	4.4916E-4
KM SD (logged)	1.266	95% Critical H Value (KM-Log)	2.647
KM Standard Error of Mean (logged)	0.209	95% H-UCL (KM -Log)	0.0016
KM SD (logged)	1.266	95% Critical H Value (KM-Log)	2.647
KM Standard Error of Mean (logged)	0.209		
Note: KM UCLs may be biased low	with this dat	aset. Other substitution method recommended	
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00193	Mean in Log Scale	-7.284
SD in Original Scale	0.00541	SD in Log Scale	1.141
95% t UCL (Assumes normality)	0.00321	95% H-Stat UCL	0.00198
DL/2 is not a recommended me	ethod, provid	led for comparisons and historical reasons	
Nonarame	tric Distribut	ion Free UCL Statistics	
-		stributed at 5% Significance Level	

	Suggested	UCL to Use	
95% KM Approximate Gamma UCL	0.00416		
The calculated UCLs are based on assumpt	ions that the	e data were collected in a random and unbiased manner.	
		Illected from random locations.	
		nental or other non-random methods,	
then contact a	statistician t	to correctly calculate UCLs.	
		ovided to help the user to select the most appropriate 95% UCL.	
		ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	<u></u>
C (groundwater   n-butylbenzene   104-51-8)			
- (3.0			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
·		· · · · · · · · · · · · · · · · · · ·	
C (groundwater   nickel   7440-02-0)			
	General	Statistics	
Total Number of Observations	41	Number of Distinct Observations	41
Number of Detects	40	Number of Non-Detects	1
Number of Distinct Detects	40	Number of Distinct Non-Detects	1
Minimum Detect	0.0024	Minimum Non-Detect	0.01
Maximum Detect	0.299	Maximum Non-Detect	0.01
Variance Detects	0.00449	Percent Non-Detects	2.439%
Mean Detects	0.0515	SD Detects	0.067
Median Detects	0.025	CV Detects	1.301
Skewness Detects	2.165	Kurtosis Detects	4.722
Mean of Logged Detects	-3.747	SD of Logged Detects	1.348
т Т		t on Detects Only	
Shapiro Wilk Test Statistic	0.717	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.919	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.245	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.162	Detected Data Not Normal at 1% Significance Level	
Detected Data		Il at 1% Significance Level	
Kanlan-Maiar (KM) Statistics wai	a Normal C	critical Values and other Nonparametric UCLs	
rapian-weier (rivi) Statistics USI	ig inormal C	Antical values and other Nonparametric UCLS	

KM Mean	0.0504	KM Standard Error of Mean	0.0104
90KM SD			
95% KM (t) UCL	0.0658	95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.0685
95% KM (t) UCL 95% KM (z) UCL	0.0679	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	0.0082
	0.0875	95% KM Boolstrap t OCL 95% KM Chebyshev UCL	0.0739
90% KM Chebyshev UCL		95% KM Chebyshev UCL	0.0957
97.5% KM Chebyshev UCL	0.115	99% KM Chebysnev UCL	0.154
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.684	Anderson-Darling GOF Test	
5% A-D Critical Value	0.789	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.118	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.145	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear	<b>r Gamma Di</b> s	stributed at 5% Significance Level	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	0.764	k star (bias corrected MLE)	0.723
Theta hat (MLE)	0.0675	Theta star (bias corrected MLE)	0.0713
nu hat (MLE)	61.1	nu star (bias corrected)	57.85
Mean (detects)	0.0515		
Operation DOG	Otatiatias	ing languaged New Detector	
		Sing Imputed Non-Detects	
		s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	
		-	
		en the sample size is small. by be computed using gamma distribution on KM estimates	
Minimum		Mean	0.0505
Maximum	0.0024	Median	0.0303
SD	0.299	CV	1.316
k hat (MLE)		k star (bias corrected MLE)	0.723
Theta hat (MLE)		Theta star (bias corrected MLE)	0.0698
nu hat (MLE)		nu star (bias corrected WLL)	59.31
Adjusted Level of Significance (β)			55.51
Aujusted Level of Significance (ρ) Approximate Chi Square Value (59.31, α)	42.6	Adjusted Chi Square Value (59.31, β)	42.09
95% Gamma Approximate UCL	0.0703	95% Gamma Adjusted UCL	0.0712
	0.0700		0.0712
Estimates of G	iamma Para	meters using KM Estimates	
Mean (KM)		SD (KM)	0.0658
Variance (KM)		SE of Mean (KM)	0.0104
k hat (KM)	0.587	k star (KM)	0.561
nu hat (KM)		nu star (KM)	45.98
theta hat (KM)	0.0858	theta star (KM)	0.0899
	1		
80% gamma percentile (KM)	0.083	90% gamma percentile (KM)	0.133
80% gamma percentile (KM) 95% gamma percentile (KM)		90% gamma percentile (KM) 99% gamma percentile (KM)	0.133
95% gamma percentile (KM)	0.186		
95% gamma percentile (KM)	0.186 na Kaplan-Me	99% gamma percentile (KM)	

	F Test on Dete	ected Observations Only	
Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.949	Detected Data appear Lognormal at 10% Significance Lo	evel
Lilliefors Test Statistic	0.102	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.128	Detected Data appear Lognormal at 10% Significance Level	
		al at 10% Significance Level	
Lognormal ROS	Statistics Us	ing Imputed Non-Detects	
Mean in Original Scale	0.0504	Mean in Log Scale	-3.783
SD in Original Scale	0.0666	SD in Log Scale	1.35
95% t UCL (assumes normality of ROS data)	0.0679	95% Percentile Bootstrap UCL	0.0684
95% BCA Bootstrap UCL	0.0717	95% Bootstrap t UCL	0.0744
95% H-UCL (Log ROS)	0.102		
Statistics using KM astimatos (		ta and Assuming Lognormal Distribution	
KM Mean (logged)	-3.787	KM Geo Mean	0.0227
KM SD (logged)	1.34	95% Critical H Value (KM-Log)	2.752
KM Standard Error of Mean (logged)	0.212	95% Childai H Valde (KM-Log) 95% H-UCL (KM -Log)	0.0997
KM SD (logged)	1.34	95% Critical H Value (KM-Log)	2.752
KM Standard Error of Mean (logged)	0.212	55% Chical H Value (Kivi-Log)	2.752
	0.212		
	DL/2 Stat	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0504	Mean in Log Scale	-3.785
SD in Original Scale	0.0666	SD in Log Scale	1.353
95% t UCL (Assumes normality)	0.0679	95% H-Stat UCL	0.102
DL/2 is not a recommended me	thod, provided	d for comparisons and historical reasons	
Nonparame	tric Distributio	n Free UCL Statistics	
Detected Data appear	Gamma Distr	ibuted at 5% Significance Level	
	Gamma Distr Suggested UC 0.0748		
95% KM Adjusted Gamma UCL	Suggested UC	CL to Use	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti	Suggested UC 0.0748 ons that the d	CL to Use	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the d	Suggested UC 0.0748 ons that the d ata were colle	CL to Use ata were collected in a random and unbiased manner. cted from random locations.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the data were collected	Suggested UC 0.0748 ons that the d ata were colle using judgme	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods,	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the data were collected	Suggested UC 0.0748 ons that the d ata were colle using judgme	CL to Use ata were collected in a random and unbiased manner. cted from random locations.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the data If the data were collected then contact a s	Suggested UC 0.0748 ons that the d ata were colle using judgme statistician to c	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods, correctly calculate UCLs.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95%	Suggested UC 0.0748 ons that the d ata were colle using judgme statistician to o	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods, correctly calculate UCLs. ded to help the user to select the most appropriate 95% UCL.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested UC 0.0748 ons that the d ata were colle using judgme statistician to c UCL are providata distribution	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods, correctly calculate UCLs.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the di If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real We	Suggested UC 0.0748 ons that the d ata were colle using judgme statistician to c UCL are providata distribution	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods, correctly calculate UCLs. ded to help the user to select the most appropriate 95% UCL. on, and skewness using results from simulation studies.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the di If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real We	Suggested UC 0.0748 ons that the d ata were colle using judgme statistician to c UCL are providata distribution	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods, correctly calculate UCLs. ded to help the user to select the most appropriate 95% UCL. on, and skewness using results from simulation studies.	
95% KM Adjusted Gamma UCL The calculated UCLs are based on assumpti Please verify the data If the data were collected then contact a s Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested UC 0.0748 ons that the d ata were colle using judgme statistician to c UCL are providata distribution	CL to Use ata were collected in a random and unbiased manner. cted from random locations. ntal or other non-random methods, correctly calculate UCLs. ded to help the user to select the most appropriate 95% UCL. on, and skewness using results from simulation studies. for additional insight the user may want to consult a statisticia	

Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	9
		I I	
Warning: All observations are Non-Detects	s (NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (gro	undwater	nitrobenzene   98-95-3) was not processed!	
C (groundwater   n-nitrosodimethylamine   62-75-9)			
		Statistics	
Total Number of Observations	13	Number of Distinct Observations	6
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	6
-		erefore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
	eter I.a. alta	ee dimethylemine I CO 75 () was not pressed	
i në data sët for variable C (groundw	ater   n-nitr	osodimethylamine   62-75-9) was not processed!	
C (groundwater   n-nitroso-di-n-propylamine   621-64-7)			
	General	Statistics	
Total Number of Observations	42	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Warning: All observations are Non-Detect	s (NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stati	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwat	er   n-nitros	o-di-n-propylamine   621-64-7) was not processed!	
C (groundwater   n-nitrosodiphenylamine   86-30-6)			
		Statistics	
Total Number of Observations	42	Number of Distinct Observations	10
Number of Detects	0	Number of Non-Detects	42
Number of Distinct Detects	0	Number of Distinct Non-Detects	10
Wandam All alagamentaria and Alam Parts	• (NID-) - 1	vefere all statistics and estimates should shark a ND-1	
		erefore all statistics and estimates should also be NDs! stics are also NDs lying below the largest detection limit!	
		stics are also NDS lying below the largest detection limit: values to estimate environmental parameters (e.g., EPC, BTV).	
The Project ream may decide to use alternative si	re shecilic /	raiues to estimate environmental parameters (e.g., EPC, BTV).	

## The data set for variable C (groundwater | n-nitrosodiphenylamine | 86-30-6) was not processed!

C (groundwater | n-propylbenzene | 103-65-1)

	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detects	(NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative site	e specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	
The data set for variable C (ground	lwater   n-p	ropylbenzene   103-65-1) was not processed!	
oundwater   pcbs (total)   1336-36-3)			
	General	Statistics	
Total Number of Observations	1	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	1
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Warning: Thi Data set is too small to compu	s data set o ute reliable	Number of Distinct Non-Detects only has 1 observations! and meaningful statistics and estimates! obs (total)   1336-36-3) was not processed!	1
Warning: Thi Data set is too small to compu The data set for variable C (grou	s data set o ute reliable Indwater   p	only has 1 observations! and meaningful statistics and estimates!	1
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t	s data set o ute reliable indwater   p	only has 1 observations! and meaningful statistics and estimates! cbs (total)   1336-36-3) was not processed!	1
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua	s data set o ute reliable indwater   p	only has 1 observations! and meaningful statistics and estimates! cbs (total)   1336-36-3) was not processed! vations before using these statistical methods!	1
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t	s data set o ute reliable indwater   p	only has 1 observations! and meaningful statistics and estimates! cbs (total)   1336-36-3) was not processed! vations before using these statistical methods!	1
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua	s data set o ute reliable indwater   p	only has 1 observations! and meaningful statistics and estimates! icbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results.	1
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua	s data set o ute reliable indwater   p to 10 obser lity Objecti	only has 1 observations! and meaningful statistics and estimates! icbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results.	1
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua pundwater   p-cymene   99-87-6)	s data set c ute reliable indwater   p to 10 obser lity Objecti	only has 1 observations! and meaningful statistics and estimates! obs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results.	
Warning: Thi Data set is too small to compu The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations	s data set o ute reliable indwater   p to 10 obser lity Objecti General 3 13	only has 1 observations! and meaningful statistics and estimates! icbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results.	5
Warning: Thi Data set is too small to compu- The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations Number of Detects	s data set c ute reliable indwater   p to 10 obser lity Objecti General 5 13 2	only has 1 observations! and meaningful statistics and estimates! icbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results. Statistics Number of Distinct Observations Number of Non-Detects	5 11 3
Warning: Thi Data set is too small to compu- The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	s data set c ute reliable indwater   p to 10 observation lity Objecti 13 2 2 0.0022 0.00525	only has 1 observations! and meaningful statistics and estimates! acbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results. Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	5 11 3 7.0500E
Warning: Thi Data set is too small to compu- The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	s data set c ute reliable indwater   p to 10 observation lity Objecti 13 2 2 0.0022 0.00525	only has 1 observations! and meaningful statistics and estimates! icbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results. Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detects	5 11 3 7.0500E 0.002
Warning: Thi Data set is too small to compu- The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	s data set c ute reliable indwater   p to 10 observation lity Objecti 13 2 2 0.0022 0.00525	only has 1 observations! and meaningful statistics and estimates! acbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results. Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	5 11 3 7.0500E 0.002 84.62
Warning: Thi Data set is too small to compu- The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects 4 Mean Detects	s data set c ute reliable indwater   p to 10 obser lity Objecti 13 2 2 0.0022 0.00525 1.6513E-6	only has 1 observations! and meaningful statistics and estimates! icbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results. Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects	5 11 3 7.0500E 0.002 84.62 0.002
Warning: Thi Data set is too small to compu- The data set for variable C (grou It is suggested to collect at least 8 t If possible, compute and collect Data Qua bundwater   p-cymene   99-87-6) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects 4 Mean Detects	s data set c ute reliable indwater   p to 10 observation lity Objecti 13 2 0.0022 0.00525 1.6513E-6 0.00373	only has 1 observations! and meaningful statistics and estimates! acbs (total)   1336-36-3) was not processed! vations before using these statistical methods! ves (DQO) based sample size and analytical results. Statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	5 11 3

	ure meanin(	gful or reliable statistics and estimates.	
		t on Detects Only Perform GOF Test	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	0.00117	KM Standard Error of Mean	4.8755E-
90KM SD	0.00124	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.00204	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.00197	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.00263	95% KM Chebyshev UCL	0.0032
97.5% KM Chebyshev UCL	0.00421	99% KM Chebyshev UCL	0.0060
		etected Observations Only Perform GOF Test	
	-		
k hat (MLE)	5.612	k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A
nu hat (MLE)	22.45	nu star (bias corrected MLL)	N/A
Mean (detects)	0.00373		11/7
Estimates of G	amma Parar	neters using KM Estimates	
Mean (KM)	0.00117	SD (KM)	0.0012
Variance (KM)	1.5451E-6	SE of Mean (KM)	4.8755E-
k hat (KM)	0.885	k star (KM)	0.732
nu hat (KM)	23.02	nu star (KM)	19.04
theta hat (KM)	0.00132	theta star (KM)	0.0016
80% gamma percentile (KM)	0.00192	90% gamma percentile (KM)	0.0029
95% gamma percentile (KM)	0.00392	99% gamma percentile (KM)	0.006
Gamm	a Kaplan-Me	eier (KM) Statistics	
		Adjusted Level of Significance (β)	0.030
Approximate Chi Square Value (19.04, $\alpha$ )	10.15	Adjusted Chi Square Value (19.04, $\beta$ )	9.235
95% KM Approximate Gamma UCL	0.00219	95% KM Adjusted Gamma UCL	0.0024
Lognormal GO	F Test on D	etected Observations Only	
Not End	ough Data to	Perform GOF Test	
		Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-9.074
SD in Original Scale	0.00149	SD in Log Scale	2.011
95% t UCL (assumes normality of ROS data)	0.00143	95% Percentile Bootstrap UCL	0.0014
95% BCA Bootstrap UCL	0.00182	95% Bootstrap t UCL	0.0058
95% H-UCL (Log ROS)	0.0143		
		Data and Assuming Lognormal Distribution	

	7.015		0.00045
KM Mean (logged) KM SD (logged)		KM Geo Mean 95% Critical H Value (KM-Log)	2.22
KM Standard Error of Mean (logged)	0.393	95% H-UCL (KM -Log)	0.001
			2.22
KM SD (logged)		95% Critical H Value (KM-Log)	2.22
KM Standard Error of Mean (logged)	0.232		
	DL/2 S	statistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00102	Mean in Log Scale	-7.28
SD in Original Scale	0.00136	SD in Log Scale	0.76
95% t UCL (Assumes normality)	0.0017	95% H-Stat UCL	0.001
DL/2 is not a recommended me	ethod, provi	ided for comparisons and historical reasons	
Naccore	tale Distrike		
-		Ition Free UCL Statistics Discernible Distribution	
	Suggested	UCL to Use	
95% KM (t) UCL	0.00204		
		rovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size	, data distrib	oution, and skewness using results from simulation studies.	
nowever, simulations results will not cover all Real w	ionu uata se	ets; for additional insight the user may want to consult a statisticia	an.
Total Number of Observations		Statistics Number of Distinct Observations	6
Number of Detects		Number of Non-Detects	13
Number of Distinct Detects	-	Number of Distinct Non-Detects	6
	L		
Warning: All observations are Non-Detect	s (NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other stati	istics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	ite specific v	values to estimate environmental parameters (e.g., EPC, BTV)	
The data set for variable C (groundwa	ater   penta	chloronitrobenzene   82-68-8) was not processed!	
roundwater   pentachlorophenol   87-86-5)			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	9
Number of Detects		Number of Non-Detects	42
Number of Distinct Detects		Number of Distinct Non-Detects	9
	L		
Warning: All observations are Non-Detect	s (NDs), the	erefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other stati	istics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific ·	values to estimate environmental parameters (e.g., EPC, BTV)	
^			

The data set for variable C (groun	dwater   pentac	hlorophenol   87-86-5) was not processed!	
C (groundwater   perylene   198-55-0)			
	General Sta	listics	
Total Number of Observations	7	Number of Distinct Observations	7
Number of Detects	0	Number of Non-Detects	7
Number of Distinct Detects	0	Number of Distinct Non-Detects	7
Warning: All observations are Non-Detect	s (NDs), therefo	re all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	d other statistic	s are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific valu	es to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (g	roundwater   pe	rylene   198-55-0) was not processed!	
C (groundwater   phenanthrene   85-01-8)			
	General Sta	istics	
Total Number of Observations	43	Number of Distinct Observations	18
Number of Detects	5	Number of Non-Detects	38
Number of Distinct Detects	5	Number of Distinct Non-Detects	13
Minimum Detect	7.0000E-5	Minimum Non-Detect 1	I.6175E
Maximum Detect	3.1000E-4	Maximum Non-Detect	0.0056
Variance Detects	1.2413E-8	Percent Non-Detects	88.37
Mean Detects	1.7889E-4	SD Detects 1	I.1141E
Median Detects	1.6644E-4	CV Detects	0.623
Skewness Detects	0.199	Kurtosis Detects	-2.75
Mean of Logged Detects	-8.814	SD of Logged Detects	0.708
Norm	al GOF Test or	Detects Only	
Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.686	Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.229	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.396	Detected Data appear Normal at 1% Significance Leve	el
		at 1% Significance Level	
		le for small sample sizes	
Kaplan-Meier (KM) Statistics usir	a Normal Critic	al Values and other Nonparametric UCLs	
Kapian-weier (Kw) Staustics usi KM Mean	-	KM Standard Error of Mean 4	L 1275E
90KM SD		95% KM (BCA) UCL 2	
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL 2	
95% KM (t) UCL 95% KM (z) UCL		95% KM (Percentile Bootstrap) UCL 2 95% KM Bootstrap t UCL 2	
90% KM Chebyshev UCL		95% KM Chebyshev UCL 3	
97.5% KM Chebyshev UCL	4.0930⊏-4	99% KM Chebyshev UCL 5	0.0228E-

Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.438	Anderson-Darling GOF Test	
5% A-D Critical Value	0.683	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.266	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.36	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appear	r Gamma Dis	stributed at 5% Significance Level	
		liable for small sample sizes	
	-	· · · ·	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	2.853	k star (bias corrected MLE)	1.275
Theta hat (MLE)	6.2702E-5	Theta star (bias corrected MLE)	1.4036E-4
nu hat (MLE)	28.53	nu star (bias corrected)	12.75
Mean (detects)		· · · · · · · · · · · · · · · · · · ·	
Gamma ROS	Statistics us	sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
		n the sample size is small.	
	1 C C C C C C C C C C C C C C C C C C C	y be computed using gamma distribution on KM estimates	
_	7.0000E-5	Mean	0.00886
Maximum	0.01	Median	0.01
SD	0.00319	CV	0.36
k hat (MLE)	1.503	k star (bias corrected MLE)	1.414
Theta hat (MLE)	0.00589	Theta star (bias corrected MLE)	0.00627
nu hat (MLE)	129.3	nu star (bias corrected MLE)	121.6
Adjusted Level of Significance (β)	0.0444		121.0
	97.12	Adjusted Obj Opugra Malus (121 EQ. 0)	96.36
Approximate Chi Square Value (121.58, α)		Adjusted Chi Square Value (121.58, β)	
95% Gamma Approximate UCL	0.0111	95% Gamma Adjusted UCL	0.0112
Estimates of O		neters using KM Estimates	
Estimates of G Mean (KM)		•	0.61105 5
· · ·			9.6112E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)	2.488	k star (KM)	2.33
nu hat (KM)	214	nu star (KM)	200.4
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)	3.4290E-4	99% gamma percentile (KM)	4./113E-4
	-	pier (KM) Statistics	107.0
Approximate Chi Square Value (200.36, α)	168.6	Adjusted Chi Square Value (200.36, β)	167.6
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	1.8123E-4
Note: KM UCLs may be biased low	with this dat	taset. Other substitution method recommended	
_		etected Observations Only	
Shapiro Wilk Test Statistic	0.855	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data appear Lognormal at 10% Significance I	Level
Lilliefors Test Statistic	0.242	Lilliefors GOF Test	

10% Lilliefors Critical Value	0.319	Detected Data appear Lognormal at 10% Significance I	aval
		mal at 10% Significance Level	Levei
-		aliable for small sample sizes	
L ognormal PO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-8.996
SD in Original Scale		SD in Log Scale	-0.990
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	1./1/4E-4
95% H-UCL (Log ROS)	1./132E-4		
Statistics using KM estimates	on Loggod	Data and Assuming Lognormal Distribution	
Statistics using KM estimates KM Mean (logged)		KM Geo Mean	1 24275
		95% Critical H Value (KM-Log)	
KM SD (logged)			1.996
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	
KM SD (logged)		95% Critical H Value (KM-Log)	1.996
KM Standard Error of Mean (logged)			
Note: KM UCLs may be blased low	v with this da	taset. Other substitution method recommended	
<b>-</b>	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale		Mean in Log Scale	-7.658
SD in Original Scale		SD in Log Scale	1.192
95% t UCL (Assumes normality)		95% H-Stat UCL ded for comparisons and historical reasons	0.00155
•		tion Free UCL Statistics stributed at 1% Significance Level	
	Suaaested	UCL to Use	
95% KM (t) UCL	à		
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
	·	ution, and skewness using results from simulation studies.	
· · · · ·		ts; for additional insight the user may want to consult a statistici	an
; (groundwater   phenol   108-95-2)			
(3.02			
	General	Statistics	
Total Number of Observations	1	Number of Distinct Observations	9
Number of Detects		Number of Non-Detects	42
Number of Distinct Detects		Number of Distinct Non-Detects	9
	U		5
Warning: All observations are Non-Deter	ts (NDs) the	prefore all statistics and estimates should also be NDs!	
	<u> </u>	stics are also NDs lying below the largest detection limit!	
		values to estimate environmental parameters (e.g., EPC, BTV	)
	no specific (	Sauss to ostimute environmental paralleters (e.y., EFO, DIV	/•
The date set for veriable 0 /	aroundwate	r   phenol   108-95-2) was not processed!	
	Biogingware	i phonor [ 100-30-2/ was not processed!	

c (groundwater   propylene glycol   57-55-6)			
(3			
	General	Statistics	
Total Number of Observations	6	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	6
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Warning: All observations are Non-Detect	s (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV)	•
The data set for variable C (grou	ndwater   pr	opylene glycol   57-55-6) was not processed!	
(groundwater   pyrene   129-00-0)			
	General	Statistics	
Total Number of Observations	43	Number of Distinct Observations	22
Number of Detects	13	Number of Non-Detects	30
Number of Distinct Detects	12	Number of Distinct Non-Detects	11
Minimum Detect	7.5250E-5	Minimum Non-Detect	5.0000E
Maximum Detect	0.001	Maximum Non-Detect	0.005
Variance Detects	9.2363E-8	Percent Non-Detects	69.77
Mean Detects		SD Detects	3.0391E
Median Detects	2.0000E-4	CV Detects	0.87
Skewness Detects	1.351	Kurtosis Detects	0.843
Mean of Logged Detects	-8.297	SD of Logged Detects	0.839
Norm	al GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.811	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.814	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.224	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.271	Detected Data appear Normal at 1% Significance Lev	el
Detected Data appear	Approximat	e Normal at 1% Significance Level	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
	2.6969E-4	KM Standard Error of Mean	5.1233E
	2.2571E-4	95% KM (BCA) UCL	
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	
95% KM (z) UCL		95% KM Bootstrap t UCL	
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	
-		taset. Other substitution method recommended	
Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.454	Anderson-Darling GOF Test	

	0.740		
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic		Kolmogorov-Smirnov GOF	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appea	ir Gamma Di	stributed at 5% Significance Level	
	Statiatica ar	Patented Date Only	
		Detected Data Only	1 000
k hat (MLE)		k star (bias corrected MLE)	1.332
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected)	34.64
Mean (detects)	3.4651E-4		
		sing Imputed Non-Detects	
-		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
	-	yield incorrect values of UCLs and BTVs	
	-	n the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	7.5250E-5	Mean	0.00708
Maximum	0.01	Median	0.01
SD	0.00449	CV	0.634
k hat (MLE)	0.773	k star (bias corrected MLE)	0.735
Theta hat (MLE)	0.00916	Theta star (bias corrected MLE)	0.00964
nu hat (MLE)	66.5	nu star (bias corrected)	63.19
Adjusted Level of Significance (β)	0.0444		
Approximate Chi Square Value (63.19, α)	45.9	Adjusted Chi Square Value (63.19, β)	45.39
95% Gamma Approximate UCL	0.00975	95% Gamma Adjusted UCL	0.00986
Estimates of C	Gamma Para	meters using KM Estimates	
Mean (KM)	2.6969E-4	SD (KM)	2.2571E-4
Variance (KM)		SE of Mean (KM)	
k hat (KM)		k star (KM)	1.344
nu hat (KM)		nu star (KM)	115.5
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)			
oo /o gamma percentile (raw)	7 2914F-4	99% gamma percentile (KM)	0.00107
	7.2914E-4	99% gamma percentile (KM)	0.00107
			0.00107
	na Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (115.54, α)	na Kaplan-Mo 91.73	eier (KM) Statistics Adjusted Chi Square Value (115.54, β)	90.99
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL	na Kaplan-Ma 91.73 3.3972E-4	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL	90.99
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL	na Kaplan-Ma 91.73 3.3972E-4	eier (KM) Statistics Adjusted Chi Square Value (115.54, β)	90.99
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL Note: KM UCLs may be blased lov	na Kaplan-Ma 91.73 3.3972E-4 v with this da	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL taset. Other substitution method recommended	90.99
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL Note: KM UCLs may be biased low Lognormal GC	na Kaplan-Ma 91.73 3.3972E-4 v with this da DF Test on D	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL taset. Other substitution method recommended etected Observations Only	90.99
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL Note: KM UCLs may be biased low Lognormal GC Shapiro Wilk Test Statistic	na Kaplan-Ma 91.73 3.3972E-4 v with this da DF Test on D 0.948	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL taset. Other substitution method recommended etected Observations Only Shapiro Wilk GOF Test	90.99 3.4247E-4
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL Note: KM UCLs may be biased low Lognormal GC Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	na Kaplan-Ma 91.73 3.3972E-4 v with this da DF Test on D 0.948 0.889	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL taset. Other substitution method recommended etected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance I	90.99 3.4247E-4
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL Note: KM UCLs may be blased low Lognormal GC Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic	na Kaplan-Ma 91.73 3.3972E-4 v with this da DF Test on D 0.948 0.889 0.142	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL taset. Other substitution method recommended etected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance I Lilliefors GOF Test	90.99 3.4247E-4 evel
Approximate Chi Square Value (115.54, α) 95% KM Approximate Gamma UCL Note: KM UCLs may be biased low Lognormal GC Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value Lilliefors Test Statistic	na Kaplan-Mo 91.73 3.3972E-4 v with this da DF Test on D 0.948 0.889 0.142 0.215	eier (KM) Statistics Adjusted Chi Square Value (115.54, β) 95% KM Adjusted Gamma UCL taset. Other substitution method recommended etected Observations Only Shapiro Wilk GOF Test Detected Data appear Lognormal at 10% Significance I	90.99 3.4247E-4 evel

Lognormal RO	S Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	2.5075E-4	Mean in Log Scale	-8.49
SD in Original Scale	1.9111E-4	SD in Log Scale	0.612
95% t UCL (assumes normality of ROS data)	2.9977E-4	95% Percentile Bootstrap UCL	3.0020E-4
95% BCA Bootstrap UCL	3.1169E-4	95% Bootstrap t UCL	3.2376E-4
95% H-UCL (Log ROS)	2.9893E-4		
Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-8.485	KM Geo Mean	2.0651E-4
KM SD (logged)	0.701	95% Critical H Value (KM-Log)	2.065
KM Standard Error of Mean (logged)	0.186	95% H-UCL (KM -Log)	3.2995E-4
KM SD (logged)	0.701	95% Critical H Value (KM-Log)	2.065
KM Standard Error of Mean (logged)	0.186		
Note: KM UCLs may be biased low	with this dat	taset. Other substitution method recommended	
	DL/2 St	atistica	
DL/2 Normal	00231	DL/2 Log-Transformed	
Mean in Original Scale	9.8325E-4	Mean in Log Scale	-7.549
SD in Original Scale	0.00103	SD in Log Scale	1.154
95% t UCL (Assumes normality)	0.00125	95% H-Stat UCL	0.0016
	ethod, provid	led for comparisons and historical reasons	
Nonparame	etric Distribut	ion Free UCL Statistics	
Detected Data appear Appr	oximate Norr	nal Distributed at 1% Significance Level	
	Suggested	UCL to Use	
95% KM (t) UCL			
When a data set follows an app	proximate dis	tribution passing only one of the GOF tests,	
		stribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size	, data distribu	ition, and skewness using results from simulation studies.	
		s; for additional insight the user may want to consult a statistici	an.
		·,·····	
(groundwater   pyridine   110-86-1)			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	7
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Non-Detects	7
	U		1
Warning: All observations are Non-Detect	s (NDs), the	refore all statistics and estimates should also be NDs!	
-		tics are also NDs lying below the largest detection limit!	
		alues to estimate environmental parameters (e.g., EPC, BTV	).
The data set for variable C (g	roundwater	pyridine   110-86-1) was not processed!	

oundwater   sec-butylbenzene   135-98-8)			
	General	Protiotico	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
	0	Number of Distinct Non-Detects	
-		refore all statistics and estimates should also be NDs!	
		tics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative si	te specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (ground	dwater   sec-	-butylbenzene   135-98-8) was not processed!	
oundwater   selenium   7782-49-2)			
	General	Statistics	
Total Number of Observations	41	Number of Distinct Observations	1:
Number of Detects	10	Number of Non-Detects	3.
Number of Distinct Detects	10	Number of Distinct Non-Detects	3
Minimum Detect	9.4000E-4	Minimum Non-Detect	0.0
Maximum Detect	0.018	Maximum Non-Detect	0.
Variance Detects	3.6956E-5	Percent Non-Detects	75
Mean Detects	0.00613	SD Detects	0.0
Median Detects	0.0037	CV Detects	0
Skewness Detects	1.119	Kurtosis Detects	0.
Mean of Logged Detects	-5.583	SD of Logged Detects	1
Norm	al GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.822	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.781	Detected Data appear Normal at 1% Significance Leve	el
Lilliefors Test Statistic	0.257	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.304	Detected Data appear Normal at 1% Significance Leve	el
Detected Data a	appear Norm	al at 1% Significance Level	
Kaplan-Meier (KM) Statistics usir	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	0.00571	KM Standard Error of Mean	0.0
90KM SD	0.00566	95% KM (BCA) UCL	0.0
95% KM (t) UCL	0.00874	95% KM (Percentile Bootstrap) UCL	0.0
95% KM (z) UCL	0.00867	95% KM Bootstrap t UCL	0.
90% KM Chebyshev UCL	0.0111	95% KM Chebyshev UCL	0.
97.5% KM Chebyshev UCL	0.0169	99% KM Chebyshev UCL	0
Note: KM UCLs may be biased low	with this dat	taset. Other substitution method recommended	
Gamma GOF	Tests on De	tected Observations Only	
	0.543	Anderson-Darling GOF Test	

K-S Test Statistic	0.266	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.273	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data appea	r Gamma Dis	stributed at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	1.162	k star (bias corrected MLE)	0.88
Theta hat (MLE)	0.00527	Theta star (bias corrected MLE)	0.00696
nu hat (MLE)	23.24	nu star (bias corrected)	17.6
Mean (detects)	0.00613		
		sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	1 C C C C C C C C C C C C C C C C C C C	n the sample size is small.	
-		y be computed using gamma distribution on KM estimates	
	9.4000E-4	Mean	0.00989
Maximum		Median	0.01
SD	0.00444	CV	0.448
k hat (MLE)	3.156	k star (bias corrected MLE)	2.942
Theta hat (MLE)	0.00313	Theta star (bias corrected MLE)	0.00336
nu hat (MLE)	258.8	nu star (bias corrected)	241.2
Adjusted Level of Significance (β)	0.0441		
Approximate Chi Square Value (241.21, α)	206.3	Adjusted Chi Square Value (241.21, β)	205.1
95% Gamma Approximate UCL	0.0116	95% Gamma Adjusted UCL	0.0116
Estimatos of G	ommo Boro	neters using KM Estimates	
Mean (KM)		SD (KM)	0.00566
Variance (KM)		SE of Mean (KM)	0.00300
k hat (KM)		k star (KM)	0.96
nu hat (KM)	83.49	nu star (KM)	78.71
theta hat (KM)	0.00561	theta star (KM)	0.00595
80% gamma percentile (KM)	0.00922	90% gamma percentile (KM)	0.00333
95% gamma percentile (KM)		99% gamma percentile (KM)	0.0268
	0.0174		0.0200
Gamm	na Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (78.71, α)	-	Adjusted Chi Square Value (78.71, β)	58.65
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	0.00766
		taset. Other substitution method recommended	· · · · · ·
· · · ·			
Lognormal GC	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.869	Detected Data appear Lognormal at 10% Significance L	.evel
Lilliefors Test Statistic	0.239	Lilliefors GOF Test	
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance L	evel
Detected Data ap	pear Lognor	mal at 10% Significance Level	
Lognormal RO	S Statistics	Jsing Imputed Non-Detects	
-			

Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	data distribut         (orld data sets)         General S         41         5         2.7000E-5         3.7000E-4         2.2716E-8         1.0060E-4         3.3000E-5         2.227         -9.842	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	9 36 4
Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	data distribut         (orld data sets)         General S         41         5         2.7000E-5         3.7000E-4         2.2716E-8         1.0060E-4         3.3000E-5         2.227         -9.842	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	9 36 4 2.0000E-4 0.01 87.8% 1.5072E-4 1.498 4.968
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects Median Detects Skewness Detects	data distribut         (orld data sets)         General S         41         5         2.7000E-5         3.7000E-4         2.2716E-8         1.0060E-4         3.3000E-5         2.227	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects Kurtosis Detects	9 36 4 2.0000E-4 0.01 87.8% 1.5072E-4 1.498 4.968
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects Median Detects	data distribu         /orld data sets         /orld data sets         General S         41         5         2.7000E-5         3.7000E-4         2.2716E-8         1.0060E-4         3.3000E-5	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects	9 36 4 2.0000E-4 0.01 87.8% 1.5072E-4 1.498
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects	data distribut         /orld data sets         /orld data sets<	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	9 36 4 2.0000E-4 0.01 87.8% 1.5072E-4
Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Variance Detects	data distribu         /orld data sets         General S         41         5         2.7000E-5         3.7000E-4         2.2716E-8	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	9 36 4 2.0000E-4 0.01 87.8%
mmendations are based upon data size, ulations results will not cover all Real W r   7440-22-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	Adta distribu Vorld data sets General S 41 5 2.7000E-5 3.7000E-4	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect 1 Maximum Non-Detect	9 36 4 2.0000E-4 0.01
r   7440-22-4) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	data distribu /orld data sets General S 41 5 5 2.7000E-5	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	9 36 4 2.0000E-
mmendations are based upon data size, ulations results will not cover all Real W r   7440-22-4) Total Number of Observations Number of Detects Number of Distinct Detects	, data distribu /orld data sets General S 41 5 5	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	9 36 4
mmendations are based upon data size, ulations results will not cover all Real W r   7440-22-4) Total Number of Observations Number of Detects	, data distribu /orld data sets General S 41 5	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Non-Detects	an. 9 36
mmendations are based upon data size, ulations results will not cover all Real W r   7440-22-4) Total Number of Observations	, data distribu /orld data sets General S 41	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	an. 9
mmendations are based upon data size, ulations results will not cover all Real W r   7440-22-4)	, data distribu /orld data sets General S	tion, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statisticia Statistics	an.
mmendations are based upon data size, ulations results will not cover all Real W	, data distribu	tion, and skewness using results from simulation studies.	
mmendations are based upon data size, ulations results will not cover all Real W	, data distribu	tion, and skewness using results from simulation studies.	
mmendations are based upon data size,	, data distribu	tion, and skewness using results from simulation studies.	
mmendations are based upon data size,	, data distribu	tion, and skewness using results from simulation studies.	
		wided to help the user to select the most appropriate 95% UCL.	
95% KM (t) UCL	0.00874		
	Suggested L	JCL to Use	
Detected Data appea	r Normai Dis	tributed at 1% Significance Level	
•			
DL/2 is not a recommended me	ethod, provid	ed for comparisons and historical reasons	
95% t UCL (Assumes normality)	0.022	95% H-Stat UCL	0.0352
SD in Original Scale	0.00911	SD in Log Scale	1.002
	0.0196	-	-4.222
DI /2 Normal	DL/2 Sta		
	DI /0.04		
Note: KM UCLs may be biased low	with this dat	aset. Other substitution method recommended	
KM Standard Error of Mean (logged)	0.321		
KM SD (logged)	1.007	95% Critical H Value (KM-Log)	2.359
KM Standard Error of Mean (logged)	0.321	95% H-UCL (KM -Log)	0.0083
KM SD (logged)	1.007	95% Critical H Value (KM-Log)	2.359
			0.0034
Statistics using KM estimates	on Logged D	pata and Assuming Lognormal Distribution	
95% H-UCE (LOG RUS)	0.00662		
· · ·		95% Bootstrap t UCL	0.0078
		· · ·	0.0074
SD in Original Scale	0.00631	SD in Log Scale	1.04
	UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates KM Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) Note: KM UCLs may be biased low DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended m Nonparame Detected Data appea	SD in Original Scale       0.00631         UCL (assumes normality of ROS data)       0.00742         95% BCA Bootstrap UCL       0.0077         95% H-UCL (Log ROS)       0.00882         Statistics using KM estimates on Logged D         KM Mean (logged)       -5.669         KM SD (logged)       1.007         KM Standard Error of Mean (logged)       0.321         KM Standard Error of Mean (logged)       0.321         Note: KM UCLs may be biased low with this dat         DL/2 St         DL/2 Normal         Mean in Original Scale       0.0196         SD in Original Scale       0.00911         95% t UCL (Assumes normality)       0.022         DL/2 is not a recommended method, provid         Nonparametric Distribut         Detected Data appear Normal Dis         Suggested I	SD in Original Scale       0.00631       SD in Log Scale         UCL (assumes normality of ROS data)       0.00742       95% Percentile Bootstrap UCL         95% BCA Bootstrap UCL       0.0077       95% Bootstrap UCL         95% H-UCL (Log ROS)       0.00882         Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution         KM Mean (logged)       -5.669       KM Geo Mean         KM SD (logged)       1.007       95% Critical H Value (KM-Log)         KM Standard Error of Mean (logged)       0.321       95% H-UCL (KM -Log)         KM Standard Error of Mean (logged)       0.321       95% Critical H Value (KM-Log)         KM Standard Error of Mean (logged)       0.321       95% Critical H Value (KM-Log)         KM Standard Error of Mean (logged)       0.321       95% Critical H Value (KM-Log)         KM Standard Error of Mean (logged)       0.321       0.021         Note: KM UCLs may be biased low with this dataset. Other substitution method recommended       DL/2 Log-Transformed         UL/2 Normal       0.0196       Mean in Log Scale         SD in Original Scale       0.0196       Mean in Log Scale         95% t UCL (Assumes normality)       0.022       95% H-Stat UCL         DL/2 Is not a recommended method, provided for comparisons and historical reasons       Detected Data ap

Lilliefors Test Statistic	0.449	Lilliefors GOF Test	
			-1
1% Lilliefors Critical Value		Detected Data Not Normal at 1% Significance Leve	Ð
	a Not Norma	I at 1% Significance Level	
	-	critical Values and other Nonparametric UCLs	
	6.6925E-5	KM Standard Error of Mean	
	1.0119E-4	95% KM (BCA) UCL	
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	
95% KM (z) UCL		95% KM Bootstrap t UCL	
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	4.2359E-4
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	1.033	Anderson-Darling GOF Test	
5% A-D Critical Value	0.694	Detected Data Not Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.434	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.365	Detected Data Not Gamma Distributed at 5% Significance	e Level
Detected Data Not	Gamma Dist	ributed at 5% Significance Level	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	0.915	k star (bias corrected MLE)	0.499
Theta hat (MLE)	1.0993E-4	Theta star (bias corrected MLE)	2.0145E-4
nu hat (MLE)	9.151	nu star (bias corrected)	4.994
Mean (detects)	1.0060E-4		
		1	
Gamma ROS	Statistics u	sing Imputed Non-Detects	
GROS may not be used when data s	et has > 50%	6 NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
This is espec	ially true whe	en the sample size is small.	
For gamma distributed detected data, BTVs a	and UCLs ma	by be computed using gamma distribution on KM estimates	
Minimum	2.7000E-5	Mean	0.00879
Maximum	0.01	Median	0.01
SD	0.00328	CV	0.373
k hat (MLE)	1.118	k star (bias corrected MLE)	1.052
Theta hat (MLE)		Theta star (bias corrected MLE)	0.00836
nu hat (MLE)	91.65	nu star (bias corrected)	86.28
Adjusted Level of Significance (β)	0.0441	, , , , , , , , , , , , , , , , , , ,	
Approximate Chi Square Value (86.28, α)	65.86	Adjusted Chi Square Value (86.28, β)	65.21
95% Gamma Approximate UCL	0.0115	95% Gamma Adjusted UCL	0.0116
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)			1.0119E-4
Variance (KM)		SE of Mean (KM)	
k hat (KM)		k star (KM)	0.422
nu hat (KM)	35.87	nu star (KM)	34.58
theta hat (KM)	1.5299E-4	theta star (KM)	1.58/UE-4

80% gamma percentile (KM) 95% gamma percentile (KM)		90% gamma percentile (KM) 99% gamma percentile (KM)	
95% gamma percentile (KM)	2.7301E-4	99% ganina percenule (KM) 4	4.0/JZE-4
Gamm	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (34.58, α)	22.13	Adjusted Chi Square Value (34.58, $\beta$ )	21.76
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	
		taset. Other substitution method recommended	
Lognormal GC	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.692	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.806	Detected Data Not Lognormal at 10% Significance Lev	vel
Lilliefors Test Statistic	0.377	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.319	Detected Data Not Lognormal at 10% Significance Level	vel
Detected Data N	lot Lognorm	al at 10% Significance Level	
Lognormal RO	S Statistics	Jsing Imputed Non-Detects	
Mean in Original Scale	6.4923E-5	Mean in Log Scale	-10.05
SD in Original Scale	7.2519E-5	SD in Log Scale	0.88
95% t UCL (assumes normality of ROS data)	8.3994E-5	95% Percentile Bootstrap UCL	8.5252E-
95% BCA Bootstrap UCL	9.0000E-5	95% Bootstrap t UCL	9.4301E-
95% H-UCL (Log ROS)	8.6912E-5		
-		Data and Assuming Lognormal Distribution	
KM Mean (logged)		KM Geo Mean	
KM SD (logged)	0.746	95% Critical H Value (KM-Log)	2.096
KM Standard Error of Mean (logged)	0.271	95% H-UCL (KM -Log)	7.0544E-
KM SD (logged)	0.746	95% Critical H Value (KM-Log)	2.096
KM Standard Error of Mean (logged)	0.271		
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
	DL/2 St	atietice	
DL/2 Normal	002.0	DL/2 Log-Transformed	
Mean in Original Scale	0.00364	Mean in Log Scale	-6.395
SD in Original Scale	0.00217	SD in Log Scale	1.869
95% t UCL (Assumes normality)	0.00421	95% H-Stat UCL	0.026
		ded for comparisons and historical reasons	
Nonparame	tric Distribu	tion Free UCL Statistics	
Data do n	ot follow a D	iscernible Distribution	
	Suggested		
95% KM (t) UCL			
	1.2728E-4	e data were collected in a random and unbiased manner.	
The calculated UCLs are based on assumption	1.2728E-4		
The calculated UCLs are based on assumpt Please verify the c	1.2728E-4 ions that the	e data were collected in a random and unbiased manner.	

Note: Suggestions regarding the selection of a 95%	% UCL are	provided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size	e, data distr	ibution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real V	Vorld data s	sets; for additional insight the user may want to consult a statisticial	n.
oundwater   styrene   100-42-5)			
	Genera	al Statistics	
Total Number of Observations	36	Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	5
Warning: All observations are Non-Detec	ts (NDs), ti	herefore all statistics and estimates should also be NDs!	
-		atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (	aroundwot	or Laturana L 100, 42, 5) was not processed	
I në data set for variable C (	groundwat	er   styrene   100-42-5) was not processed!	
roundwater   t-amyl methyl ether   994-05-8)			
	Genera	al Statistics	
Total Number of Observations		Number of Distinct Observations	2
Number of Detects	_	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
		herefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit!	
	site specific	c values to estimate environmental parameters (e.g., EPC, BTV).	•
The data set for variable C (group	dwater I t-s	amyl methyl ether   994-05-8) was not processed!	
oundwater   tert-butyl alcohol   75-65-0)			
	Genera	al Statistics	
Total Number of Observations	20	Number of Distinct Observations	6
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	6
Warning: All observations are Non-Detec	ts (NDs). tl	herefore all statistics and estimates should also be NDs!	
-		atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (any	indwater I (	tert-butyl alcohol   75-65-0) was not processed!	

	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	2
Number of Detects	0	Number of Non-Detects	13
Number of Distinct Detects	0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detect	ts (NDs), the	refore all statistics and estimates should also be NDs!	
		stics are also NDs lying below the largest detection limit!	
		ralues to estimate environmental parameters (e.g., EPC, BTV)	
	the specific v		,.
The data set for variable C (grou	ndwater I ter	t-butylbenzene   98-06-6) was not processed!	
C (groundwater   tetrachloroethene   127-18-4)			
	General		
Total Number of Observations	36	Number of Distinct Observations	6
Number of Detects	3	Number of Non-Detects	33
Number of Distinct Detects	3	Number of Distinct Non-Detects	3
Minimum Detect	2.5000E-4	Minimum Non-Detect	0.001
Maximum Detect	8.8000E-4	Maximum Non-Detect	0.005
Variance Detects	1.0363E-7	Percent Non-Detects	91.67%
Mean Detects	6.0333E-4	SD Detects	3.2192E-4
Median Detects	6.8000E-4	CV Detects	0.534
Skewness Detects	-1.011	Kurtosis Detects	N/A
Mean of Logged Detects	-7.541	SD of Logged Detects	0.665
Warning: D	oata set has o	only 3 Detected Values.	
This is not enough to com	pute meaning	gful or reliable statistics and estimates.	
Norn	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.753	Detected Data appear Normal at 1% Significance Lev	/el
Lilliefors Test Statistic	0.261	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.429	Detected Data appear Normal at 1% Significance Lev	/el
Detected Data	appear Norn	nal at 1% Significance Level	
Note GOF tests	may be unre	liable for small sample sizes	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	6.0333E-4	KM Standard Error of Mean	1.8586E-4
90KM SD	2.6285E-4	95% KM (BCA) UCL	N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL		95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.00116	95% KM Chebyshev UCL	0.00141
97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	0.00245
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
		<b>~</b>	

5% A-D Critical Value	0.637	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.326	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.434	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected Data Not	Gamma Dist	ributed at 5% Significance Level	
Gamma	Statistics or	Detected Data Only	
k hat (MLE)	4.066	k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A
nu hat (MLE)	24.4	nu star (bias corrected MEL)	N/A
Mean (detects)			11/7
0	Otestical	in a laurant of New Detector	
		sing Imputed Non-Detects	
		NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
· · ·	· ·	n the sample size is small.	
		y be computed using gamma distribution on KM estimates	
Minimum	2.5000E-4	Mean	0.0092
Maximum	0.01	Median	0.01
SD	0.00264	CV	0.286
k hat (MLE)	3.222	k star (bias corrected MLE)	2.972
Theta hat (MLE)	0.00286	Theta star (bias corrected MLE)	0.0031
nu hat (MLE)	232	nu star (bias corrected)	214
Adjusted Level of Significance (β)	0.0428		
Approximate Chi Square Value (214.01, α)	181.2	Adjusted Chi Square Value (214.01, β)	179.8
95% Gamma Approximate UCL	0.0109	95% Gamma Adjusted UCL	N/A
Estimates of G	amma Parai	meters using KM Estimates	
Mean (KM)			2.6285E-4
Variance (KM)		SE of Mean (KM)	
k hat (KM)	5.269	k star (KM)	4.848
nu hat (KM)	379.3	nu star (KM)	349.1
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)	0.00111	99% gamma percentile (KM)	0.0014
	-	eier (KM) Statistics	005
Approximate Chi Square Value (349.07, α)	306.8	Adjusted Chi Square Value (349.07, β)	305
95% KM Approximate Gamma UCL	6.8651E-4	95% KM Adjusted Gamma UCL	6.9055E-4
Lognormal GC	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.896	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.789	Detected Data appear Lognormal at 10% Significance L	_evel
Lilliefors Test Statistic	0.312	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.389	Detected Data appear Lognormal at 10% Significance L	_evel
Detected Data ap	pear Lognor	mal at 10% Significance Level	
	may be uppe	liable for small sample sizes	

Lognormal RC	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale	7.1328E-4	Mean in Log Scale	-7.541
SD in Original Scale	5.9699E-4	SD in Log Scale	0.79
95% t UCL (assumes normality of ROS data)	8.8139E-4	95% Percentile Bootstrap UCL	8.8394E-
95% BCA Bootstrap UCL	9.1374E-4	95% Bootstrap t UCL	9.3394E
95% H-UCL (Log ROS)	9.6756E-4		
Statistics using KM estimates	on Logged [	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-7.541	KM Geo Mean	5.3086E
KM SD (logged)	0.543	95% Critical H Value (KM-Log)	1.942
KM Standard Error of Mean (logged)	0.384	95% H-UCL (KM -Log)	7.3509E
KM SD (logged)	0.543	95% Critical H Value (KM-Log)	1.942
KM Standard Error of Mean (logged)	0.384		
Note: KM UCLs may be biased low	w with this da	taset. Other substitution method recommended	
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	e 7.3778E-4	Mean in Log Scale	-7.406
SD in Original Scale	6.3845E-4	SD in Log Scale	0.53
95% t UCL (Assumes normality)	9.1756E-4	95% H-Stat UCL	8.3606E
DL/2 is not a recommended m	nethod, provid	ded for comparisons and historical reasons	
95% KM (t) UCL		UCL to Use	
		cceeds the maximum observation	
Note: Suggestions regarding the selection of a 050	/ UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
		ution, and skewness using results from simulation studies.	
	vond data se	ts; for additional insight the user may want to consult a statistici	an.
groundwater   tetrahydrofuran   109-99-9)			
	General	Statistics	
Total Number of Observations	s 13	Number of Distinct Observations	2
Number of Detects	s 0	Number of Non-Detects	13
Number of Distinct Detects	s 0	Number of Distinct Non-Detects	2
Warning: All observations are Non-Detec	ts (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, ar	nd other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	site specific v	alues to estimate environmental parameters (e.g., EPC, BTV	).
The data set for variable C (grou	undwater   te	trahydrofuran   109-99-9) was not processed!	
(aroundwater   thellium   7440, 29, 0)			
(groundwater   thallium   7440-28-0)			

	General		
Total Number of Observations	41	Number of Distinct Observations	7
Number of Detects	2	Number of Non-Detects	39
Number of Distinct Detects	2	Number of Distinct Non-Detects	5
Minimum Detect		Minimum Non-Detect	
Maximum Detect		Maximum Non-Detect	0.15
Variance Detects		Percent Non-Detects	95.12%
Mean Detects		SD Detects	
Median Detects		CV Detects	0.692
Skewness Detects		Kurtosis Detects	N/A
Mean of Logged Detects	-8.753	SD of Logged Detects	0.757
Warning: D	ata set has o	only 2 Detected Values.	
This is not enough to com	oute meaning	gful or reliable statistics and estimates.	
Norn	al GOF Tes	t on Detects Only	
Not En	ough Data to	Perform GOF Test	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	1.1025E-4	KM Standard Error of Mean	2.3814E-5
90KM SD	5.3250E-5	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.5035E-4	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.4942E-4	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.8169E-4	95% KM Chebyshev UCL	2.1405E-4
97.5% KM Chebyshev UCL	2.5897E-4	99% KM Chebyshev UCL	3.4720E-4
		etected Observations Only	
Not En	ough Data to	Perform GOF Test	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	3.807	k star (bias corrected MLE)	N/A
Theta hat (MLE)		Theta star (bias corrected MLE)	N/A
nu hat (MLE)	15.23	nu star (bias corrected)	N/A
Mean (detects)		· · · · · · · · · · · · · · · · · · ·	
Estimates of G	amma Parar	meters using KM Estimates	
Mean (KM)		-	5.3250E-5
Variance (KM)		SE of Mean (KM)	
k hat (KM)	4.287	k star (KM)	3.989
nu hat (KM)		nu star (KM)	327.1
theta hat (KM)		theta star (KM)	
80% gamma percentile (KM)		90% gamma percentile (KM)	
95% gamma percentile (KM)		99% gamma percentile (KM)	
Gamm	a Kaplan-M	eier (KM) Statistics	
Gann		Adjusted Level of Significance (β)	0.0441
			5.0771

Approximate Chi Square Value (327.12, α)		Adjusted Chi Square Value (327.12, β)	284.8
95% KM Approximate Gamma UCL	1.2601E-4	95% KM Adjusted Gamma UCL	1.2662E-4
		etected Observations Only	
Not Er	ough Data to	Perform GOF Test	
		Heles Issues d New Detecto	
		Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-9.209
SD in Original Scale		SD in Log Scale	0.504
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	
95% BCA Bootstrap UCL		95% Bootstrap t UCL	1.3178E-
95% H-UCL (Log ROS)	1.3226E-4		
Statistics using KM estimator		Data and Assuming Lognormal Distribution	
			1 02065
KM Mean (logged)		KM Geo Mean	
KM SD (logged)		95% Critical H Value (KM-Log)	1.784
KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	
KM SD (logged)		95% Critical H Value (KM-Log)	1.784
KM Standard Error of Mean (logged)			
Note: KM UCLs may be biased lov	v with this da	taset. Other substitution method recommended	
	DI /2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0167	Mean in Log Scale	-5.307
SD in Original Scale	0.0204	SD in Log Scale	2.277
95% t UCL (Assumes normality)		95% H-Stat UCL	0.283
		ded for comparisons and historical reasons	
Nonparam	etric Distribu	tion Free UCL Statistics	
Data do r	not follow a D	Discernible Distribution	
	<u> </u>		
		UCL to Use	
95% KM (t) UCL	1.5035E-4		
Note: Suggestions regarding the selection of a 95	4 UCL are pr	avided to help the user to select the most appropriate 95% LCL	
		ovided to help the user to select the most appropriate 95% UCL	
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
Recommendations are based upon data size	, data distrib		
Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
Recommendations are based upon data size However, simulations results will not cover all Real V	, data distrib	ution, and skewness using results from simulation studies.	
Recommendations are based upon data size However, simulations results will not cover all Real V	e, data distrib Vorld data se	ution, and skewness using results from simulation studies.	
Recommendations are based upon data size However, simulations results will not cover all Real V	e, data distrib Vorld data se General	ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici	
Recommendations are based upon data size However, simulations results will not cover all Real V c (groundwater   toluene   108-88-3)	e, data distrib Vorld data se General 43	ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici Statistics	an.
Recommendations are based upon data size However, simulations results will not cover all Real V (groundwater   toluene   108-88-3) Total Number of Observations	e, data distrib Vorld data se General 43 6	ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations	an. 13
Recommendations are based upon data size However, simulations results will not cover all Real V (groundwater   toluene   108-88-3) Total Number of Observations Number of Detects	e, data distrib Vorld data se General 43 6 5	ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects	an. 13 37 8
Recommendations are based upon data size However, simulations results will not cover all Real V (groundwater   toluene   108-88-3) Total Number of Observations Number of Detects Number of Distinct Detects	General 43 6 5 2.0000E-4	ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	an. 13 37 8
Recommendations are based upon data size However, simulations results will not cover all Real V c (groundwater   toluene   108-88-3) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General 43 6 5 2.0000E-4 8.5000E-4	ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	an. 13 37 8 6.8000E

	4 00005 4		0.504
Median Detects		CV Detects	0.584
Skewness Detects	0.722	Kurtosis Detects	-0.59
Mean of Logged Detects	-7.873	SD of Logged Detects	0.602
		t on Detects Only	
Shapiro Wilk Test Statistic	0.903	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.713	Detected Data appear Normal at 1% Significance Lev	vel
Lilliefors Test Statistic	0.209	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.373	Detected Data appear Normal at 1% Significance Lev	vel
		nal at 1% Significance Level	
Note GOF tests	may be unre	eliable for small sample sizes	
Kaplan-Meier (KM) Statistics usi	ng Normal C	critical Values and other Nonparametric UCLs	
KM Mean	4.0083E-4	KM Standard Error of Mean	8.4606E-5
90KM SD	2.0625E-4	95% KM (BCA) UCL	5.4667E-4
95% KM (t) UCL	5.4314E-4	95% KM (Percentile Bootstrap) UCL	5.5000E-4
95% KM (z) UCL	5.4000E-4	95% KM Bootstrap t UCL	5.7616E-4
90% KM Chebyshev UCL	6.5465E-4	95% KM Chebyshev UCL	7.6962E-4
97.5% KM Chebyshev UCL	9.2919E-4	99% KM Chebyshev UCL	0.00124
Note: KM UCLs may be biased low	with this da	taset. Other substitution method recommended	
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic	0.333	Anderson-Darling GOF Test	
5% A-D Critical Value	0.701	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.204	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.334	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
		eliable for small sample sizes	
	•	· · · · · · · · · · · · · · · · · · ·	
Gamma	Statistics or	n Detected Data Only	
k hat (MLE)	3.543	k star (bias corrected MLE)	1.883
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)	42.52	nu star (bias corrected)	22.59
Mean (detects)			22.00
Wear (delects)	4.4107L-4		
0.000 B00	04	along Invested New Data sta	
		sing Imputed Non-Detects	
		6 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	en the sample size is small.	
		y be computed using gamma distribution on KM estimates	
	2.0000E-4	Mean	0.00867
Maximum	0.01	Median	0.01
SD	0.00335	CV	0.387
k hat (MLE)	1.747	k star (bias corrected MLE)	1.64
Theta hat (MLE)	0.00496	Theta star (bias corrected MLE)	0.00528
nu hat (MLE)	150.2	nu star (bias corrected)	141.1
Theta hat (MLE)	0.00496	Theta star (bias corrected MLE)	0.00528

Approximate Chi Square Value (141.07, α)	114.6	Adjusted Chi Square Value (141.07, β)	113.8
95% Gamma Approximate UCL		95% Gamma Adjusted UCL	0.0107
	0.0107		0.0107
Estimates of G	iamma Para	meters using KM Estimates	
Mean (KM)	4.0083E-4	SD (KM)	2.0625E-4
Variance (KM)	4.2541E-8	SE of Mean (KM)	8.4606E-5
k hat (KM)	3.777	k star (KM)	3.529
nu hat (KM)	324.8	nu star (KM)	303.5
theta hat (KM)	1.0613E-4	theta star (KM)	1.1359E-4
80% gamma percentile (KM)	5.6081E-4	90% gamma percentile (KM)	6.8694E-4
95% gamma percentile (KM)	8.0370E-4	99% gamma percentile (KM)	0.00105
	-	eier (KM) Statistics	
Approximate Chi Square Value (303.47, α)		Adjusted Chi Square Value (303.47, $\beta$ )	262.8
95% KM Approximate Gamma UCL		95% KM Adjusted Gamma UCL	4.6279E-4
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
		Detected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Detected Data appear Lognormal at 10% Significance I Lilliefors GOF Test	Level
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance I	ovol
		mal at 10% Significance Level	
-		eliable for small sample sizes	
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-7.975
SD in Original Scale		SD in Log Scale	0.481
95% t UCL (assumes normality of ROS data)		95% Percentile Bootstrap UCL	4.3458E-4
95% BCA Bootstrap UCL		95% Bootstrap t UCL	
95% H-UCL (Log ROS)		· · · ·	
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-7.953	KM Geo Mean	3.5165E-4
KM SD (logged)	0.511	95% Critical H Value (KM-Log)	1.909
KM Standard Error of Mean (logged)	0.221	95% H-UCL (KM -Log)	4.6586E-4
KM SD (logged)	0.511	95% Critical H Value (KM-Log)	1.909
KM Standard Error of Mean (logged)	0.221		
Note: KM UCLs may be biased low	v with this da	taset. Other substitution method recommended	
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale		Mean in Log Scale	-7.517
SD in Original Scale		SD in Log Scale	0.554
95% t UCL (Assumes normality)		95% H-Stat UCL	7.4826E-4
DL/2 is not a recommended m	ethod, provi	ded for comparisons and historical reasons	
Nonparame	etric Distribu	tion Free UCL Statistics	

Detected Data appear	Normal	Distributed at 1% Significance Level	
	Suggeste	ed UCL to Use	
95% KM (t) UCL			
Note: Suggestions regarding the selection of a 95%	UCL are	provided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size,	data distr	ibution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real We	orld data	sets; for additional insight the user may want to consult a statistician	1.
C (groundwater   trans-1,2-dichloroethene   156-60-5)			
	Gener	al Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
		herefore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and	other sta	atistics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative sit	e specifi	c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwa	ter   trans	s-1,2-dichloroethene   156-60-5) was not processed!	
C (groundwater   trans-1,4-dichloro-2-butene   110-57-6)			
Total Number of Observations	13	al Statistics Number of Distinct Observations	
Number of Detects	0	Number of Distinct Observations Number of Non-Detects	2
Number of Distinct Detects	0	Number of Non-Detects	2
	0		2
Warning: All observations are Non-Detects	(NDs). t	herefore all statistics and estimates should also be NDs!	
		atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	
The data set for variable C (groundwate	er   trans-	1,4-dichloro-2-butene   110-57-6) was not processed!	
C (groundwater   trichloroethene   79-01-6)			
	Gener	al Statistics	
Total Number of Observations	36	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	4
Warning: All observations are Non-Detects	: (NDe) +	herefore all statistics and estimates should also be NDs!	
	· ·	atistics are also NDs lying below the largest detection limit!	
		c values to estimate environmental parameters (e.g., EPC, BTV).	

The data set for variable C (gro	undwater   tr	ichloroethene   79-01-6) was not processed!	
C (groundwater   trichlorofluoromethane   75-69-4)			
	General		
Total Number of Observations		Number of Distinct Observations	5
Number of Detects	0	Number of Non-Detects	36
Number of Distinct Detects	0	Number of Distinct Non-Detects	5
Warning: All observations are Non-Detec	ts (NDs), the	refore all statistics and estimates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, an	d other statis	stics are also NDs lying below the largest detection limit!	
The Project Team may decide to use alternative s	ite specific v	alues to estimate environmental parameters (e.g., EPC, BTV).	
The data set for veriable C (ground	water Ltrichl		
	water   trichi	orofluoromethane   75-69-4) was not processed!	
C (groundwater   vanadium   7440-62-2)			
	General		
Total Number of Observations	41	Number of Distinct Observations	22
Number of Detects	18	Number of Non-Detects	23
Number of Distinct Detects	18	Number of Distinct Non-Detects	4
Minimum Detect	0.0022	Minimum Non-Detect	0.0044
Maximum Detect	0.064	Maximum Non-Detect	0.01
Variance Detects		Percent Non-Detects	56.1%
Mean Detects	0.00993	SD Detects	0.0139
Median Detects	0.00665	CV Detects	1.404
Skewness Detects	3.801	Kurtosis Detects	15.34
Mean of Logged Detects	-5.011	SD of Logged Detects	0.792
Norm	nal GOF Tes	t on Detects Only	
Shapiro Wilk Test Statistic	0.481	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.858	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.33	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.235	Detected Data Not Normal at 1% Significance Level	
Detected Dat	a Not Norma	I at 1% Significance Level	
Kaplan-Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
KM Mean	0.00659	KM Standard Error of Mean	0.0015
90KM SD	0.00955	95% KM (BCA) UCL	0.0097
95% KM (t) UCL	0.00921	95% KM (Percentile Bootstrap) UCL	0.0094
95% KM (z) UCL	0.00915	95% KM Bootstrap t UCL	0.0131
90% KM Chebyshev UCL	0.0113	95% KM Chebyshev UCL	0.0134
97.5% KM Chebyshev UCL	0.0163	99% KM Chebyshev UCL	0.0221
Gamma GOF	Tests on De	etected Observations Only	
A-D Test Statistic		Anderson-Darling GOF Test	
	,		

5% A-D Critical Value	0.758	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.209	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.208	Detected Data Not Gamma Distributed at 5% Significance	Level
Detected Data Not	Gamma Dist	ributed at 5% Significance Level	
		Detected Data Only	4 4 9 9
k hat (MLE)		k star (bias corrected MLE)	1.199
Theta hat (MLE)	0.00712	Theta star (bias corrected MLE)	0.00828
nu hat (MLE)	50.21	nu star (bias corrected)	43.17
Mean (detects)	0.00993		
Gamma BOS	Statistics up	sing Imputed Non-Detects	
		5 NDs with many tied observations at multiple DLs	
		s <1.0, especially when the sample size is small (e.g., <15-20)	
		yield incorrect values of UCLs and BTVs	
	-	en the sample size is small.	
		be computed using gamma distribution on KM estimates	
Minimum	<b>T</b>	Mean	0.0101
Maximum		Median	0.01
SD	0.00911	CV	0.906
k hat (MLE)	2.99	k star (bias corrected MLE)	2.787
Theta hat (MLE)	0.00336	Theta star (bias corrected MLE)	0.00361
nu hat (MLE)		nu star (bias corrected)	228.6
Adjusted Level of Significance (β)	0.0441		220.0
Approximate Chi Square Value (228.55, α)		Adjusted Chi Square Value (228.55, β)	193.4
95% Gamma Approximate UCL	0.0118	95% Gamma Adjusted UCL	0.0119
		meters using KM Estimates	
Mean (KM)		SD (KM)	0.00955
Variance (KM)	9.1182E-5	SE of Mean (KM)	0.00156
k hat (KM)	0.476	k star (KM)	0.457
nu hat (KM)	39	nu star (KM)	37.48
theta hat (KM)	0.0138	theta star (KM)	0.0144
80% gamma percentile (KM)	0.0108	90% gamma percentile (KM)	0.0181
95% gamma percentile (KM)	0.0261	99% gamma percentile (KM)	0.0459
0	. Kaulan M		
	-	eier (KM) Statistics	24.00
Approximate Chi Square Value (37.48, α)		Adjusted Chi Square Value (37.48, β)	24.08
95% KM Approximate Gamma UCL	0.0101	95% KM Adjusted Gamma UCL	0.0103
Lognormal GC	OF Test on D	etected Observations Only	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value		Detected Data Not Lognormal at 10% Significance Lev	/el
Lilliefors Test Statistic		Lilliefors GOF Test	
10% Lilliefors Critical Value		Detected Data appear Lognormal at 10% Significance L	evel
		Lognormal at 10% Significance Level	
Lognormal RO	S Statistics	Using Imputed Non-Detects	
Logioinario			

		vations before using these statistical methods! ves (DQO) based sample size and analytical results.	
It is suggested to collect at least 0	to 10 shaan	retions before using these statistical mathedal	
-		inyl acetate   108-05-4) was not processed!	
-		and meaningful statistics and estimates!	
Warning: Th	nis data set c	only has 1 observations!	
Number of Distinct Detects	0	Number of Distinct Non-Detects	1
Number of Detects	0	Number of Non-Detects	1
Total Number of Observations	1	Number of Distinct Observations	1
	General S		
C (groundwater   vinyl acetate   108-05-4)			
		· · · · · · · · · · · · · · · · · · ·	
		s; for additional insight the user may want to consult a statisticia	n.
		ovided to help the user to select the most appropriate 95% UCL. Ition, and skewness using results from simulation studies.	
Note: Suggestions recording the collection of a 050		wided to help the upprite collect the most environments OF% LIOL	
then contact a	statistician to	o correctly calculate UCLs.	
		nental or other non-random methods,	
· · · · · · · · · · · · · · · · · · ·		data were collected in a random and unbiased manner. llected from random locations.	
The shaded UQL are been deeper			
KM H-UCL	Suggested U		
	<u> </u>		
Detected Data appear Approxi	imate Lognor	mal Distributed at 10% Significance Level	
Nonparame	etric Distribut	ion Free UCL Statistics	
DL/2 is not a recommended me	ethod, provid	led for comparisons and historical reasons	
95% t UCL (Assumes normality)	0.00905	95% H-Stat UCL	0.00723
SD in Original Scale	0.00964	SD in Log Scale	0.654
Mean in Original Scale	0.00652	Mean in Log Scale	-5.351
DL/2 Normal		DL/2 Log-Transformed	
	DL/2 St	atistics	
KM Standard Error of Mean (logged)	0.123		
KM SD (logged)	0.653	95% Critical H Value (KM-Log)	2.014
KM Standard Error of Mean (logged)	0.123	95% H-UCL (KM -Log)	0.0072
KM SD (logged)	0.653	95% Critical H Value (KM-Log)	2.014
KM Mean (logged)	-5.346	KM Geo Mean	0.0047
Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
95% H-UCL (Log ROS)	0.0076		
95% BCA Bootstrap UCL	0.00010	95% Bootstrap t UCL	0.0000
95% t UCL (assumes normality of ROS data)	0.00908	95% Percentile Bootstrap UCL	0.0095
Mean in Original Scale SD in Original Scale	0.00663	Mean in Log Scale SD in Log Scale	-5.355 0.703

	-Detects -Detects imit! PC, BTV	s 36 s 5 v).
Total Number of Observations       36       Number of Distinct Observations         Number of Distinct Detects       0       Number of Non         Number of Distinct Detects       0       Number of Distinct Non         Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be ND       Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection I         The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E       The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!         (groundwater   xylenes (total)   1330-20-7)       Ceneral Statistics         (groundwater   xylenes (total)   1330-20-7)       43         Number of Distinct Detects       3         Numbe	-Detects -Detects imit! PC, BTV	s 36 s 5 v).
Total Number of Observations       36       Number of Distinct Observations         Number of Distinct Detects       0       Number of Non         Number of Distinct Detects       0       Number of Distinct Non         Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be ND       Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection I         The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E       Image: Comparison of Distinct Detects         (groundwater   xylenes (total)   1330-20-7)       Eceneral Statistics         General Statistics         Image: Total Number of Detects       3         Number of Distinct Detects       3         Number of Detects       3         Number of Di	-Detects -Detects imit! PC, BTV	s 36 s 5 v).
Number of Detects         0         Number of Non           Number of Distinct Detects         0         Number of Distinct Non           Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be ND         Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection I           The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E         Image: Comparison of Distinct Detects           The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!         Image: Comparison of Distinct Detects           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Detects           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Detects           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Obsec           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Obsec           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Obsec           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Obsec           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Obsec           (groundwater   xylenes (total)   1330-20-7)         43         Number of Distinct Obsec           (grou	-Detects -Detects imit! PC, BTV	s 36 s 5 v).
Number of Distinct Detects         0         Number of Distinct Non           Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be ND         Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection I           The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E         The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!           (groundwater   xylenes (total)   1330-20-7)         Ceneral Statistics           (groundwater   xylenes (total)   1330-20-7)         All           Number of Deservations         43           Number of Distinct Detects         3           Number of Detects         3           Number of Detects         0.006           Maximum Detect         0.00283           Specifical Detects         0.00283           Specifical Detects         1.206           Mean of Logged Detects         1.	-Detects imit! PC, BTV	×).
Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be ND         Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection I         The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E         The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!         (groundwater   xylenes (total)   1330-20-7)         General Statistics         (groundwater   xylenes (total)   1330-20-7)         General Statistics         Mumber of Detects       3         Number of Distinct Detects       3         Number of Detects       0.000E-4         Minimum No       Maximum No         Variance Detects       0.00283         Specifical Detects       0.002         Kewness Detects       1.206         Kurtosis       Mean of Logged Detects         -6.311       SD of Logged	ervations	v).
Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection I         The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E         The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!         (groundwater   xylenes (total)   1330-20-7)         General Statistics         (groundwater   xylenes (total)   1330-20-7)         General Statistics         Mumber of Observations       43         Number of Distinct Observations       Number of Non         Number of Distinct Detects       3       Number of Non         Minimum Detect       5.0000E-4       Minimum No         Maximum Detects       0.006       Maximum No         Variance Detects       8.0833E-6       Percent Non         Median Detects       0.002       CV         Skewness Detects       1.206       Kurtosis         Mean of Logged Detects       6-311       SD of Logged         Warning: Data set has only 3 Detected Values.       Warning: Data set has only 3 Detected Values.	imit! PC, BTV	s 12
The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., E         The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!         General Statistics         (groundwater   xylenes (total)   1330-20-7)         General Statistics         Total Number of Observations         43       Number of Distinct Observations         Number of Distinct Detects       3         Minimum Detect       5.0000E-4         Maximum Detect       0.006         Maximum No       Variance Detects         8.0833E-6       Percent Non         Mean Detects       0.002         Skewness Detects       1.206         Kurtosis       Mean of Logged Detects         Mean of Logged Detects       -6.311         SD of Logged       Warning: Data set has only 3 Detected Values.	PC, BTV	s 12
The data set for variable C (groundwater   vinyl chloride   75-01-4) was not processed!         Number of Distinct Detects         Number of Distinct Detects       3         Number of Distinct Detects       3       Number of Distinct Non         Maximum Detect       0.006       Maximum No         Mean Detects       0.002       CV         Mean of Logged Detects	ervations	s 12
(groundwater   xylenes (total)   1330-20-7)           General Statistics           Total Number of Observations         43         Number of Distinct Observations           Number of Distinct Detects         3         Number of Non           Number of Distinct Detects         3         Number of Distinct Non           Minimum Detect         5.0000E-4         Minimum No           Maximum Detect         0.006         Maximum No           Variance Detects         8.0833E-6         Percent Non           Median Detects         0.00283         SD           Median Detects         1.206         Kurtosis           Mean of Logged Detects         -6.311         SD of Logged		·
General Statistics         Total Number of Observations       43       Number of Distinct Observations         Number of Detects       3       Number of Non         Number of Distinct Detects       3       Number of Distinct Non         Minimum Detect       5.0000E-4       Minimum No         Maximum Detect       0.006       Maximum No         Variance Detects       8.0833E-6       Percent Non         Mean Detects       0.00283       SD         Median Detects       0.002       CV         Skewness Detects       1.206       Kurtosis         Mean of Logged Detects       -6.311       SD of Logged		·
Total Number of Observations43Number of Distinct ObservationsNumber of Detects3Number of NonNumber of Distinct Detects3Number of Distinct NonMinimum Detect5.0000E-4Minimum NoMaximum Detect0.006Maximum NoVariance Detects8.0833E-6Percent NonMean Detects0.00283SDMedian Detects0.002CVSkewness Detects1.206KurtosisMean of Logged Detects-6.311SD of LoggedWarning: Data set has only 3 Detected Values.		·
Total Number of Observations43Number of Distinct ObservationsNumber of Detects3Number of NonNumber of Distinct Detects3Number of Distinct NonMinimum Detect5.0000E-4Minimum NoMaximum Detect0.006Maximum NoVariance Detects8.0833E-6Percent NonMean Detects0.00283SDMedian Detects0.002CVSkewness Detects1.206KurtosisMean of Logged Detects-6.311SD of LoggedWarning: Data set has only 3 Detected Values.		·
Number of Detects       3       Number of Non         Number of Distinct Detects       3       Number of Distinct Non         Minimum Detect       5.0000E-4       Minimum No         Maximum Detect       0.006       Maximum No         Variance Detects       8.0833E-6       Percent Non         Mean Detects       0.00283       SD         Median Detects       0.002       CV         Skewness Detects       1.206       Kurtosis         Mean of Logged Detects       -6.311       SD of Logged		·
Number of Distinct Detects       3       Number of Distinct Non         Minimum Detect       5.0000E-4       Minimum No         Maximum Detect       0.006       Maximum No         Variance Detects       8.0833E-6       Percent Non         Mean Detects       0.00283       SD         Median Detects       0.002       CV         Skewness Detects       1.206       Kurtosis         Mean of Logged Detects       -6.311       SD of Logged	Detecto	s 40
Minimum Detect     5.0000E-4     Minimum No       Maximum Detect     0.006     Maximum No       Variance Detects     8.0833E-6     Percent Non       Mean Detects     0.00283     SD       Median Detects     0.002     CV       Skewness Detects     1.206     Kurtosis       Mean of Logged Detects     -6.311     SD of Logged		-
Maximum Detect       0.006       Maximum No         Variance Detects       8.0833E-6       Percent Non         Mean Detects       0.00283       SD         Median Detects       0.002       CV         Skewness Detects       1.206       Kurtosis         Mean of Logged Detects       -6.311       SD of Logged		
Variance Detects       8.0833E-6       Percent Non         Mean Detects       0.00283       SD         Median Detects       0.002       CV         Skewness Detects       1.206       Kurtosis         Mean of Logged Detects       -6.311       SD of Logged		
Mean Detects     0.00283     SD       Median Detects     0.002     CV       Skewness Detects     1.206     Kurtosis       Mean of Logged Detects     -6.311     SD of Logged		
Median Detects     0.002     CV       Skewness Detects     1.206     Kurtosis       Mean of Logged Detects     -6.311     SD of Logged		
Skewness Detects     1.206     Kurtosis       Mean of Logged Detects     -6.311     SD of Logged       Warning: Data set has only 3 Detected Values.	Detects	
Mean of Logged Detects     -6.311     SD of Logged       Warning: Data set has only 3 Detected Values.	/ Detects	
Warning: Data set has only 3 Detected Values.		-
- · · · ·	Detects	s 1.24
This is not enough to compute meaningful or reliable statistics and estimates.		
Normal GOF Test on Detects Only		
Shapiro Wilk Test Statistic 0.936 Shapiro Wilk GOF Test		
1% Shapiro Wilk Critical Value 0.753 Detected Data appear Normal at 1% Signific	cance Le	evel
Lilliefors Test Statistic 0.282 Lilliefors GOF Test		
1% Lilliefors Critical Value 0.429 Detected Data appear Normal at 1% Signific	cance Le	evel
Detected Data appear Normal at 1% Significance Level		
Note GOF tests may be unreliable for small sample sizes		
Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs		
KM Mean 7.4542E-4 KM Standard Error	of Mean	12.0767F
90KM SD 9.3381E-4 95% KM (BC		
95% KM (t) UCL 0.00109 95% KM (Percentile Bootstr	-	
95% KM (t) OCL         0.00109         95% KM (Percentile Bootstr           95% KM (z) UCL         0.00109         95% KM Bootstra		
95% KM (2) UCL 0.00109 95% KM Bootstra 90% KM Chebyshev UCL 0.00137 95% KM Chebysh		

	0.00004		0.00001			
97.5% KM Chebyshev UCL	0.00204	99% KM Chebyshev UCL	0.00281			
Gamma GOF	Tests on De	etected Observations Only				
A-D Test Statistic	0.247	Anderson-Darling GOF Test				
5% A-D Critical Value	0.64	Detected data appear Gamma Distributed at 5% Significance L				
K-S Test Statistic	0.227	27 Kolmogorov-Smirnov GOF				
5% K-S Critical Value	0.439	0.439 Detected data appear Gamma Distributed at 5% Significance Lev				
Detected Data Not	Gamma Dist	ributed at 5% Significance Level				
Gamma	Statistics or	n Detected Data Only				
k hat (MLE)	1.266	k star (bias corrected MLE)	N/A			
Theta hat (MLE)	0.00224	Theta star (bias corrected MLE)	N/A			
nu hat (MLE)	7.598	nu star (bias corrected)	N/A			
Mean (detects)	0.00283					
		sing Imputed Non-Detects				
		NDs with many tied observations at multiple DLs				
		s <1.0, especially when the sample size is small (e.g., <15-20)				
For such situations, GROS	method may	yield incorrect values of UCLs and BTVs				
This is especi	ally true whe	en the sample size is small.				
For gamma distributed detected data, BTVs a	ind UCLs ma	y be computed using gamma distribution on KM estimates				
Minimum	5.0000E-4	Mean	0.0095			
Maximum	0.01	Median	0.01			
SD	0.00195	CV	0.205			
k hat (MLE)	7.55	k star (bias corrected MLE)	7.039			
Theta hat (MLE)	0.00126	Theta star (bias corrected MLE)	0.00135			
nu hat (MLE)	649.3	nu star (bias corrected)	605.3			
Adjusted Level of Significance (β)	0.0444					
Approximate Chi Square Value (605.34, α)	549.3	Adjusted Chi Square Value (605.34, β)	547.4			
95% Gamma Approximate UCL	0.0105	95% Gamma Adjusted UCL	N/A			
Estimates of G	amma Para	meters using KM Estimates				
Mean (KM)		-	9.3381E-4			
Variance (KM)		SE of Mean (KM)				
k hat (KM)	0.637	k star (KM)	0.608			
nu hat (KM)	54.8	nu star (KM)	52.31			
theta hat (KM)	0.00117	theta star (KM)	0.00123			
80% gamma percentile (KM)	0.00123	90% gamma percentile (KM)	0.00120			
95% gamma percentile (KM)	0.00123	99% gamma percentile (KM)	0.00445			
	2.00207		0.00110			
Gamm	a Kaplan-M	eier (KM) Statistics				
Approximate Chi Square Value (52.31, α)	36.7	Adjusted Chi Square Value (52.31, β)	36.24			
95% KM Approximate Gamma UCL	0.00106	95% KM Adjusted Gamma UCL	0.00108			
Lognormal GC	)F Test on D	etected Observations Only				
Shapiro Wilk Test Statistic	0.996	Shapiro Wilk GOF Test				
10% Shapiro Wilk Critical Value	0.330	Detected Data appear Lognormal at 10% Significance	evel			
Lilliefors Test Statistic	0.197	Lilliefors GOF Test				
	0.197					

10% Lilliefors Critical Value			
	0.389	Detected Data appear Lognormal at 10% Significance L	_evel
		nal at 10% Significance Level	
Note GOF tests	may be unrel	liable for small sample sizes	
_		Jsing Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-7.531
SD in Original Scale		SD in Log Scale	0.801
95% t UCL (assumes normality of ROS data)	0.00101	95% Percentile Bootstrap UCL	0.0010
95% BCA Bootstrap UCL	0.00115	95% Bootstrap t UCL	0.0012
95% H-UCL (Log ROS)	9.6483E-4		
_		Data and Assuming Lognormal Distribution	
KM Mean (logged)	-7.441	KM Geo Mean	
KM SD (logged)	0.516	95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.136	95% H-UCL (KM -Log)	
KM SD (logged)	0.516	95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.136		
Note: KM UCLs may be biased low	with this dat	aset. Other substitution method recommended	
	DL/2 Sta		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00281	Mean in Log Scale	-6.249
SD in Original Scale	0.00328	SD in Log Scale	0.78
95% t UCL (Assumes normality)	0.00365	95% H-Stat UCL led for comparisons and historical reasons	0.0033
•		ion Free UCL Statistics tributed at 1% Significance Level	
95% KM (t) LICI	Suggested L	JCL to Use	
95% KM (t) UCL		JCL to Use	
	Suggested U		
The calculated UCLs are based on assumpt	Suggested L	data were collected in a random and unbiased manner.	
The calculated UCLs are based on assumpt Please verify the c	Suggested L 0.00109 tions that the data were col	data were collected in a random and unbiased manner. llected from random locations.	
The calculated UCLs are based on assumpt Please verify the c If the data were collected	Suggested L 0.00109 tions that the data were col Lusing judgm	data were collected in a random and unbiased manner. llected from random locations. nental or other non-random methods,	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a	Suggested U 0.00109 tions that the data were col I using judgm statistician to	data were collected in a random and unbiased manner. llected from random locations.	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95%	Suggested U 0.00109 tions that the data were col d using judgm statistician to 6 UCL are pro	data were collected in a random and unbiased manner. llected from random locations. nental or other non-random methods, o correctly calculate UCLs.	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	Suggested U 0.00109 tions that the data were col dusing judgm statistician to 5 UCL are pro , data distribu	data were collected in a random and unbiased manner. llected from random locations. nental or other non-random methods, o correctly calculate UCLs.	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested U 0.00109 tions that the data were col dusing judgm statistician to 5 UCL are pro , data distribu	data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, pocorrectly calculate UCLs. povided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies.	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested U 0.00109 tions that the data were col dusing judgm statistician to 5 UCL are pro , data distribu	data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, pocorrectly calculate UCLs. povided to help the user to select the most appropriate 95% UCL tion, and skewness using results from simulation studies.	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested U 0.00109 tions that the data were col dusing judgm statistician to 5 UCL are pro , data distribu	data were collected in a random and unbiased manner. llected from random locations. nental or other non-random methods, o correctly calculate UCLs. avided to help the user to select the most appropriate 95% UCL ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistici	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	Suggested U 0.00109 tions that the data were col dusing judgm statistician to b UCL are pro data distribu /orld data sets	data were collected in a random and unbiased manner. llected from random locations. nental or other non-random methods, o correctly calculate UCLs. avided to help the user to select the most appropriate 95% UCL ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistici	
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W c (groundwater   zinc   7440-66-6)	Suggested U 0.00109 tions that the data were col d using judgm statistician to b UCL are pro data distribut /orld data sets General S	data were collected in a random and unbiased manner. llected from random locations. mental or other non-random methods, o correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL tition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistici Statistics	an.
The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W C (groundwater   zinc   7440-66-6) Total Number of Observations	Suggested U 0.00109 ions that the data were col d using judgm statistician to b UCL are pro data distribu /orld data sets General S 41	data were collected in a random and unbiased manner. llected from random locations. nental or other non-random methods, o correctly calculate UCLs. avided to help the user to select the most appropriate 95% UCL ition, and skewness using results from simulation studies. s; for additional insight the user may want to consult a statistici Statistics Number of Distinct Observations	an. 34

Maximum Detect	0.422	Maximum Non-Detect	0.02
Variance Detects	0.0151	Percent Non-Detects	21.95%
Mean Detects	0.105	SD Detects	0.123
Median Detects	0.051	CV Detects	1.168
Skewness Detects	1.411	Kurtosis Detects	1.21
Mean of Logged Detects	-3.071	SD of Logged Detects	1.419
	0.071		
Norm	al GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.782	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.904	Detected Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.207	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.18	Detected Data Not Normal at 1% Significance Level	
Detected Data	a Not Normal	l at 1% Significance Level	
	-	ritical Values and other Nonparametric UCLs	0.010/
KM Mean	0.0842	KM Standard Error of Mean	0.0181
90KM SD	0.114	95% KM (BCA) UCL	0.114
95% KM (t) UCL	0.115	95% KM (Percentile Bootstrap) UCL	0.114
95% KM (z) UCL	0.114	95% KM Bootstrap t UCL	0.124
90% KM Chebyshev UCL	0.139	95% KM Chebyshev UCL	0.163
97.5% KM Chebyshev UCL	0.197	99% KM Chebyshev UCL	0.264
Gamma GOE	Tests on De	tected Observations Only	
A-D Test Statistic	0.867	Anderson-Darling GOF Test	
5% A-D Critical Value	0.789	Detected Data Not Gamma Distributed at 5% Significance I	
K-S Test Statistic	0.154	Kolmogorov-Smirnov GOF	Level
5% K-S Critical Value	0.162	Detected data appear Gamma Distributed at 5% Significance	
		Distribution at 5% Significance Level	Level
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.733	k star (bias corrected MLE)	0.685
Theta hat (MLE)	0.144	Theta star (bias corrected MLE)	0.154
nu nat (MLE)	46.91	nu star (bias corrected)	43.85
nu hat (MLE) Mean (detects)	46.91 0.105	nu star (bias corrected)	43.85
		nu star (bias corrected)	43.85
Mean (detects)	0.105	nu star (bias corrected)	43.85
Mean (detects) Gamma ROS	0.105 Statistics us		43.85
Mean (detects) Gamma ROS GROS may not be used when data se	0.105 Statistics us et has > 50%	sing Imputed Non-Detects	43.85
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s	0.105 Statistics us et has > 50% small such as	sing Imputed Non-Detects NDs with many tied observations at multiple DLs	43.85
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r	0.105 Statistics us at has > 50% small such as nethod may y	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20)	43.85
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia	0.105 Statistics us et has > 50% small such as method may y ally true when	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs	43.85
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia	0.105 Statistics us et has > 50% small such as method may y ally true when	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small.	
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia For gamma distributed detected data, BTVs a	0.105 Statistics us at has > 50% small such as method may y ally true when nd UCLs may	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates	0.0849
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia For gamma distributed detected data, BTVs an Minimum	0.105 Statistics us et has > 50% small such as method may y ally true when nd UCLs may 0.0047	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean	0.0849
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia For gamma distributed detected data, BTVs a Minimum Maximum	0.105 Statistics us at has > 50% small such as method may y ally true when nd UCLs may 0.0047 0.422	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median	0.0849
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD	0.105 Statistics us et has > 50% small such as method may y ally true when nd UCLs may 0.0047 0.422 0.115	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs In the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV	0.0849 0.0254 1.356
Mean (detects) Gamma ROS GROS may not be used when data se GROS may not be used when kstar of detects is s For such situations, GROS r This is especia For gamma distributed detected data, BTVs ar Minimum Maximum SD k hat (MLE)	0.105 Statistics us at has > 50% small such as method may y ally true when nd UCLs may 0.0047 0.422 0.115 0.67	sing Imputed Non-Detects NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) yield incorrect values of UCLs and BTVs n the sample size is small. y be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.0849 0.0254 1.356 0.638

Approximate Chi Square Value (52.28, $\alpha$ )	36.67	Adjusted Chi Square Value (52.28, $\beta$ )	36.2
95% Gamma Approximate UCL	0.121	95% Gamma Adjusted UCL	0.123
Estimates of G	amma Para	meters using KM Estimates	
Mean (KM)	0.0842	SD (KM)	0.114
Variance (KM)	0.013	SE of Mean (KM)	0.0181
k hat (KM)	0.545	k star (KM)	0.521
nu hat (KM)	44.68	nu star (KM)	42.74
theta hat (KM)	0.155	theta star (KM)	0.162
80% gamma percentile (KM)	0.139	90% gamma percentile (KM)	0.226
95% gamma percentile (KM)	0.319	99% gamma percentile (KM)	0.546
0	o Konlon M	ains (1/AA) Otabiation	
Approximate Chi Square Value (42.74, α)	28.75	eier (KM) Statistics Adjusted Chi Square Value (42.74, β)	28.33
95% KM Approximate Gamma UCL	0.125	95% KM Adjusted Gamma UCL	0.127
Lognormal GO	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.923	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.941	Detected Data Not Lognormal at 10% Significance Lev	rel
Lilliefors Test Statistic	0.142	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.142	Detected Data Not Lognormal at 10% Significance Lev	rel
Detected Data N	lot Lognorm	al at 10% Significance Level	
	2 Statistics	Using Imputed Non-Detects	
Mean in Original Scale	0.0847	Mean in Log Scale	-3.418
SD in Original Scale	0.115	SD in Log Scale	1.449
95% t UCL (assumes normality of ROS data)	0.115	-	
95% BCA Bootstrap UCL	0.119		
95% H-UCL (Log ROS)	0.182		0.123
Statistics using KM estimates	on Logged I	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.435	KM Geo Mean	0.0322
KM SD (logged)	1.422	95% Critical H Value (KM-Log)	2.854
KM Standard Error of Mean (logged)	0.228	95% H-UCL (KM -Log)	0.168
KM SD (logged)	1.422	95% Critical H Value (KM-Log)	2.854
KM Standard Error of Mean (logged)	0.228		
	2 5/ 10	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0842	Mean in Log Scale	-3.424
SD in Original Scale	0.115	SD in Log Scale	1.424
95% t UCL (Assumes normality)	0.115	95% H-Stat UCL	0.171
DL/2 is not a recommended me	ethod, provi	ded for comparisons and historical reasons	
•		tion Free UCL Statistics	
Detected Data appear Appro	ximate Gan	nma Distributed at 5% Significance Level	
	Suggested	UCL to Use	

95% KM Adjusted Gamma UCL	0.127		
The calculated UCLs are based on assumption	ons that the	e data were collected in a random and unbiased manner.	
Please verify the da	ata were co	Ilected from random locations.	
If the data were collected a	using judgı	nental or other non-random methods,	
then contact a s	tatistician 1	o correctly calculate UCLs.	
When a data set follows an appr	oximate dis	stribution passing only one of the GOF tests,	
it is suggested to use a UCL base	ed upon a d	istribution passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size, o	data distrib	ution, and skewness using results from simulation studies.	
However, simulations results will not cover all Real Wo	orld data se	ts; for additional insight the user may want to consult a statisticia	in.

#### ATTACHMENT 3 VURAM Results

Attachment 3-1 – Resident

- Attachment 3-2 Construction Worker
- Attachment 3-3 Composite Worker
- Attachment 3-4 Recreator
- Attachment 3-5 Trespasser

#### ATTACHMENT 3-1 RESIDENT

### **Virginia Department of Environmental Quality**

# VURAM

### Virginia Unified Risk Assessment Model

### **VERSION: 3.2.1**

### **Residential Quantitative Risk Assessment Report**

### Program: Voluntary Remediation Program (VRP)

### Site Name: Alexandria

By submitting this report to the Virginia DEQ, the user confirms that VURAM's default exposure parameters have not been altered, unless a complete unaltered VURAM analysis is provided and all modifications are detailed explicitly in an accompanying narrative or documentation that shows DEQ's prior concurrence with specific changes.

### **Chemical Specific Notes Displayed as Applicable**

**Lead** VURAM does not perform an evaluation for lead exposure. Use other approved models for lead modeling.

### All Report Pages are Required for Risk Assessment Submission

isk Based Performance Criteria
--------------------------------

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS:

CAS: 83-32	-9						
Concentration mg/kg :	2.06E-01		Cal	lculated Haza	ard/Risk		
RfDo (mg/kg-day):	6.00E-02	Non-Can	cer Adult	Non-Ca	incer Child	c	Cancer
RfCi (mg/m3):		Ingestion:	4.12E-06	Ingestion:	4.39E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.26E-06	Dermal:	1.35E-05	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	6.37E-06	Total:	5.74E-05	Total:	0.00E+00
VOC:	Y						
% Cont	ribution to Med	ia Hazard/Risk	0.00%		0.00%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	С	ancer
Recommended Accepto	able Concentrati	ion N	V/A	٨	V/A		N/A

#### Analyte: Acenaphthylene

208-96-8
----------

Concentration mg/kg :	1.40E-01	Ţ	Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	Non-Cancer Adult Non-Cancer Child		Cancer		
RfCi (mg/m3):		Ingestion:	5.59E-06	Ingestion:	5.97E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.07E-06	Dermal:	1.84E-05	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	8.66E-06	Total:	7.81E-05	Total:	0.00E+00
VOC:	Y						
% Contril	bution to Medi	a Hazard/Risk	0.00%		0.00%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Cai	ncer Child	Са	incer
Recommended Acceptable Concentration		V/A	Λ	I/A	r	V/A	

#### Analyte: Acetone

```
CAS:
 67-64-1
```

Concentration mg/kg :	1.72E+00		Calculated Hazard/Risk					
RfDo (mg/kg-day):	9.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer	
RfCi (mg/m3):		Ingestion:	2.29E-06	Ingestion:	2.44E-05	Ingestion:		
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:		
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:		
Mutagen:		Total:	2.29E-06	Total:	2.44E-05	Total:	0.00E+00	
VOC:	Y							
% Contri	bution to Med	ia Hazard/Risk	0.00%		0.00%		0.00%	

Residential

#### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

### Soil

			mg/kg Non-Ca	ncer Auun	Non-Car	ncer Child	Car	ncer
Recommend	ed Acceptable	e Concentratio	on I	V/A	N	/A	Ν,	/A
Analyte:	Acetoph	henone						
CAS:	98-86-2							
Concentratior	mg/kg :	1.51E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-o	lay):	1.00E-01	Non-Car	ncer Adult	Non-Ca	ncer Child	Сан	ncer
RfCi (mg/m3):			Ingestion:	1.81E-06	Ingestion:	1.93E-05	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1	:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:			Total:	1.81E-06	Total:	1.93E-05	Total:	0.00E+00
VOC:		Y						
	% Contribu	ution to Medic	n Hazard/Risk	0.00%		0.00%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommend	ed Acceptable	e Concentratio	on I	V/A	N,	/A	N,	/A
Analyte:	Aluminu							
	Alumin	um						
CAS:	7429-90							
CAS:	7429-90			Cal	culated Haza	rd/Risk		
CAS: Concentration	<b>7429-90</b> mg/kg :	)-5	Non-Car	Cal		rd/Risk ncer Child	Cai	ncer
CAS: Concentration RfDo (mg/kg-c	<b>7429-90</b> mg/kg : lay):	<b>)-5</b> 9.23E+03	Non-Car Ingestion:			-	<b>Ca</b> ı Ingestion:	ncer
-	7429-90 mg/kg : lay):	<b>)-5</b> 9.23E+03 1.00E+00		ncer Adult	Non-Ca	ncer Child		ncer
CAS: Concentration RfDo (mg/kg-c RfCi (mg/m3): SFO (mg/kg-da	7429-90 mg/kg : day): ay)-1:	<b>)-5</b> 9.23E+03 1.00E+00	Ingestion:	ncer Adult	Non-Can Ingestion:	ncer Child	Ingestion:	ncer
CAS: Concentration RfDo (mg/kg-c RfCi (mg/m3):	7429-90 mg/kg : day): ay)-1:	<b>)-5</b> 9.23E+03 1.00E+00	Ingestion: Dermal:	ncer Adult 1.11E-02	Non-Car Ingestion: Dermal:	ncer Child 1.18E-01	Ingestion: Dermal:	ncer 0.00E+00
CAS: Concentration RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-da IUR (μg/m3)-1	7429-90 mg/kg : day): ay)-1:	<b>)-5</b> 9.23E+03 1.00E+00	Ingestion: Dermal: Inhalation:	ncer Adult 1.11E-02 1.30E-03	Non-Can Ingestion: Dermal: Inhalation:	1.30E-03	Ingestion: Dermal: Inhalation:	

mg/kg	Non-Cancer Adult	Non-Cancer Child	Cancer
Recommended Acceptable Concentration	N/A	N/A	N/A

	<u>Risk Based Performance Criteria</u>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS:

Analyte:	Anthra	icene						
CAS:	120-12	2-7						
Concentration	n mg/kg :	2.53E-01		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-o	day):	3.00E-01	Non-Car	ncer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):			Ingestion:	1.01E-06	Ingestion:	1.08E-05	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:	5.55E-07	Dermal:	3.33E-06	Dermal:	
IUR (µg/m3)-1	.:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:			Total:	1.57E-06	Total:	1.41E-05	Total:	0.00E+00
VOC:		Y						
	% Contri	bution to Med	ia Hazard/Risk	0.00%		0.00%		0.00%
mg/kg Non-Ca			ncer Adult	Non-Ca	ncer Child	С	ancer	
Recommend	ed Acceptab	ole Concentrat	ion N	V/A	٨	I/A		N/A

#### Analyte: Antimony (metallic)

7440-36-0
-----------

Concentration mg/kg :	1.34E+00	Ĩ	Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	4.00E-04	Non-Can	cer Adult	Non-Cancer Child		Cancer	
RfCi (mg/m3):	3.00E-04	Ingestion:	4.02E-03	Ingestion:	4.29E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	3.16E-06	Inhalation:	3.16E-06	Inhalation:	
Mutagen:		Total:	4.03E-03	Total:	4.29E-02	Total:	0.00E+00
VOC:							
% Contribution to Media Hazard/Risk			1.34%		1.71%		0.00%
mg/kg Non-Car		ncer Adult	Non-Cancer Child		Cancer		
Recommended Acceptable Concentration			I/A	Λ	I/A	٨	I/A

#### Analyte: Arsenic, Inorganic

CAS: 7440-38-2

Concentration mg/kg :	8.80E+00	Calculated Hazard/Risk						
RfDo (mg/kg-day):	3.00E-04	Non-Cancer Adult		Non-Cancer Child		Cancer		
RfCi (mg/m3):	1.50E-05	Ingestion:	2.11E-02	Ingestion:	2.25E-01	Ingestion:	1.14E-05	
SFO (mg/kg-day)-1:	1.50E+00	Dermal:	4.45E-03	Dermal:	2.67E-02	Dermal:	1.60E-06	
IUR (µg/m3)-1:	4.30E-03	Inhalation:	4.14E-04	Inhalation:	4.14E-04	Inhalation:	9.91E-09	
Mutagen:		Total:	2.60E-02	Total:	2.52E-01	Total:	1.30E-05	
VOC:								
% Contribution to Media Hazard/Risk			8.62%		10.02%		63.08%	

Residential

#### Voluntary Remediation Program (VRP) **Program:**

Risk Based Performance Criteria
---------------------------------

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

## Soil

	Exce	eeds Risk!	mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Ca	ncer
Recommended Acceptable Concentration		ion N/A		N/A		6.77E-01		
Analyte:	Barium	1						
CAS:	7440-3	9-3						
Concentration	mg/kg :	7.27E+01		Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-d	lay):	2.00E-01	Non-Car	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):		5.00E-04	Ingestion:	4.36E-04	Ingestion:	4.65E-03	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1	:		Inhalation:	1.03E-04	Inhalation:	1.03E-04	Inhalation:	
Mutagen:			Total:	5.38E-04	Total:	4.75E-03	Total:	0.00E+00
VOC:								
	% Contrib	oution to Medi	a Hazard/Risk	0.18%		0.19%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Сс	ncer
Recommende	ed Acceptabl	le Concentrati	on N	V/A	Ν	//A	I	V/A
Analyte:	Benz[a]	]anthracene	9					
CAS:	56-55-3	-						
Concentration	mg/kg :	4.82E-01	Ţ	Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-d	lay):		Non-Car	cer Adult		ncer Child	Ca	ancer
RfCi (mg/m3):			Ingestion:		Ingestion:		Ingestion:	3.15E-07

0.00E+00

0.00%

Inhalation:

Dermal:

Total:

Inhalation:

Dermal:

Total:

0.00E+00

0.00%

Non-Cancer Child

N/A

Inhalation:

mg/kg Non-Cancer Adult

N/A

Dermal:

Total:

1.00E-01

6.00E-05

Y

Y % Contribution to Media Hazard/Risk

Recommended Acceptable Concentration

SFO (mg/kg-day)-1:

IUR (µg/m3)-1:

Mutagen:

VOC:

1.05E-07

6.49E-09

4.26E-07

2.07%

Cancer

N/A

#### Residential

#### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

Analyte:	Benzene
CAS:	71-43-2

	_						
Concentration mg/kg :	5.00E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):	4.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	3.00E-02	Ingestion:	1.50E-04	Ingestion:	1.60E-03	Ingestion:	3.96E-08
SFO (mg/kg-day)-1:	5.50E-02	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	7.80E-06	Inhalation:	4.51E-03	Inhalation:	4.51E-03	Inhalation:	3.92E-07
Mutagen:		Total:	4.66E-03	Total:	6.11E-03	Total:	4.32E-07
VOC:	Y						
% Contrib	bution to Medi	a Hazard/Risk	1.55%		0.24%		2.10%
		mg/kg Non-Car	ncer Adult	Non-Ca	ncer Child	Cai	ncer
Recommended Acceptab	le Concentrati	on N	I/A	٨	I/A	N	/A

#### Benzo(g,h,i)perylene Analyte:

CAS: 191-24	I-2						
Concentration mg/kg :	2.47E-01		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	incer
RfCi (mg/m3):		Ingestion:	9.87E-06	Ingestion:	1.05E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	5.42E-06	Dermal:	3.25E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.53E-05	Total:	1.38E-04	Total:	0.00E+00
VOC:	Y						
% Contri	bution to Med	ia Hazard/Risk	0.01%		0.01%		0.00%
		mg/kg Non-Car	ncer Adult	Non-Ca	ncer Child	Са	ncer
Recommended Acceptal	ole Concentrati	on N	I/A	٨	I/A	٨	V/A

#### Analyte: Benzo[a]pyrene

CAS: 50-32-8

Concentration mg/kg :	3.36E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):	3.00E-04	Non-Can	icer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	2.00E-06	Ingestion:	1.34E-03	Ingestion:	1.43E-02	Ingestion:	2.19E-06
SFO (mg/kg-day)-1:	1.00E+00	Dermal:	7.37E-04	Dermal:	4.42E-03	Dermal:	7.32E-07
IUR (μg/m3)-1:	6.00E-04	Inhalation:	1.18E-04	Inhalation:	1.18E-04	Inhalation:	1.46E-10
Mutagen:	Y	Total:	2.20E-03	Total:	1.89E-02	Total:	2.93E-06
VOC:							
% Contri	bution to Med	ia Hazard/Risk	0.73%		0.75%		14.20%

Residential

#### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

## Soil

Exceeds Risk!	mg/kg Non-Cancer Adult	Non-Cancer Child	Cancer
Recommended Acceptable Concentration	on N/A	N/A	1.15E-01

#### Analyte: Benzo[b]fluoranthene

CAS:	205-99-2

Concentration mg/kg :	6.65E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Car	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	4.34E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	1.45E-07
IUR (μg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	2.89E-11
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	5.79E-07
VOC:							
% Contril	bution to Med	a Hazard/Risk	0.00%		0.00%		2.81%
		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Car	ncer
Recommended Acceptab	le Concentrati	on N	V/A	٨	I/A	N,	/A

#### Analyte: Benzo[k]fluoranthene

CAS:	207-08-9
CAJ.	207 00 5

Concentration mg/kg :	3.61E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Car	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	2.36E-08
SFO (mg/kg-day)-1:	1.00E-02	Dermal:		Dermal:		Dermal:	7.87E-09
IUR (µg/m3)-1:	6.00E-06	Inhalation:		Inhalation:		Inhalation:	1.57E-12
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	3.14E-08
VOC:							
% Contri	bution to Medi	a Hazard/Risk	0.00%		0.00%		0.15%
		mg/kg Non-Ca	ncer Adult	Non-Cai	ncer Child	Car	ncer
Recommended Acceptab	ole Concentrati	on N	I/A	Λ	I/A	N,	/A

	<u>Risk Based Performance Criteria</u>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS: 65-85	-0						
Concentration mg/kg :	1.20E+00		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):	4.00E+00	Non-Can	ncer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:	3.60E-07	Ingestion:	3.84E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.52E-07	Dermal:	9.10E-07	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	5.11E-07	Total:	4.75E-06	Total:	0.00E+00
VOC:							
% Contribution to Media Hazard/Risk			0.00%		0.00%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Ca	incer
Recommended Acceptable Concentration N/A N/A N/A N/A					V/A		

#### Analyte: Beryllium and compounds

CAS: 7440-4	1-7						
Concentration mg/kg :	9.00E-01		Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	2.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Car	ncer
RfCi (mg/m3):	2.00E-05	Ingestion:	5.39E-04	Ingestion:	5.75E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:	2.40E-03	Inhalation:	3.17E-05	Inhalation:	3.17E-05	Inhalation:	5.66E-10
Mutagen:		Total:	5.71E-04	Total:	5.79E-03	Total:	5.66E-10
VOC:							
% Contri	bution to Medi	ia Hazard/Risk	0.19%		0.23%		0.00%
		mg/kg Non-Car	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommended Acceptat	ole Concentrati	on N	V/A	Ν	//A	N,	/A

#### Analyte: Bis(2-ethylhexyl)phthalate

CAS: 117-81-7

Concentration mg/kg :	2.31E-01		Calculated Hazard/Risk				
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:	1.38E-05	Ingestion:	1.48E-04	Ingestion:	4.65E-09
SFO (mg/kg-day)-1:	1.40E-02	Dermal:	5.85E-06	Dermal:	3.50E-05	Dermal:	1.31E-09
IUR (µg/m3)-1:	2.40E-06	Inhalation:		Inhalation:		Inhalation:	1.45E-13
Mutagen:		Total:	1.97E-05	Total:	1.83E-04	Total:	5.96E-09
VOC:							
% Contr	ibution to Med	ia Hazard/Risk	0.01%		0.01%		0.03%

Wednesday, December 6, 2023

Residential

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

### Soil

			mg/kg Non-Ca	ncer Adult	Non-Cai	ncer Child	Car	ncer
Recommend	ed Acceptab	ole Concentratio	on I	N/A	٨	I/A	N,	/A
Analyte:	Butylb	enzene, n-						
CAS:	104-51	-8						
Concentration	n mg/kg :	1.40E-01		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-c	lay):	5.00E-02	Non-Car	ncer Adult	Non-Ca	ncer Child	Cai	ncer
RfCi (mg/m3):			Ingestion:	3.36E-06	Ingestion:	3.58E-05	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1	:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:			Total:	3.36E-06	Total:	3.58E-05	Total:	0.00E+00
VOC:		Y						
	% Contril	bution to Medi	a Hazard/Risk	0.00%		0.00%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Car	ncer
Recommend	ed Acceptab	ole Concentratio	on I	N/A	٨	I/A	N,	/A
Analyte:	Cadmi	um (Diet)						
CAS:	7440-4	3-9-Diet						
Concentration	n mg/kg :	3.33E-01		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-c	lay):	1.00E-04	Non-Car	ncer Adult		ncer Child	Cai	ncer
RfCi (mg/m3):		1.00E-05	Ingestion:	3.99E-03	Ingestion:	4.26E-02	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:	6.74E-04	Dermal:	4.04E-03	Dermal:	
IUR (µg/m3)-1	:	1.80E-03	Inhalation:	2.35E-05	Inhalation:	2.35E-05	Inhalation:	1.57E-10
Mutagen:			Total:	4.69E-03	Total:	4.66E-02	Total:	1.57E-10
VOC:								
	% Contril	bution to Medi	a Hazard/Risk	1.56%		1.85%		0.00%

% Contribution to Media Hazard/Ri	isk 1.56%	1.85%	0.00%
mg/kg <i>Nor</i>	n-Cancer Adult	Non-Cancer Child	Cancer
Recommended Acceptable Concentration	N/A	N/A	N/A

#### Voluntary Remediation Program (VRP) Program:

|--|

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

Analyte:	Carbaz	ole	
CAS:	86-74-8	3	
Concentration	n mg/kg :	2.42E-01	C
RfDo (mg/kg-	day):		Non-Cancer Adult
RfCi (mg/m3)			Indestion:

Concentration mg/kg : 2.42E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):	Non-Can	cer Adult	Non-Ca	ncer Child	Cai	ncer
RfCi (mg/m3):	Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:	Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:	Inhalation:		Inhalation:		Inhalation:	
Mutagen:	Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
VOC:						
% Contribution to Med	ia Hazard/Risk	0.00%		0.00%		0.00%
mg/kg Non-Ca		ncer Adult	Non-Car	ncer Child	Car	ncer
Recommended Acceptable Concentration		I/A	N	/A	N,	/A

#### Analyte: Chromium(III), Insoluble Salts

CAS: 1600	55-83-1						
Concentration mg/kg :	2.06E+02		Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	1.50E+00	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:	1.65E-04	Ingestion:	1.76E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.65E-04	Total:	1.76E-03	Total:	0.00E+00
VOC:							
% Cor	tribution to Med	ia Hazard/Risk	0.05%		0.07%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Са	ncer
Recommended Accep	table Concentrati	on N	V/A	٨	I/A	Λ	I/A

#### Analyte: Chrysene

#### CAS: 218-01-9

Concentration mg/kg	: 6.91E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Cancer Adult		Non-Ca	ncer Child	Cancer	
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	4.51E-09
SFO (mg/kg-day)-1:	1.00E-03	Dermal:		Dermal:		Dermal:	1.51E-09
IUR (µg/m3)-1:	6.00E-07	Inhalation:		Inhalation:		Inhalation:	3.01E-13
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	6.02E-09
VOC:							
% Contribution to Media Hazard/Risk			0.00%		0.00%		0.03%

Residential

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performan		
Default Hazard Index	Default Risk for Individual C	hemical Default Cun	nulative Risk (All Chemicals)
1	1.00E-06		1.00E-04
Soil			
	mg/kg Non-Cancer Adult	Non-Cancer Child	Cancer
Recommended Acceptable Concentration	on N/A	N/A	N/A

### Analyte: Cobalt CAS: 7440-48-4

Concentration mg/kg :	1.04E+01		Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	3.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	6.00E-06	Ingestion:	4.14E-02	Ingestion:	4.42E-01	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	9.00E-03	Inhalation:	1.22E-03	Inhalation:	1.22E-03	Inhalation:	2.44E-08
Mutagen:		Total:	4.27E-02	Total:	4.43E-01	Total:	2.44E-08
VOC:							
% Contri	bution to Medi	a Hazard/Risk	14.17%		17.62%		0.12%
		mg/kg Non-Car	ncer Adult	Non-Cai	ncer Child	Car	ncer
Recommended Acceptab	ole Concentrati	on N	I/A	Λ	I/A	N,	/A

#### Analyte: Copper

CAS:

7440-50-8

Concentration mg/kg :	1.55E+02		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	incer
RfCi (mg/m3):		Ingestion:	4.64E-03	Ingestion:	4.95E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	4.64E-03	Total:	4.95E-02	Total:	0.00E+00
VOC:							
% Contribution to Media Hazard/Risk 1.54%					1.97%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Cai	ncer Child	Са	ncer
Recommended Acceptab	le Concentrati	on N	I/A	٨	I/A	٨	I/A

#### Residential

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS:

Analyte:	Cresol,	, <b>O</b> -						
CAS:	95-48-	7						
Concentration	n mg/kg :	1.30E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-o	day):	5.00E-02	Non-Car	ncer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):		6.00E-01	Ingestion:	3.12E-06	Ingestion:	3.32E-05	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:	1.32E-06	Dermal:	7.89E-06	Dermal:	
IUR (µg/m3)-1	.:		Inhalation:	1.53E-10	Inhalation:	1.53E-10	Inhalation:	
Mutagen:			Total:	4.43E-06	Total:	4.11E-05	Total:	0.00E+00
VOC:								
	% Contril	bution to Med	ia Hazard/Risk	0.00%		0.00%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	C	ancer
Recommend	ed Acceptab	le Concentrat	ion N	V/A	٨	I/A		N/A

### Analyte: Cresol, p-chloro-m-

59-50-7

Concentration mg/kg :	1.19E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:	1.43E-06	Ingestion:	1.52E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	6.02E-07	Dermal:	3.61E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.03E-06	Total:	1.88E-05	Total:	0.00E+00
VOC:							
% Contribution to Media Hazard/Risk 0.00%					0.00%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Са	ncer
Recommended Acceptab	le Concentrati	on N	I/A	N	/A	٨	I/A

#### Analyte: Cumene

CAS:	98-82-8
CAJ.	30-02-0

Concentration mg/kg :	1.68E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):	4.00E-01	Ingestion:	2.01E-06	Ingestion:	2.15E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	6.49E-05	Inhalation:	6.49E-05	Inhalation:	
Mutagen:		Total:	6.69E-05	Total:	8.63E-05	Total:	0.00E+00
VOC:	Y						
% Contri	bution to Med	ia Hazard/Risk	0.02%		0.00%		0.00%

Wednesday, December 6, 2023

Residential

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04
<b>5</b> 1		

### Soil

			mg/kg <i>Non-Ca</i>	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommend	ed Acceptab	ole Concentratio	n I	V/A	N	I/A	Ν,	/A
Analyte:	Cyanid	e (CN-)						
CAS:	57-12-5	5						
Concentration	n mg/kg :	8.26E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-c	lay):	6.00E-04			ncer Child	Cai	ncer	
RfCi (mg/m3):		8.00E-04	Ingestion:	1.65E-03	Ingestion:	1.76E-02	Ingestion:	
SFO (mg/kg-da	ау)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1	:		Inhalation:	1.86E-02	Inhalation:	1.86E-02	Inhalation:	
Mutagen:			Total:	2.02E-02	Total:	3.62E-02	Total:	0.00E+00
VOC:		Y						
	% Contrik	bution to Media	ı Hazard/Risk	6.72%		1.44%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommend	ed Acceptab	ole Concentratio	n I	V/A	N	I/A	N,	/A
Analyte:	Dibenz	[a,h]anthrac	ene					
CAS:	53-70-3							
		3						
Concentration		<b>3</b> 1.98E-01		Cal	culated Haza	rd/Risk		
	n mg/kg :	-	Non-Car	Cal	culated Haza Non-Ca	r <b>d/Risk</b> ncer Child	Car	ncer
RfDo (mg/kg-c	n mg/kg : day):	-	Non-Car			-	Car Ingestion:	1.29E-06
RfDo (mg/kg-c RfCi (mg/m3):	n mg/kg : day):	-			Non-Ca	-		
Concentratior RfDo (mg/kg-c RfCi (mg/m3): SFO (mg/kg-da IUR (µg/m3)-1	n mg/kg : day): ay)-1:	1.98E-01	Ingestion:		Non-Ca Ingestion:	-	Ingestion:	1.29E-06
RfDo (mg/kg-c RfCi (mg/m3): SFO (mg/kg-da	n mg/kg : day): ay)-1:	1.98E-01 1.00E+00	Ingestion: Dermal:		Non-Ca Ingestion: Dermal:	-	Ingestion: Dermal:	1.29E-06 4.31E-07
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-da IUR (μg/m3)-1 Mutagen:	n mg/kg : day): ay)-1:	1.98E-01 1.00E+00 6.00E-04	Ingestion: Dermal: Inhalation:	ncer Adult	Non-Ca Ingestion: Dermal: Inhalation:	ncer Child	Ingestion: Dermal: Inhalation:	1.29E-06 4.31E-07 8.62E-11
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-da IUR (μg/m3)-1 Mutagen:	n mg/kg : day): ay)-1: .:	1.98E-01 1.00E+00 6.00E-04	Ingestion: Dermal: Inhalation: <b>Total:</b>	ncer Adult	Non-Ca Ingestion: Dermal: Inhalation:	ncer Child	Ingestion: Dermal: Inhalation:	1.29E-06 4.31E-07 8.62E-11
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-da IUR (μg/m3)-1	n mg/kg : day): ay)-1: .: % Contrib	1.98E-01 1.00E+00 6.00E-04 Y bution to Media	Ingestion: Dermal: Inhalation: <b>Total:</b>	ncer Adult 0.00E+00 0.00%	Non-Ca Ingestion: Dermal: Inhalation: Total:	ncer Child 0.00E+00	Ingestion: Dermal: Inhalation: <b>Total:</b>	1.29E-06 4.31E-07 8.62E-11 <b>1.72E-06</b>

Risk Based	Performance	Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

#### Analyte: Dimethylphenol, 2,4-

CAS: 105	67-9						
Concentration mg/kg	: 2.00E-01		Cal	lculated Haza	ard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Car	ncer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):		Ingestion:	1.20E-05	Ingestion:	1.28E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	5.06E-06	Dermal:	3.03E-05	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.70E-05	Total:	1.58E-04	Total:	0.00E+00
VOC:							
% Со	ntribution to Med	ia Hazard/Risk	0.01%		0.01%		0.00%
	mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Сс	ancer	
Recommended Acce	otable Concentrati	on N	V/A	٨	I/A		N/A

#### Analyte: Ethylbenzene

CAS: 100-	41-4							
Concentration mg/kg : 3.42E-01 Calculated Hazard/Risk								
RfDo (mg/kg-day):	5.00E-02	Non-Cancer Adult Non-Cancer Child Cancer				ncer		
RfCi (mg/m3):	1.00E+00	Ingestion:	8.20E-06	Ingestion:	8.75E-05	Ingestion:	5.41E-09	
SFO (mg/kg-day)-1:	1.10E-02	Dermal:		Dermal:		Dermal:		
IUR (μg/m3)-1:	2.50E-06	Inhalation:	5.78E-05	Inhalation:	5.78E-05	Inhalation:	5.37E-08	
Mutagen:		Total:	6.60E-05	Total:	1.45E-04	Total:	5.91E-08	
VOC:	Y							
% Con	tribution to Medi	a Hazard/Risk	0.02%		0.01%		0.29%	
	mg/kg Non-Cancer Adult Non-Cancer Child Cancer						ncer	
Recommended Acceptable Concentration N/A N/A N/A N/A								

#### Analyte: Fluoranthene

CAS: 206-44-0

Concentration mg/kg :	8.95E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:	2.68E-05	Ingestion:	2.86E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.47E-05	Dermal:	8.83E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	4.15E-05	Total:	3.74E-04	Total:	0.00E+00
VOC:							
% Contri	bution to Med	ia Hazard/Risk	0.01%		0.01%		0.00%

Residential

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performanc	<u>e Criteria</u>			
Default Hazard Index	Default Risk for Individual Ch	emical Default Cun	nulative Risk (All Chemicals)		
1	1.00E-06 1.00E-04				
Soil					
	mg/kg Non-Cancer Adult	Non-Cancer Child	Cancer		
Recommended Acceptable Concentratio	n N/A	N/A	N/A		

### CAS: 86-73-7

Concentration mg/kg :	2.30E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:	6.89E-06	Ingestion:	7.35E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.78E-06	Dermal:	2.27E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.07E-05	Total:	9.62E-05	Total:	0.00E+00
VOC:	Y						
% Contril	bution to Medi	ia Hazard/Risk	0.00%		0.00%		0.00%
	mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Са	ncer	
Recommended Acceptab	le Concentrati	on N	V/A	٨	I/A	Λ	I/A

#### Analyte: Indeno[1,2,3-cd]pyrene

#### CAS: 193-39-5

Concentration mg/kg :	2.82E-01	Calculated Hazard/Risk						
RfDo (mg/kg-day):		Non-Cancer Adult Non-Cancer Child				Car	Cancer	
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.84E-07	
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	6.14E-08	
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	1.23E-11	
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	2.46E-07	
VOC:								
% Contri	bution to Med	a Hazard/Risk	0.00%		0.00%		1.19%	
	ncer Adult	Non-Ca	ncer Child	Car	ncer			
Recommended Acceptal	ble Concentrati	on N	I/A	Λ	I/A	N,	/A	

	<u>Risk Based Performance Criteria</u>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS:

#### Analyte: Iron

CAS: 7439-8	9-6						
Concentration mg/kg :	6.57E+04	Ţ	Ca	lculated Haza	ard/Risk		
RfDo (mg/kg-day):	7.00E-01	Non-Can	ncer Adult	Non-Ca	ancer Child	С	ancer
RfCi (mg/m3):		Ingestion:	1.12E-01	Ingestion:	1.20E+00	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.12E-01	Total:	1.20E+00	Total:	0.00E+00
VOC:							
% Contribution to Media Hazard/Risk			37.38%		47.70%		0.00%
Exceeds Hazard!		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	С	ancer
Recommended Acceptat	le Concentrat	on N	V/A	5.48	8E+04		N/A

#### Analyte: isopropyltoluene

C	99-	87	-6	

Concentration mg/kg :	9.93E-02		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	incer
RfCi (mg/m3):	4.00E-01	Ingestion:	1.19E-06	Ingestion:	1.27E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	2.48E-05	Inhalation:	2.48E-05	Inhalation:	
Mutagen:		Total:	2.60E-05	Total:	3.75E-05	Total:	0.00E+00
VOC:	Y						
% Contri	ibution to Med	ia Hazard/Risk	0.01%		0.00%		0.00%
	mg/kg Non-Ca	ncer Adult	Non-Cai	ncer Child	Са	ncer	
Recommended Accepta	I/A	Λ	I/A	٨	I/A		

#### Analyte: Lead and Compounds

CAS: 7439-92-1

Concentration mg/kg :	2.05E+01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Cancer Adult		Non-Ca	ancer Child	Cancer	
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
VOC:							
% Contri	bution to Med	ia Hazard/Risk	0.00%		0.00%		0.00%

Wednesday, December 6, 2023

## Residential

## Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Ca	ncer
Recommend	ed Acceptab	le Concentratio	on I	V/A	Ν	//A	N	I/A
Analyte:	Manga	nese (Diet)						
CAS:	7439-9	6-5-Diet						
Concentratior	n mg/kg :	5.16E+02		Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-o	day):	1.40E-01	Non-Car	ncer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		5.00E-05	Ingestion:	4.42E-03	Ingestion:	4.72E-02	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1	:		Inhalation:	7.28E-03	Inhalation:	7.28E-03	Inhalation:	
Mutagen:			Total:	1.17E-02	Total:	5.44E-02	Total:	0.00E+00
VOC:								
	% Contrib	bution to Media	a Hazard/Risk	3.89%		2.16%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Ca	ncer
Recommend	ed Acceptab	le Concentratio	ו מר	V/A	Δ.	I/A		1/1
		ine concentration	1	V/A	N	/A	IN IN	I/A
Analvte:	Mercu			V/A	/N	/A	1	/A
-	Mercu 7439-9	ry (elementa		V/A	,	/A		/A
CAS:	7439-9	ry (elementa				-		7A
Analyte: CAS: Concentratior RfDo (mg/kg-o	<b>7439-9</b> n mg/kg :	ry (elementa 7-6	al)		culated Haza	-		ncer
CAS: Concentration	<b>7439-9</b> n mg/kg : day):	ry (elementa 7-6	al)	Ca	culated Haza	rd/Risk		
CAS: Concentration RfDo (mg/kg-o RfCi (mg/m3):	<b>7439-9</b> n mg/kg : day):	<b>ry (elementa</b> 1 <b>7-6</b> 5.07E-02	al) Non-Car	Ca	lculated Haza Non-Ca	rd/Risk	Ca	
<b>CAS:</b> Concentratior RfDo (mg/kg-o	<b>7439-9</b> n mg/kg : day): ay)-1:	<b>ry (elementa</b> 1 <b>7-6</b> 5.07E-02	<b>Non-Car</b> Ingestion:	Ca	<b>Iculated Haza</b> Non-Ca Ingestion:	rd/Risk	<b>Ca</b> Ingestion:	
CAS: Concentratior RfDo (mg/kg-o RfCi (mg/m3): SFO (mg/kg-d	<b>7439-9</b> n mg/kg : day): ay)-1:	<b>ry (elementa</b> 1 <b>7-6</b> 5.07E-02	<b>Non-Car</b> Ingestion: Dermal:	Ca ncer Adult	<b>Iculated Haza</b> Non-Ca Ingestion: Dermal:	rd/Risk ncer Child	<b>Ca</b> Ingestion: Dermal:	
CAS: Concentratior RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-α IUR (μg/m3)-1	<b>7439-9</b> n mg/kg : day): ay)-1:	<b>ry (elementa</b> 1 <b>7-6</b> 5.07E-02	<b>Non-Car</b> Ingestion: Dermal: Inhalation:	Cal ncer Adult 4.67E-03	<b>Iculated Haza</b> Non-Ca Ingestion: Dermal: Inhalation:	rd/Risk ncer Child 4.67E-03	<b>Ca</b> Ingestion: Dermal: Inhalation:	ncer
CAS: Concentration RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-α IUR (μg/m3)-1 Mutagen:	<b>7439-9</b> n mg/kg : day): ay)-1: .:	ry (elementa 7-6 5.07E-02 3.00E-04	Non-Car Ingestion: Dermal: Inhalation: Total:	Cal ncer Adult 4.67E-03	<b>Iculated Haza</b> Non-Ca Ingestion: Dermal: Inhalation:	rd/Risk ncer Child 4.67E-03	<b>Ca</b> Ingestion: Dermal: Inhalation:	ncer
CAS: Concentration RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-α IUR (μg/m3)-1 Mutagen:	<b>7439-9</b> n mg/kg : day): ay)-1: .:	ry (elementa 17-6 5.07E-02 3.00E-04 Y	Non-Car Ingestion: Dermal: Inhalation: Total:	Ca ncer Adult 4.67E-03 <b>4.67E-03</b> 1.55%	Iculated Haza Non-Ca Ingestion: Dermal: Inhalation: Total:	rd/Risk ncer Child 4.67E-03 <b>4.67E-03</b>	Ca Ingestion: Dermal: Inhalation: Total:	ncer 0.00E+00

### Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

### Analyte: Methyl Ethyl Ketone (2-Butanone)

CAS: 78-93-	3						
Concentration mg/kg :	5.73E-01		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):	6.00E-01	Non-Can	icer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	5.00E+00	Ingestion:	1.14E-06	Ingestion:	1.22E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	9.01E-06	Inhalation:	9.01E-06	Inhalation:	
Mutagen:		Total:	1.02E-05	Total:	2.12E-05	Total:	0.00E+00
VOC:	Y						
% Contri	bution to Medi	a Hazard/Risk	0.00%		0.00%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Са	ncer
Recommended Acceptal	ole Concentrati	on N	V/A	٨	I/A	٨	I/A

## Analyte: Methylcyclohexane

CAS: 108-87-2							
Concentration mg/kg : 7.39E+00	Calculated Hazard/Risk						
RfDo (mg/kg-day):	Non-Can	cer Adult	Non-Ca	Non-Cancer Child		Cancer	
RfCi (mg/m3):	Ingestion:		Ingestion:		Ingestion:		
SFO (mg/kg-day)-1:	Dermal:		Dermal:		Dermal:		
IUR (μg/m3)-1:	Inhalation:		Inhalation:		Inhalation:		
Mutagen:	Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00	
VOC:							
% Contribution to Media Hazard/Risk 0.00%				0.00%		0.00%	
	mg/kg Non-Car	ncer Adult	Non-Car	ncer Child	Car	ncer	
Recommended Acceptable Concentrati	on N	I/A	Ν	I/A	N	/A	

## Analyte: Methylene Chloride

CAS: 75-09-2

Concentration mg/kg :	6.90E-04	Calculated Hazard/Risk					
RfDo (mg/kg-day):	6.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	6.00E-01	Ingestion:	1.38E-07	Ingestion:	1.47E-06	Ingestion:	9.01E-12
SFO (mg/kg-day)-1:	2.00E-03	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	1.00E-08	Inhalation:	5.04E-07	Inhalation:	5.04E-07	Inhalation:	3.11E-12
Mutagen:	Y	Total:	6.41E-07	Total:	1.97E-06	Total:	1.21E-11
VOC:	Y						
% Contribution to Media Hazard/Risk		0.00%		0.00%		0.00%	

Wednesday, December 6, 2023

Residential

## Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria						
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)				
1	1.00E-06	1.00E-04				

# Soil

mg/kg	Non-Cancer Adult	Non-Cancer Child	Cancer
Recommended Acceptable Concentration	N/A	N/A	N/A

## Analyte: Methylnaphthalene, 1-

### CAS: 90-12-0

Concentration mg/kg :	2.18E+00		Cal	culated Haza	rd/Risk		
RfDo (mg/kg-day):	7.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:	3.73E-05	Ingestion:	3.98E-04	Ingestion:	9.09E-08
SFO (mg/kg-day)-1:	2.90E-02	Dermal:	2.05E-05	Dermal:	1.23E-04	Dermal:	3.32E-08
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	5.78E-05	Total:	5.21E-04	Total:	1.24E-07
VOC:	Y						
% Contribution to Media Hazard/Risk			0.02%		0.02%		0.60%
		mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommended Acceptab	ole Concentrati	on N	V/A	Ν	//A	N	/A

## Analyte: Methylnaphthalene, 2-

CAS:

# 91-57-6

Concentration mg/kg :	3.51E+00	Calculated Hazard/Risk					
RfDo (mg/kg-day):	4.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:	1.05E-03	Ingestion:	1.12E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	5.78E-04	Dermal:	3.46E-03	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.63E-03	Total:	1.47E-02	Total:	0.00E+00
VOC:	Y						
% Contribution to Media Hazard/Risk			0.54%		0.58%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Cai	ncer Child	Са	ncer
Recommended Acceptable Concentration N/A			I/A	Λ	I/A	٨	I/A

## Program: Voluntary Remediation Program (VRP)

|--|

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS:

91-20-3

Concentration mg/kg :	2.05E+00	Calculated Hazard/Risk						
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Cai	ncer	
RfCi (mg/m3):	3.00E-03	Ingestion:	1.23E-04	Ingestion:	1.31E-03	Ingestion:	3.53E-07	
SFO (mg/kg-day)-1:	1.20E-01	Dermal:	6.73E-05	Dermal:	4.03E-04	Dermal:	1.29E-07	
IUR (μg/m3)-1:	3.40E-05	Inhalation:	1.41E-02	Inhalation:	1.41E-02	Inhalation:	5.35E-07	
Mutagen:		Total:	1.43E-02	Total:	1.58E-02	Total:	1.02E-06	
VOC:	Y							
% Contribution to Media Hazard/Risk			4.76%		0.63%		4.94%	
Exceeds Risk! mg/kg Non-Ca			ncer Adult	Non-Car	ncer Child	Car	ncer	
Recommended Acceptable Concentration			I/A	Ν	/A	2.01	E+00	

#### **Nickel Soluble Salts** Analyte:

CAS: 7440-0	02-0						
Concentration mg/kg :	1.11E+02		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Cai	ncer
RfCi (mg/m3):	9.00E-05	Ingestion:	6.65E-03	Ingestion:	7.09E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	2.60E-04	Inhalation:	8.69E-04	Inhalation:	8.69E-04	Inhalation:	7.55E-09
Mutagen:		Total:	7.52E-03	Total:	7.18E-02	Total:	7.55E-09
VOC:							
% Contri	bution to Med	ia Hazard/Risk	2.50%		2.85%		0.04%
		mg/kg Non-Car	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommended Acceptal	ble Concentrati	on N	I/A	Ν	//A	N,	/A

#### Analyte: Phenanthrene

CAS: 85-01-8

Concentration mg/kg :	1.70E+00	Calculated Hazard/Risk					
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:	6.78E-05	Ingestion:	7.23E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.72E-05	Dermal:	2.23E-04	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.05E-04	Total:	9.46E-04	Total:	0.00E+00
VOC:	Y						
% Contri	ibution to Med	ia Hazard/Risk	0.03%		0.04%		0.00%

Residential

## Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04
hil		

# Soil

			mg/kg <i>Non-Ca</i>	ncer Adult	Non-Car	ncer Child	Ca	ncer
Recommend	ed Acceptab	ole Concentrati	on N	I/A	N	//A	N	/A
Analyte:	Pyrene	9						
CAS:	129-00	)-0						
Concentratior	n mg/kg :	8.78E-01	Ţ	Ca	lculated Haza	rd/Risk		
RfDo (mg/kg-o	day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):			Ingestion:	3.51E-05	Ingestion:	3.74E-04	Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:	1.93E-05	Dermal:	1.15E-04	Dermal:	
IUR (µg/m3)-1	.:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:			Total:	5.43E-05	Total:	4.90E-04	Total:	0.00E+00
VOC:		Y						
	% Contril	bution to Medi	a Hazard/Risk	0.02%		0.02%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Ca	ncer
			116/16 11011 001	ner Auun	Non Cui		Cui	
Recommend	ed Acceptab	ole Concentrati		I/A		I/A		//A
Analyte:	Toluen	e						
Analyte: CAS:	Toluen 108-88	ie 3-3		I/A	N	I/A		
Analyte: CAS: Concentratior	<b>Toluen</b> <b>108-88</b> n mg/kg :	e	on N	<i>I/A</i> Cal	N Iculated Haza	rd/Risk	N	//A
Analyte: CAS: Concentratior RfDo (mg/kg-o	<b>Toluen</b> <b>108-88</b> mg/kg : day):	<b>1e</b> <b>3-3</b> 2.07E+00	on Non-Can	//A Cal Icer Adult	N Iculated Haza Non-Ca	rd/Risk ncer Child	N	
Analyte: CAS: Concentratior RfDo (mg/kg-o RfCi (mg/m3):	Toluen 108-88 n mg/kg : day):	2.07E+00 8.00E-02	on N	<i>I/A</i> Cal	N Iculated Haza	rd/Risk	N	//A
Analyte: CAS: Concentratior RfDo (mg/kg-c RfCi (mg/m3): SFO (mg/kg-da	<b>Toluen</b> <b>108-88</b> n mg/kg : day): ay)-1:	2.07E+00 8.00E-02	on A Non-Can Ingestion:	//A Cal Icer Adult	N Iculated Haza Non-Ca Ingestion:	rd/Risk ncer Child	Ca Ingestion:	//A
Analyte: CAS: Concentration RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-da IUR (μg/m3)-1	<b>Toluen</b> <b>108-88</b> n mg/kg : day): ay)-1:	2.07E+00 8.00E-02	on N Non-Can Ingestion: Dermal:	//A Ca cer Adult 3.10E-05	N Iculated Haza Non-Ca Ingestion: Dermal:	r <b>d/Risk</b> ncer Child 3.31E-04	N Ca Ingestion: Dermal:	ncer
Recommend Analyte: CAS: Concentration RfDo (mg/kg-d RfCi (mg/m3): SFO (mg/kg-d IUR (µg/m3)-1 Mutagen: VOC:	<b>Toluen</b> <b>108-88</b> n mg/kg : day): ay)-1:	2.07E+00 8.00E-02	on Non-Can Ingestion: Dermal: Inhalation:	//A Cal icer Adult 3.10E-05 9.26E-05	<b>Iculated Haza</b> <b>Non-Ca</b> Ingestion: Dermal: Inhalation:	rd/Risk ncer Child 3.31E-04 9.26E-05	Ca Ingestion: Dermal: Inhalation:	//A
Analyte: CAS: Concentratior RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d: IUR (μg/m3)-1 Mutagen:	Toluen 108-88 n mg/kg : day): ay)-1:	Pe 3-3 2.07E+00 8.00E-02 5.00E+00 Y	on Non-Can Ingestion: Dermal: Inhalation:	//A Cal icer Adult 3.10E-05 9.26E-05	<b>Iculated Haza</b> <b>Non-Ca</b> Ingestion: Dermal: Inhalation:	rd/Risk ncer Child 3.31E-04 9.26E-05	Ca Ingestion: Dermal: Inhalation:	ncer
Analyte: CAS: Concentratior RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d: IUR (μg/m3)-1 Mutagen:	Toluen 108-88 n mg/kg : day): ay)-1:	Pe 3-3 2.07E+00 8.00E-02 5.00E+00 Y	on Non-Can Ingestion: Dermal: Inhalation: Total:	//A Cal icer Adult 3.10E-05 9.26E-05 1.24E-04 0.04%	Non-Ca Ingestion: Dermal: Inhalation: Total:	rd/Risk ncer Child 3.31E-04 9.26E-05 4.24E-04	Ca Ingestion: Dermal: Inhalation: Total:	0.00E+00

mg/kg	Non-Cancer Child	Cancer	
Recommended Acceptable Concentration	N/A	N/A	N/A

## Program: Voluntary Remediation Program (VRP)

Risk Based	Performance	<u>Criteria</u>

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04

# Soil

CAS:

## Analyte: Trimethylbenzene, 1,2,4-

CAS: 95-63-	6						
Concentration mg/kg :	1.47E+00		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Can	icer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	6.00E-02	Ingestion:	1.76E-04	Ingestion:	1.88E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	2.96E-03	Inhalation:	2.96E-03	Inhalation:	
Mutagen:		Total:	3.14E-03	Total:	4.84E-03	Total:	0.00E+00
VOC:	Y						
% Contribution to Media Hazard/Risk			1.04%		0.19%		0.00%
		mg/kg Non-Ca	ncer Adult	Non-Ca	ncer Child	Ca	ncer
Recommended Acceptal	ble Concentrati	on N	V/A	٨	I/A	N	I/A

### Analyte: Trimethylbenzene, 1,3,5-

4.00	<b>C- O</b>	
108-	67-8	

Concentration mg/kg :	4.37E-01		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	6.00E-02	Ingestion:	5.24E-05	Ingestion:	5.59E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	1.06E-03	Inhalation:	1.06E-03	Inhalation:	
Mutagen:		Total:	1.11E-03	Total:	1.62E-03	Total:	0.00E+00
VOC:	Y						
% Contribution to Media Hazard/Risk			0.37%		0.06%		0.00%
mg/kg Non-Ca			ncer Adult	Non-Car	ncer Child	Са	ncer
Recommended Acceptab	I/A	Ν	I/A	٨	I/A		

## Analyte: Vanadium and Compounds

CAS: 7440-62-2

Concentration mg/kg :	4.04E+01	Calculated Hazard/Risk					
RfDo (mg/kg-day):	5.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):	1.00E-04	Ingestion:	9.68E-03	Ingestion:	1.03E-01	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	2.85E-04	Inhalation:	2.85E-04	Inhalation:	
Mutagen:		Total:	9.96E-03	Total:	1.03E-01	Total:	0.00E+00
VOC:							
% Contribution to Media Hazard/Risk		3.31%		4.11%		0.00%	

Residential

## Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-04
, il		

# Soil

			mg/kg Non-Car	ncer Adult	Non-Car	ncer Child	Са	ncer
Recommend	ed Acceptab	le Concentratio	on N	V/A	N	/A	٨	I/A
Analyte:	Xylene	5						
CAS:	1330-2	0-7						
Concentratior	n mg/kg :	6.50E+00		Cal	lculated Haza	rd/Risk		
RfDo (mg/kg-o	day):	2.00E-01	Non-Can	ncer Adult		ncer Child	Ca	ncer
RfCi (mg/m3):		1.00E-01	Ingestion:	3.89E-05	Ingestion:	4.15E-04	Ingestion:	
SFO (mg/kg-d	ay)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1	:		Inhalation:	1.09E-02	Inhalation:	1.09E-02	Inhalation:	
Mutagen:			Total:	1.09E-02	Total:	1.13E-02	Total:	0.00E+00
VOC:		Y						
	% Contrib	ution to Media	a Hazard/Risk	3.62%		0.45%		0.00%
			mg/kg Non-Ca	ncer Adult	Non-Car	ncer Child	Са	ncer
Recommend	ed Acceptab	le Concentratio	on M	V/A	N	/A	٨	I/A
Analyte:	Zinc an	d Compoun	de					
CAS:	7440-6	-						
Concentratior		4.97E+01		0.1				
	· · · · · 6 ·					ual /Diala		
KIIJO (M9/KØ-0	dav).		Non Con		Iculated Haza	•	6	ncor
		3.00E-01		ncer Adult	Non-Ca	ncer Child		ncer
RfCi (mg/m3):			Ingestion:		Non-Can Ingestion:	•	Ingestion:	ncer
RfCi (mg/m3): SFO (mg/kg-d	ay)-1:		Ingestion: Dermal:	ncer Adult	Non-Car Ingestion: Dermal:	ncer Child	Ingestion: Dermal:	ncer
RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1	ay)-1:		Ingestion: Dermal: Inhalation:	ncer Adult 1.98E-04	Non-Can Ingestion: Dermal: Inhalation:	ncer Child 2.12E-03	Ingestion: Dermal: Inhalation:	
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1 Mutagen:	ay)-1:		Ingestion: Dermal:	ncer Adult	Non-Car Ingestion: Dermal:	ncer Child	Ingestion: Dermal:	ncer 0.00E+00
RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1	ay)-1: .:	3.00E-01	Ingestion: Dermal: Inhalation: <b>Total:</b>	ncer Adult 1.98E-04 <b>1.98E-04</b>	Non-Can Ingestion: Dermal: Inhalation:	2.12E-03	Ingestion: Dermal: Inhalation:	0.00E+00
RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1 Mutagen:	ay)-1: .:		Ingestion: Dermal: Inhalation: <b>Total:</b> a Hazard/Risk	ncer Adult 1.98E-04 <b>1.98E-04</b> 0.07%	Non-Can Ingestion: Dermal: Inhalation: Total:	ncer Child 2.12E-03 <b>2.12E-03</b> 0.08%	Ingestion: Dermal: Inhalation:	
RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1 Mutagen: VOC:	ay)-1: .: % Contrib	3.00E-01	Ingestion: Dermal: Inhalation: <b>Total:</b> a Hazard/Risk mg/kg Non-Cal	ncer Adult 1.98E-04 <b>1.98E-04</b> 0.07%	Non-Can Ingestion: Dermal: Inhalation: Total: Non-Can	2.12E-03	Ingestion: Dermal: Inhalation: <b>Total:</b> <i>Ca</i>	0.00E+00

## Total Calculated Hazard Index/Risk for Soil

Non-Cance	er Adult	Non-Cance	er Child	Cancer	
Ingestion:	2.26E-01	Ingestion:	2.41E+00	Ingestion:	1.63E-05
Dermal:	6.63E-03	Dermal:	3.97E-02	Dermal:	3.25E-06
Inhalation:	6.87E-02	Inhalation:	6.87E-02	Inhalation:	1.03E-06
Total:	3.01E-01	Total:	2.52E+00	Total:	2.06E-05

### Residential

#### Voluntary Remediation Program (VRP) Program:

Risk Based Performance Criteria

1.00E-06

Default Hazard Index

1

Default Risk for Individual Chemical Default Cumulative Risk (All Chemicals) 1.00E-04

THIS PAGE INTENTIONALLY LEFT BLANK Summary Report Follows

### Program: Voluntary Remediation Program (VRP)

Default Hazard Index 1 Risk Based Performance Criteria

Default Risk for Individual Chemical 1.00E-06 Default Cumulative Risk (All Chemicals) 1.00E-04

# **Report Summary**

Hazard/risk values of zero (0.00+00) are reflective of non-calculated values. Hazard/risk for zero value analytes must be evaluated outside of quantitative risk assessment.

## Hazard/Risk Summary for Soil

Analyte	CAS	Hazard Adult	Hazard Child	Risk
Acenaphthene	83-32-9	6.37E-06	5.74E-05	0.00E+00
Acenaphthylene	208-96-8	8.66E-06	7.81E-05	0.00E+00
Acetone	67-64-1	2.29E-06	2.44E-05	0.00E+00
Acetophenone	98-86-2	1.81E-06	1.93E-05	0.00E+00
Aluminum	7429-90-5	1.24E-02	1.19E-01	0.00E+00
Anthracene	120-12-7	1.57E-06	1.41E-05	0.00E+00
Antimony (metallic)	7440-36-0	4.03E-03	4.29E-02	0.00E+00
Arsenic, Inorganic	7440-38-2	2.60E-02	2.52E-01	1.30E-05
Barium	7440-39-3	5.38E-04	4.75E-03	0.00E+00
Benz[a]anthracene	56-55-3	0.00E+00	0.00E+00	4.26E-07
Benzene	71-43-2	4.66E-03	6.11E-03	4.32E-07
Benzo(g,h,i)perylene	191-24-2	1.53E-05	1.38E-04	0.00E+00
Benzo[a]pyrene	50-32-8	2.20E-03	1.89E-02	2.93E-06
Benzo[b]fluoranthene	205-99-2	0.00E+00	0.00E+00	5.79E-07
Benzo[k]fluoranthene	207-08-9	0.00E+00	0.00E+00	3.14E-08
Benzoic Acid	65-85-0	5.11E-07	4.75E-06	0.00E+00
Beryllium and compounds	7440-41-7	5.71E-04	5.79E-03	5.66E-10
Bis(2-ethylhexyl)phthalate	117-81-7	1.97E-05	1.83E-04	5.96E-09
Butylbenzene, n-	104-51-8	3.36E-06	3.58E-05	0.00E+00
Cadmium (Diet)	7440-43-9-Diet	4.69E-03	4.66E-02	1.57E-10
Carbazole	86-74-8	0.00E+00	0.00E+00	0.00E+00
Chromium(III), Insoluble Salts	16065-83-1	1.65E-04	1.76E-03	0.00E+00
Chrysene	218-01-9	0.00E+00	0.00E+00	6.02E-09
Cobalt	7440-48-4	4.27E-02	4.43E-01	2.44E-08
Copper	7440-50-8	4.64E-03	4.95E-02	0.00E+00
Cresol, o-	95-48-7	4.43E-06	4.11E-05	0.00E+00
Cresol, p-chloro-m-	59-50-7	2.03E-06	1.88E-05	0.00E+00
Cumene	98-82-8	6.69E-05	8.63E-05	0.00E+00
Cyanide (CN-)	57-12-5	2.02E-02	3.62E-02	0.00E+00
Dibenz[a,h]anthracene	53-70-3	0.00E+00	0.00E+00	1.72E-06
Dimethylphenol, 2,4-	105-67-9	1.70E-05	1.58E-04	0.00E+00
Ethylbenzene	100-41-4	6.60E-05	1.45E-04	5.91E-08

### Residential

## Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index
----------------------

1

Default Risk for Individual Chemical 1.00E-06 Default Cumulative Risk (All Chemicals) 1.00E-04

## Hazard/Risk Summary for Soil

Analyte	CAS	Hazard Adult	Hazard Child	Risk
Fluoranthene	206-44-0	4.15E-05	3.74E-04	0.00E+00
Fluorene	86-73-7	1.07E-05	9.62E-05	0.00E+00
Indeno[1,2,3-cd]pyrene	193-39-5	0.00E+00	0.00E+00	2.46E-07
Iron	7439-89-6	1.12E-01	1.20E+00	0.00E+00
isopropyltoluene	99-87-6	2.60E-05	3.75E-05	0.00E+00
Lead and Compounds	7439-92-1	0.00E+00	0.00E+00	0.00E+00
Manganese (Diet)	7439-96-5-Diet	1.17E-02	5.44E-02	0.00E+00
Mercury (elemental)	7439-97-6	4.67E-03	4.67E-03	0.00E+00
Methyl Ethyl Ketone (2-Butanone)	78-93-3	1.02E-05	2.12E-05	0.00E+00
Methylcyclohexane	108-87-2	0.00E+00	0.00E+00	0.00E+00
Methylene Chloride	75-09-2	6.41E-07	1.97E-06	1.21E-11
Methylnaphthalene, 1-	90-12-0	5.78E-05	5.21E-04	1.24E-07
Methylnaphthalene, 2-	91-57-6	1.63E-03	1.47E-02	0.00E+00
Naphthalene	91-20-3	1.43E-02	1.58E-02	1.02E-06
Nickel Soluble Salts	7440-02-0	7.52E-03	7.18E-02	7.55E-09
Phenanthrene	85-01-8	1.05E-04	9.46E-04	0.00E+00
Pyrene	129-00-0	5.43E-05	4.90E-04	0.00E+00
Toluene	108-88-3	1.24E-04	4.24E-04	0.00E+00
Trimethylbenzene, 1,2,4-	95-63-6	3.14E-03	4.84E-03	0.00E+00
Trimethylbenzene, 1,3,5-	108-67-8	1.11E-03	1.62E-03	0.00E+00
Vanadium and Compounds	7440-62-2	9.96E-03	1.03E-01	0.00E+00
Xylenes	1330-20-7	1.09E-02	1.13E-02	0.00E+00
Zinc and Compounds	7440-66-6	1.98E-04	2.12E-03	0.00E+00

## Total Hazard Index/Risk for All Media

Non-Car	ncer Adult	Non-Ca	ncer Child	Са	ncer
Ingestion:	2.26E-01	Ingestion:	2.41E+00	Ingestion:	1.63E-05
Dermal:	6.63E-03	Dermal:	3.97E-02	Dermal:	3.25E-06
Inhalation:	6.87E-02	Inhalation:	6.87E-02	Inhalation:	1.03E-06
Total:	3.01E-01	Total:	2.52E+00	Total:	2.06E-05
does not exceed hazard index		Exceeds H	lazard Index!	does not excee	d cumulative risk

### Residential

### Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index

Default Risk for Individual Chemical 1.00E-06 Default Cumulative Risk (All Chemicals) 1.00E-04

# **Residential Exposure Default Values**

Symbol	Description	Value	Units
AF0-02	Soil Adherence Factor - age segment 0-2	0.2	(mg/cm2)
AF02-06	Soil Adherence Factor - age segment 2-6	0.2	(mg/cm2)
AF06-16	Soil Adherence Factor - age segment 6-16	0.07	(mg/cm2)
AF16-26	Soil Adherence Factor - age segment 16-26	0.07	(mg/cm2)
AFres-a	Resident Soil Adherence Factor - adult	0.07	(mg/cm2)
AFres-c	Resident Soil Adherence Factor - child	0.2	(mg/cm2)
۹Tr	Resident Averaging Time	365	(days/yr)
ATres	Resident Averaging Time: 365 x LT	25550	(days)
ATres-a	Resident Averaging Time - adult: 365 x EDres	9490	(days)
ATres-c	Resident Averaging Time - child: 365 x EDres-c	2190	(days)
BW0-02	Body Weight - age segment 0-2	15	(kg)
BW02-06	Body Weight - age segment 2-6	15	(kg)
BW06-16	Body Weight - age segment 6-16	80	(kg)
BW16-26	Body Weight - age segment 16-26	80	(kg)
BWres-a	Resident Body Weight - adult	80	(kg)
BWres-c	Resident Body Weight - child	15	(kg)
DFSMres-adj	Resident Soil Mutagenic Dermal Contact Factor - age adjusted	428260	(mg/kg)
DFSres-adj	Resident Soil Dermal Contact Factor - age adjusted	103390	(mg/kg)
DFWMres-adj	Resident Groundwater Mutagenic Dermal Contact Factor - age adjusted	8191633.33333333	(cm2-event/kg)
DFWres-adj	Resident Groundwater Dermal Contact Factor - age adjusted	2610650	(cm2-event/kg)
ED0-02	Exposure Duration - age segment 0-2	2	(yrs)
ED02-06	Exposure Duration - age segment 2-6	4	(yrs)
ED06-16	Exposure Duration -age segment 6-16	10	(yrs)
ED16-26	Exposure Duration -age segment 16-26	10	(yrs)

## Residential

## Program: Voluntary Remediation Program (VRP)

### Risk Based Performance Criteria

Default Ha	azard Index Default Risk for Individual Chemical 1.00E-06	Default Cumulative Risl 1.00E-04	-
EDres	Resident Total Exposure Duration	26	(yrs)
EDres-a	Resident Exposure Duration - adult	20	(yrs)
EDres-c	Resident Exposure Duration - child	6	(yrs)
EFres	Resident Exposure Frequency	350	(days/yr)
EFres0-02	Resident Exposure Frequency - age segment 0-2	350	(days/yr)
EFres02-06	Resident Exposure Frequency - age segment 2-6	350	(days/yr)
EFres06-16	Resident Exposure Frequency - age segment 6-16	350	(days/yr)
EFres16-26	Resident Exposure Frequency - age segment 16-26	350	(days/yr)
EFres-a	Resident Exposure Frequency - adult	350	(days/yr)
EFres-c	Resident Exposure Frequency - child	350	(days/yr)
ETevent-res(0-02)	Resident Water Exposure Time - age segment 0-2	0.54	(hrs/event)
ETevent-res(02-06)	Resident Water Exposure Time - age segment 2-6	0.54	(hrs/event)
ETevent-res(06-16)	Resident Water Exposure Time - age segment 6-16	0.71	(hrs/event)
ETevent-res(16-26)	Resident Water Exposure Time - age segment 16-26	0.71	(hrs/event)
ETevent-res-a	Resident Groundwater Exposure Time -adult	0.71	(hrs/event)
ETevent-res-adj	Resident Water Exposure Time -age adjusted	0.670769230769231	(hrs/event)
ETevent-res-c	Resident Groundwater Exposure Time - child	0.54	(hrs/event)
ETevent-res-madj	Resident Water Exposure Time - mutagen age adjusted	0.670769230769231	(hrs/event)
ETrai	Resident Air Inhalation Exposure Time	24	(hrs/day)
ETres	Resident Soil Exposure Time	24	(hrs/day)
ETres0-02	Resident Exposure Time - age segment 0-2	24	(hrs/day)
ETres02-06	Resident Exposure Time - age segment 2-6	24	(hrs/day)
ETres06-16	Resident Exposure Time - age segment 6-16	24	(hrs/day)
ETres16-26	Resident Exposure Time - age segment 16-26	24	(hrs/day)
ETres-a	Resident Exposure Time - adult	24	(hrs/day)
ETres-c	Resident Exposure Time - child	24	(hrs/day)

### Residential

### Program: Voluntary Remediation Program (VRP)

#### Default Hazard Index Default Risk for Individual Chemical Default Cumulative Risk (All Chemicals) 1.00E-06 1.00E-04 1 ETres-gwi Resident Groundwater Inhalation Exposure Time 24 (hrs/day) Resident Groundwater Events - adult EVres-a 1 (events/day) Resident Groundwater Events - child EVres-c 1 (events/day) IFSMres-adj Resident Mutagenic Soil Ingestion Rate - age adjusted 166833.3333333333 (mg/kg) Resident Soil Ingestion Rate - age adjusted 36750 (mg/kg) IFSres-adj IFWMres-adj Resident Mutagenic Drinking Groundwater Ingestion Rate - age adjusted 1019.9 (L/kg) IFWres-adj Resident Drinking Groundwater Ingestion Rate - age adjusted 327.95 (L/kg) INHMres-ai-adj Resident Air Inhalation Exposure Duration Mutagen - age adjusted 604800 (hrs) INHMres-gw-adj 25200 Resident Groundwater Inhalation Exposure Duration Mutagen - age adjusted (days) INHMres-s-adj 25200 Resident Soil Inhalation Exposure Duration Mutagen - age adjusted (days) IREres-a Resident Food Eggs Ingestion Rate - Virginia DEQ 150000 (mg/day) IRFres-a Resident Food Fish/Shellfish Ingestion Rate - Exposure Defaults Handbook 54000 (mg/day) IRFVres-a Resident Food Fruit/Vegetables Ingestion Rate - Exposure Defaults Handbook 122000 (mg/day) IRMDres-a Resident Food Meat/Dairy - Virginia DEQ 280000 (mg/day) IRS0-02 Soil/Sediment Ingestion Rate - age segment 0-2 200 (mg/day) IRS02-06 Soil/Sediment Ingestion Rate - age segment 2-6 200 (mg/day) IRS06-16 Soil/Sediment Ingestion Rate - age segment 6-16 (mg/day) 100 IRS16-26 Soil/Sediment Ingestion Rate - age segment 16-26 100 (mg/day) IRSres-a Resident Soil Ingestion Rate - adult 100 (mg/day) Resident Soil Ingestion Rate - child 200 (mg/day) IRSres-c IRW0-02 Drinking Water Ingestion Rate - age segment 0-2 0.78 (L/day) IRW02-06 0.78 (L/day) Drinking Water Ingestion Rate - age segment 2-6 IRW06-16 Drinking Water Ingestion Rate - age segment 6-16 2.5 (L/day) IRW16-26 Drinking Water Ingestion Rate - age segment 16-26 2.5 (L/day) IRWres-a 2.5 (L/day) Resident Drinking Groundwater Ingestion Rate - adult IRWres-c 0.78 (L/day) Resident Drinking Groundwater Ingestion Rate - child

**Risk Based Performance Criteria** 

### Residential

## Program: Voluntary Remediation Program (VRP)

t Hazard Index 1	Default Risk for Individual Chemical 1.00E-06		e Risk (All Chemicals) 00E-04
Resident Soil Surfa	nce Area - adult	6032	(cm2/day)
Resident Water Su	ırface Area - adult	19652	(cm2)
Resident Water Su	ırface Area - child	6365	(cm2)
Resident Soil Surfa	ice Area - child	2373	(cm2/day)
Surface Area Soil/S	Sediment - age segment 0-2	2373	(cm2/day)
Surface Area Soil/S	Sediment - age segment 2-6	2373	(cm2/day)
Surface Area Soil/S	Sediment - age segment 6-16	6032	(cm2/day)
Surface Area Soil/Sediment - age segment 16-26		6032	(cm2/day)
Surface Area Wate	er - age segment 0-2	6365	(cm2)
Surface Area Wate	er - age segment 2-6	6365	(cm2)
Surface Area Wate	er - age segment 6- 16	19652	(cm2)
Surface Area Wate	er - age segment 16-26	19652	(cm2)
	1         Resident Soil Surfa         Resident Water Su         Resident Water Su         Resident Soil Surfa         Surface Area Soil/S         Surface Area Wate         Surface Area Wate         Surface Area Wate         Surface Area Wate	1       1.00E-06         Resident Soil Surface Area - adult         Resident Water Surface Area - adult         Resident Water Surface Area - child         Resident Soil Surface Area - child         Surface Area Soil/Sediment - age segment 0-2         Surface Area Soil/Sediment - age segment 2-6         Surface Area Soil/Sediment - age segment 6-16	11.00E-061.00EResident Soil Surface Area - adult6032Resident Water Surface Area - adult19652Resident Water Surface Area - child6365Resident Soil Surface Area - child2373Surface Area Soil/Sediment - age segment 0-22373Surface Area Soil/Sediment - age segment 2-62373Surface Area Soil/Sediment - age segment 6-166032Surface Area Soil/Sediment - age segment 16-266032Surface Area Water - age segment 0-26365Surface Area Water - age segment 2-66365Surface Area Water - age segment 2-66365

### **Risk Based Performance Criteria**

## END OF REPORT

ATTACHMENT 3-2 CONSTRUCTION WORKER

## Virginia Department of Environmental Quality



## Virginia Unified Risk Assessment Model

## **VERSION: 3.2.1**

## **Construction Worker Quantitative Risk Assessment Report**

Site Name: Alexandria

## Program: Voluntary Remediation Program

## Contact Depth to Groundwater: Direct Less than 15ft

By submitting this report to the Virginia DEQ, the user confirms that VURAM's default exposure parameters have not been altered, unless a complete unaltered VURAM analysis is provided and all modifications are detailed explicitly in an accompanying narrative or documentation that shows DEQ's prior concurrence with specific changes.

## Chemical Specific Notes displayed as applicable

Lead

VURAM does not perform an evaluation for lead exposure. Use other approved models for lead modeling.

## All Report Pages are Required for Risk Assessment Submission

Site Name:	Alexandria		Construction		
Program:	Voluntary Remediation	on Program			
-	-	Risk Based Performance Criteria			
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals		
	1	1.00E-06	1.00E-04		
Contact Depth to Groundwater: Direct Less than 15ft					

# Soil

Analyte:	Acenaphthene
CAS:	83-32-9

83-32-9

Concentration mg/kg:	2.06E-01			Calculated Hazard/Risk	
RfDo:	2.00E-01	Non-Ca	ancer Adult	c	Cancer
RfCi:		Ingestion:	1.52E-06	Ingestion:	
SFO:		Dermal:	6.32E-07	Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.15E-06	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.00%		0.00%

#### Analyte: Acenaphthylene

#### CAS: 208-96-8

Concentration mg/kg:	1.40E-01			Calculated Hazard/Risk	
RfDo:	3.00E-01	Non-Ca	ancer Adult	С	ancer
RfCi:		Ingestion:	6.87E-07	Ingestion:	
SFO:		Dermal:	2.87E-07	Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	9.74E-07	Total:	0.00E+00
VOC:	Y				
% Contribution to Media I	Risk		0.00%		0.00%

#### Analyte: Acetone

67-64-1 CAS:

Concentration mg/kg:	1.72E+00		Calculated Hazard/Risk		
RfDo:	1.00E+00	Non-Ca	ncer Adult	Cancer	
RfCi:	3.09E+01	Ingestion:	2.53E-06	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	5.24E-12	Inhalation:	
Mutagen:		Total:	2.53E-06	Total: 0.00	E <b>+00</b>
VOC:	Y				
% Contribution to Madia	Dick		0.00%	0.000/	

% Contribution to Media Risk

Site Name:	Alexandria		Construction
Program:	Voluntary Remediat	tion Program	
U U	•	<b>Risk Based Performance Criteria</b>	
De	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact	Depth to Groundwater: Direct Less than	15ft

# Soil

### Analyte: Acetophenone

CAS: 98-86-2

Concentration mg/kg:	1.51E-01		Calcula	ated Hazard/Risk
RfDo:	8.00E-01	Non-C	Cancer Adult	Cancer
RfCi:		Ingestion:	2.78E-07	Ingestion:
SFO:		Dermal:		Dermal:
IUR:		Inhalation:		Inhalation:
Mutagen:		Total:	2.78E-07	Total: 0.00E+00
VOC:	Y			
% Contribution to Media	Risk		0.00%	0.00%

#### Analyte: Aluminum

CAS:

7429-90-5

Concentration mg/kg:	9.23E+03			Calculated Hazard/Risk		
RfDo:	1.00E+00	Non-Ca	ncer Adult		Car	ncer
RfCi:	5.00E-03	Ingestion:	1.36E-02	Inge	stion:	
SFO:		Dermal:		Dern	nal:	
IUR:		Inhalation:	1.73E-04	Inha	lation:	
Mutagen:		Total:	1.38E-02	Tota	ı <b>l:</b>	0.00E+00
VOC:						
% Contribution to Media	Risk		5.66%		0	0.00%

#### Analyte: Anthracene

/ linary cer	/
CAS:	120-12-7

Concentration mg/kg:	2.53E-01			Calculated Hazard/Risk	
RfDo:	1.00E+00	Non-Ca	ncer Adult		Cancer
RfCi:	1.00E-02	Ingestion:	3.73E-07	Ingestion:	
SFO:		Dermal:	1.55E-07	Dermal:	
IUR:		Inhalation:	2.38E-09	Inhalation	:
Mutagen:		Total:	5.30E-07	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.00%		0.00%

% Contribution to Media Risk

Site Name:	Alexandria		Construction
Program:	Voluntary Remediatio	n Program	
-	-	Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

CAS:

### Analyte: Antimony (metallic)

CAS:	7440-36-0						
Concentration	mg/kg:	1.34E+00	Ţ		Calculated Hazard/Risk		
RfDo:		4.00E-04	Non-Ca	ncer Adult			Cancer
RfCi:		1.00E-03	Ingestion:	4.95E-03		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:	1.26E-07		Inhalation:	
Mutagen:			Total:	4.95E-03		Total:	0.00E+00
VOC:							
% Contributio	n to Media Ris	k		2.03%			0.00%

Analyte:	Arsenic,	Inorganic
----------	----------	-----------

7440-38-2

Concentration mg/kg:	8.80E+00			Calculated Hazard/Risk		
RfDo:	3.00E-04	Non-Ca	ncer Adult		С	ancer
RfCi:	1.50E-05	Ingestion:	2.59E-02		Ingestion:	2.66E-07
SFO:	1.50E+00	Dermal:	4.16E-03		Dermal:	2.56E-08
IUR:	4.30E-03	Inhalation:	5.51E-05		Inhalation:	4.87E-11
Mutagen:		Total:	3.01E-02		Total:	2.92E-07
VOC:						
% Contribution to Media	Risk		12.38%			90.91%

Analyte: Barium

CAS: 7440-39-3

Concentration mg/kg:	7.27E+01	Calculated Hazard/Risk			
RfDo:	2.00E-01	Non-Ca	Non-Cancer Adult		Cancer
RfCi:	5.00E-03	Ingestion:	5.36E-04	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	1.37E-06	Inhalation:	
Mutagen:		Total:	5.37E-04	Total:	0.00E+00
VOC:					
% Contribution to Media	Risk		0.22%		0.00%

% Contribution to Media Risk

Site Name:	Alexandria		Construction
Program:	Voluntary Remediatior	n Program	
-	-	Risk Based Performance Criteria	
C	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

### Analyte: Benz[a]anthracene 56-55-3

CAS:

Concentration mg/kg:	4.82E-01	Calculated Hazard/Risk				
RfDo:		Non-Cancer Adult		Cancer		
RfCi:		Ingestion:			Ingestion:	9.73E-10
SFO:	1.00E-01	Dermal:			Dermal:	4.05E-10
IUR:	6.00E-05	Inhalation:			Inhalation:	3.72E-14
Mutagen:	Y	Total:	0.00E+00		Total:	1.38E-09
VOC:	Y					
% Contribution to Media	Risk		0.00%			0.43%

### Analyte: Benzene CAS:

71-43-2

Concentration mg/kg:	5.00E-01			Calculated Hazard/Risk		
RfDo:	1.00E-02	Non-Ca	ncer Adult		C	Cancer
RfCi:	8.00E-02	Ingestion:	7.37E-05		Ingestion:	5.55E-10
SFO:	5.50E-02	Dermal:			Dermal:	
IUR:	7.80E-06	Inhalation:	5.87E-10		Inhalation:	5.02E-15
Mutagen:		Total:	7.37E-05		Total:	5.55E-10
VOC:	Y					
% Contribution to Media I	Risk		0.03%			0.17%

#### Analyte: Benzo(g,h,i)perylene

CAS: 191-24-2

Concentration mg/kg:	2.47E-01	Calculated Hazard/Risk			
RfDo:	3.00E-01	Non-Cancer Adult		C	ancer
RfCi:		Ingestion:	1.21E-06	Ingestion:	
SFO:		Dermal:	5.06E-07	Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.72E-06	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Rick		0.00%		0.00%

% Contribution to Media Risk

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	n Program	
		Risk Based Performance Criteria	
C	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
			_

# Soil

Analyte:	Benzo[a]pyrene
CAS:	50-32-8

50-32-8

Concentration mg/kg:	3.36E-01			Calculated Hazard/Risk		
RfDo:	3.00E-04	Non-Ca	ncer Adult		С	Cancer
RfCi:	2.00E-06	Ingestion:	1.65E-03		Ingestion:	6.78E-09
SFO:	1.00E+00	Dermal:	6.88E-04		Dermal:	2.83E-09
IUR:	6.00E-04	Inhalation:	1.58E-05		Inhalation:	2.60E-13
Mutagen:	Y	Total:	2.35E-03		Total:	9.61E-09
VOC:						
% Contribution to Media	Risk		0.97%			2.99%

#### Analyte: Benzo[b]fluoranthene

CAS: 205-99-2

Concentration mg/kg:	6.65E-01	Calculated Hazard/Risk				
RfDo:		Non-	Cancer Adult		C	ancer
RfCi:		Ingestion:			Ingestion:	1.34E-09
SFO:	1.00E-01	Dermal:			Dermal:	5.59E-10
IUR:	6.00E-05	Inhalation:			Inhalation:	5.14E-14
Mutagen:	Y	Total:	0.00E+00		Total:	1.90E-09
VOC:						
% Contribution to Media	Risk		0.00%			0.59%

#### Analyte: Benzo[k]fluoranthene

CAS: 207-08-9

Concentration mg/kg:	3.61E-01	Calculated Hazard/Risk			
RfDo:		Non-	-Cancer Adult	Са	ncer
RfCi:		Ingestion:		Ingestion:	7.29E-11
SFO:	1.00E-02	Dermal:		Dermal:	3.04E-11
IUR:	6.00E-06	Inhalation:		Inhalation:	2.79E-15
Mutagen:	Y	Total:	0.00E+00	Total:	1.03E-10
VOC:					
% Contribution to Madia	Diele		0.00%	(	0.00/

% Contribution to Media Risk

0.00%

0.03%

Site Name:	Alexandria		Construction			
Program:	Voluntary Remediatio	n Program Risk Based Performance Criteria				
[	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals			
	1	1.00E-06	1.00E-04			
Contact Depth to Groundwater: Direct Loss than 15ft						

# Soil

CAS:

Analyte:	Benzoic Acid
CAS:	65-85-0

Concentration mg/kg:	1.20E+00			Calculated Hazard/Risk	
RfDo:	4.00E+00	Non-Ca	ncer Adult		Cancer
RfCi:	2.00E-03	Ingestion:	4.42E-07	Ingestion:	
SFO:		Dermal:	1.42E-07	Dermal:	
IUR:		Inhalation:	5.64E-08	Inhalation:	
Mutagen:		Total:	6.40E-07	Total:	0.00E+00
VOC:					
% Contribution to Media	Risk		0.00%		0.00%

## Analyte: Beryllium and compounds

7440-41-7

Concentration mg/kg:	9.00E-01			Calculated Hazard/Risk		
RfDo:	5.00E-03	Non-Ca	ncer Adult		Car	ncer
RfCi:	2.00E-05	Ingestion:	2.65E-04	Inge	estion:	
SFO:		Dermal:		Der	mal:	
IUR:	2.40E-03	Inhalation:	4.23E-06	Inha	alation:	2.78E-12
Mutagen:		Total:	2.69E-04	Tot	al:	2.78E-12
VOC:						
% Contribution to Media	Risk		0.11%		0	.00%

## Analyte: Bis(2-ethylhexyl)phthalate

CAS:	117-81-7						
Concentra	tion mg/kg:	2.31E-01			Calculated Hazard/Risk		
RfDo:		2.00E-02	Non-Ca	ncer Adult		С	Cancer
RfCi:		1.17E-01	Ingestion:	1.70E-05		Ingestion:	6.53E-11
SFO:		1.40E-02	Dermal:	5.46E-06		Dermal:	2.09E-11
IUR:		2.40E-06	Inhalation:	1.86E-10		Inhalation:	7.14E-16
Mutagen:			Total:	2.25E-05		Total:	8.62E-11
VOC:							
% Contribu	ution to Media Ri	sk		0.01%			0.03%

Site Name: Alexandria		Construction
Program: Voluntary Remediati	on Program	
<b>C</b> .	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04
Contact I	Depth to Groundwater: Direct Less than	15ft

# Soil

Γ

Analyte:	Butylbenzene, n-
CAS:	104-51-8

104-51-8

Concentration mg/kg:	1.40E-01	Calculated Hazard/Risk			
RfDo:	1.00E-01	Non-Ca	ancer Adult	Cancer	
RfCi:		Ingestion:	2.06E-06	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.06E-06	Total: 0.00E+00	
VOC:	Y				
% Contribution to Media	Risk		0.00%	0.00%	

Analyte:	Cadmium (Diet)
CAS:	7440-43-9-Diet

7440-43-9-Diet	
----------------	--

٦

Concentration mg/kg:	3.33E-01			Calculated Hazard/Risk		
RfDo:	5.00E-04	Non-Ca	ncer Adult		Ca	ancer
RfCi:	1.00E-05	Ingestion:	9.81E-04		Ingestion:	
SFO:		Dermal:	1.26E-04		Dermal:	
IUR:	1.80E-03	Inhalation:	3.13E-06		Inhalation:	7.72E-13
Mutagen:		Total:	1.11E-03		Total:	7.72E-13
VOC:						
% Contribution to Media I	Risk		0.46%			0.00%

#### Analyte: Carbazole

,, ,	
CAS:	86-74-8

Concentration mg/kg:	2.42E-01	Calculated Hazard/Risk				
RfDo:		Non-Cancer Adult			Cancer	
RfCi:		Ingestion:			Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	0.00E+00		Total:	0.00E+00
VOC:						
% Contribution to Media R	Risk		0.00%			0.00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	n Program	
		Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

#### Analyte: Chromium(III), Insoluble Salts

CAS:	16065-83-1	L					
Concentration	mg/kg:	2.06E+02			Calculated Hazard/Risk		
RfDo:		1.50E+00	Non-Ca	ncer Adult			Cancer
RfCi:		5.00E-03	Ingestion:	2.02E-04		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:	3.87E-06		Inhalation:	
Mutagen:			Total:	2.06E-04		Total:	0.00E+00
VOC:							
% Contributior	n to Media Ris	k		0.08%			0.00%

Analyte:	Chrysene						
CAS:	218-01-9		т				
Concentratio	on mg/kg:	6.91E-01			Calculated Hazard/Risk		
RfDo:		1.50E+00	Non-Ca	ncer Adult		С	ancer
RfCi:		5.00E-03	Ingestion:	6.79E-07		Ingestion:	1.39E-11
SFO:		1.00E-03	Dermal:	2.83E-07		Dermal:	5.81E-12
IUR:		6.00E-07	Inhalation:	1.30E-08		Inhalation:	5.34E-16
Mutagen:		Y	Total:	9.75E-07		Total:	1.98E-11
VOC:							
% Contributi	on to Media Ris	sk		0.00%			0.01%

0.00%

#### Analyte: Cobalt

```
CAS:
 7440-48-4
```

Concentration mg/kg:	1.04E+01	Calculated Hazard/Risk				
RfDo:	3.00E-03	Non-Ca	ncer Adult		(	Cancer
RfCi:	2.00E-05	Ingestion:	5.09E-03	I	ngestion:	
SFO:		Dermal:		[	Dermal:	
IUR:	9.00E-03	Inhalation:	4.87E-05	I	nhalation:	1.20E-10
Mutagen:		Total:	5.14E-03	I	Fotal:	1.20E-10
VOC:						
% Contribution to Media	Rick		7 11%			0.04%

% Contribution to Media Risk

0.04%

Site Name: Program:	Alexandria Voluntary Remediatio		Construction	
		<u>Risk Based Performance Criteria</u>		
I	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals	
	1	1.00E-06	1.00E-04	
	Contact Depth to Groundwater: Direct Less than 15ft			
Soil				

Analyte: Copper CAS:

7440-50-8

Concentration mg/kg:	1.55E+02	Calculated Hazard/Risk			
RfDo:	1.00E-02	Non-C	ancer Adult	C	ancer
RfCi:		Ingestion:	2.28E-02	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.28E-02	Total:	0.00E+00
VOC:					
% Contribution to Media	Risk		9.38%		0.00%

### Analyte: Cresol, o-CAS:

95-48-7

Concentration mg/kg:	1.30E-01	Calculated Hazard/Risk			
RfDo:	2.00E-01	Non-Ca	ncer Adult		Cancer
RfCi:	6.00E-01	Ingestion:	9.58E-07	Ingestio	n:
SFO:		Dermal:	3.07E-07	Dermal:	
IUR:		Inhalation:	2.04E-11	Inhalatio	on:
Mutagen:		Total:	1.26E-06	Total:	0.00E+00
VOC:					
% Contribution to Media Risk		(	0.00%		0.00%

### Analyte: Cresol, p-chloro-m-

CAS: 59-50-7

Concentration mg/kg:	1.19E-01	Calculated Hazard/Risk				
RfDo:	1.00E-01	Non-Ca	Non-Cancer Adult		Cancer	
RfCi:		Ingestion:	1.75E-06	Inge	estion:	
SFO:		Dermal:	5.62E-07	Dern	nal:	
IUR:		Inhalation:		Inha	lation:	
Mutagen:		Total:	2.32E-06	Tota	al:	0.00E+00
VOC:						
% Contribution to Media I	Risk		0.00%		0	0.00%

Site Name:	Alexandria		Construction	
Program:	Voluntary Remediati	on Program		
-		<b>Risk Based Performance Criteria</b>		
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals	
	1	1.00E-06	1.00E-04	
Contact Depth to Groundwater: Direct Less than 15ft				

# Soil

Analyte:	Cumene
CAS:	98-82-8

		Т			
Concentration mg/kg:	1.68E-01		Calo	culated Hazard/Risk	
RfDo:	4.00E-01	Non-Ca	ncer Adult	c	ancer
RfCi:	9.00E-02	Ingestion:	6.19E-07	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	1.75E-10	Inhalation:	
Mutagen:		Total:	6.19E-07	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.00%		0.00%

## Analyte: Cyanide (CN-)

CAS:	57-12-5
CAJ.	J/-12-J

Concentration mg/kg:	8.26E-01	Calculated Hazard/Risk			
RfDo:	2.00E-02	Non-Ca	ncer Adult		Cancer
RfCi:	8.00E-04	Ingestion:	6.08E-05	Ingestion	ו:
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	5.85E-04	Inhalatio	on:
Mutagen:		Total:	6.46E-04	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.27%		0.00%

## Analyte: Dibenz[a,h]anthracene

CAS: 53-70-3

Concentration mg/kg:	1.98E-01	Calculated Hazard/Risk				
RfDo:		Non-Cancer Adult		Cancer		
RfCi:		Ingestion:			Ingestion:	4.00E-09
SFO:	1.00E+00	Dermal:			Dermal:	1.67E-09
IUR:	6.00E-04	Inhalation:			Inhalation:	1.53E-13
Mutagen:	Y	Total:	0.00E+00		Total:	5.66E-09
VOC:						
% Contribution to Media Risk			0.00%			1.76%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation		
		Risk Based Performance Criteria	
C	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

CAS:

## Analyte: Dimethylphenol, 2,4-

CAS: 105-67-9 Concentration mg/kg: 2.00E-01 **Calculated Hazard/Risk** RfDo: 5.00E-02 Non-Cancer Adult Cancer RfCi: Ingestion: 5.89E-06 Ingestion: SFO: Dermal: 1.89E-06 Dermal: IUR: Inhalation: Inhalation: Mutagen: Total: 7.78E-06 Total: 0.00E+00 VOC: % Contribution to Media Risk 0.00% 0.00%

## Analyte: Ethylbenzene

100-41-4

Concentration mg/kg:	3.42E-01			Calculated Hazard/Risk		
RfDo:	5.00E-02	Non-Ca	ncer Adult		C	Cancer
RfCi:	9.00E+00	Ingestion:	1.01E-05		Ingestion:	7.59E-11
SFO:	1.10E-02	Dermal:			Dermal:	
IUR:	2.50E-06	Inhalation:	3.57E-12		Inhalation:	1.10E-15
Mutagen:		Total:	1.01E-05		Total:	7.59E-11
VOC:	Y					
% Contribution to Media	Risk		0.00%			0.02%

### Analyte: Fluoranthene

CAS:	206-44-0						
Concentrat	ion mg/kg:	8.95E-01			Calculated Hazard/Risk		
RfDo:		1.00E-01	Non-Ca	ncer Adult			Cancer
RfCi:			Ingestion:	1.32E-05		Ingestion:	
SFO:			Dermal:	5.50E-06		Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	1.87E-05		Total:	0.00E+00
VOC:							
0/ Contribu	tion to Modia Di		_	0.010/			0.000/

% Contribution to Media Risk

0.01%

Site Name:	Alexandria		Construction			
Program:	Voluntary Remedia	tion Program				
U U	•	<b>Risk Based Performance Criteria</b>				
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals			
	1	1.00E-06	1.00E-04			
Contact Depth to Groundwater: Direct Less than 15ft						

# Soil

CAS:

Analyte: Fluorene CAS:

86-73-7

Concentration mg/kg:	2.30E-01			Calculated Hazard/Risk	
RfDo:	4.00E-01	Non-Ca	Non-Cancer Adult		Cancer
RfCi:		Ingestion:	8.47E-07	Ingestion:	
SFO:		Dermal:	3.53E-07	Dermal:	
IUR:		Inhalation:		Inhalation	:
Mutagen:		Total:	1.20E-06	Total:	0.00E+00
VOC:	Y				
% Contribution to Media Risk			0.00%		0.00%

Analyte: Indeno[1,2,3-cd]py
-----------------------------

	_	-	_	-	
1	a	3-	2	<b>a</b> _	5
-	_	J-	-	J-	-

Concentration mg/kg:	2.82E-01			Calculated Hazard/Risk		
RfDo:	4.00E-01	Non-Ca	ncer Adult		С	ancer
RfCi:		Ingestion:	1.04E-06		Ingestion:	5.69E-10
SFO:	1.00E-01	Dermal:	4.33E-07		Dermal:	2.37E-10
IUR:	6.00E-05	Inhalation:			Inhalation:	2.18E-14
Mutagen:	Y	Total:	1.47E-06		Total:	8.06E-10
VOC:						
% Contribution to Media	Risk		0.00%			0.25%

#### Analyte: Iron

CAS: 7439-89-6

Concentration mg/kg:	6.57E+04	Calculated Hazard/Risk				
RfDo:	7.00E-01	Non-Cancer Adult			Cancer	
RfCi:		Ingestion:	1.38E-01	Ingest	tion:	
SFO:		Dermal:		Derm	al:	
IUR:		Inhalation:		Inhala	ation:	
Mutagen:		Total:	1.38E-01	Total:	:	0.00E+00
VOC:						
% Contribution to Media Risk		56.81%			0.00%	

Site Name:	Alexandria		Construction			
Program:	Voluntary Remediat	tion Program				
U U	•	<b>Risk Based Performance Criteria</b>				
De	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals			
	1	1.00E-06	1.00E-04			
Contact Depth to Groundwater: Direct Less than 15ft						

# Soil

Analyte:	isopropyltoluene
CAS:	99-87-6

CAS:

Concentration mg/kg:	9.93E-02			Calculated Hazard/Risk	
RfDo:	4.00E-01	Non-Ca	ncer Adult		Cancer
RfCi:	9.00E-02	Ingestion:	3.66E-07	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	5.05E-06	Inhalation:	
Mutagen:		Total:	5.42E-06	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.00%		0.00%

#### Analyte: Lead and Compounds

CAS: 7439-92-1

Concentration mg/kg:	2.05E+01	Calculated Hazard/Risk					
RfDo:		Non	Non-Cancer Adult			Cancer	
RfCi:		Ingestion:			Ingestion:		
SFO:		Dermal:			Dermal:		
IUR:		Inhalation:			Inhalation:		
Mutagen:		Total:	0.00E+00		Total:	0.00E+00	
VOC:							
% Contribution to Media Ri	isk		0.00%			0.00%	

#### Analyte: Manganese (Diet) CAS: 7439-96-5-Diet

		-			
Concentration mg/kg:	5.16E+02			Calculated Hazard/Risk	
RfDo:	1.40E-01	Non-Ca	ncer Adult		Cancer
RfCi:	5.00E-05	Ingestion:	5.43E-03	Ingestion	n:
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	9.71E-04	Inhalatic	on:
Mutagen:		Total:	6.40E-03	Total:	0.00E+00
VOC:					
% Contribution to Media	Risk		2.63%		0.00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediatio	<b>U</b>	
		<u>Risk Based Performance Criteria</u>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact D	onth to Groundwator: Direct Loss than	1 C f+

# Soil

CAS:

#### Analyte: Mercury (elemental)

CAS: 7439-97-6

Concentration mg/kg:	5.07E-02			Calculated Hazard/Risk		
RfDo:		Non-Ca	ncer Adult		Cano	er
RfCi:	3.00E-04	Ingestion:		Ingest	ion:	
SFO:		Dermal:		Derma	əl:	
IUR:		Inhalation:	1.25E-04	Inhala	tion:	
Mutagen:		Total:	1.25E-04	Total:		0.00E+00
VOC:	Y					
% Contribution to Media	Risk		0.05%		0.0	00%

#### Analyte: Methyl Ethyl Ketone (2-Butanone)

78-93-3

Concentration mg/kg:	5.73E-01			Calculated Hazard/Risk	
RfDo:	2.00E+00	Non-Ca	ncer Adult	C	Cancer
RfCi:	1.00E+00	Ingestion:	4.22E-07	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	5.39E-11	Inhalation:	
Mutagen:		Total:	4.22E-07	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.00%		0.00%

#### Analyte: Methylcyclohexane

CAS: 108-87-2

Concentration mg/kg:	7.39E+00	Calculated Hazard/Risk					
RfDo:		Non-	Non-Cancer Adult			Cancer	
RfCi:		Ingestion:			Ingestion:		
SFO:		Dermal:	Dermal:		Dermal:		
IUR:		Inhalation:			Inhalation:		
Mutagen:		Total:	0.00E+00		Total:	0.00E+00	
VOC:							
% Contribution to Media Ri	ck		0.00%			0.00%	

% Contribution to Media Risk

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	on Program	
		Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

#### Analyte: **Methylene Chloride**

CAS:	75-09-2						
Concentratio	on mg/kg:	6.90E-04			Calculated Hazard/Risk		
RfDo:		6.00E-02	Non-Ca	ncer Adult		C	Cancer
RfCi:		1.04E+00	Ingestion:	1.69E-08		Ingestion:	2.78E-14
SFO:		2.00E-03	Dermal:			Dermal:	
IUR:		1.00E-08	Inhalation:	6.22E-14		Inhalation:	8.88E-21
Mutagen:		Y	Total:	1.69E-08		Total:	2.78E-14
VOC:		Y					
% Contributi	on to Media Ri	isk		0.00%			0.00%

#### Analyte: Methylnaphthalene, 1-

CAS:	90-12-0						
Concentrat	ion mg/kg:	2.18E+00			Calculated Hazard/Risk		
RfDo:		7.00E-02	Non-Ca	ncer Adult		C	Cancer
RfCi:		1.04E+00	Ingestion:	4.59E-05		Ingestion:	1.28E-09
SFO:		2.90E-02	Dermal:	1.91E-05		Dermal:	5.32E-10
IUR:			Inhalation:	1.97E-10		Inhalation:	
Mutagen:			Total:	6.50E-05		Total:	1.81E-09
VOC:		Y					
% Contribu	tion to Media R	isk		0.03%			0.56%

#### Analyte: Methylnaphthalene, 2-

CAS:	91-57-6

Concentration mg/kg:	3.51E+00	Calculated Hazard/Risk				
RfDo:	4.00E-03	Non-Cancer Adult Cancer				
RfCi:		Ingestion:	1.29E-03	Ingestion:		
SFO:		Dermal:	5.39E-04	Dermal:		
IUR:		Inhalation:		Inhalation:		
Mutagen:		Total:	1.83E-03	Total: 0.00E+00		
VOC:	Y					
% Contribution to Media	Risk		0 75%	0.00%		

% Contribution to Media Risk

0.75%

Site Name: Program:	Alexandria Voluntary Remediation	Program	Construction
	· · · · · · · · · · · · · · · · · · ·	Risk Based Performance Criteria	
[	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

CAS:

Analyte:	Naphthalene
CAS:	91-20-3

Concentration mg/kg:	2.05E+00			Calculated Hazard/Risk	C	
RfDo:	6.00E-01	Non-Ca	ncer Adult		Ca	ancer
RfCi:	3.00E-03	Ingestion:	5.02E-06		Ingestion:	4.95E-09
SFO:	1.20E-01	Dermal:	2.09E-06		Dermal:	2.07E-09
IUR:	3.40E-05	Inhalation:	6.41E-08		Inhalation:	8.96E-14
Mutagen:		Total:	7.18E-06		Total:	7.02E-09
VOC:	Y					
% Contribution to Media	Risk		0.00%			2.19%

7440-02-0

Concentration mg/kg:	1.11E+02	Calculated Hazard/Risk				
RfDo:	2.00E-02	Non-Ca	Non-Cancer Adult C			Cancer
RfCi:	2.00E-04	Ingestion:	8.17E-03		Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:	2.60E-04	Inhalation:	5.21E-05		Inhalation:	3.71E-11
Mutagen:		Total:	8.22E-03		Total:	3.71E-11
VOC:						
% Contribution to Media Risk			3.38%			0.01%

#### Analyte: Phenanthrene

CAS:	85-01-8

Concentration mg/kg:	1.70E+00	Calculated Hazard/Risk				
RfDo:	3.00E-01	Non-Cancer Adult Cancer				
RfCi:		Ingestion:	8.33E-06	Ingestion:		
SFO:		Dermal:	3.47E-06	Dermal:		
IUR:		Inhalation:		Inhalation:		
Mutagen:		Total:	1.18E-05	Total: 0.00E+00		
VOC:	Y					
% Contribution to Media	Rick		0.00%	0.00%		

% Contribution to Media Risk

0.00%

Site Name:	Alexandria		Construction
Program:	<b>Voluntary Remediat</b>	ion Program	
U	•	<b>Risk Based Performance Criteria</b>	
De	fault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact I	Depth to Groundwater: Direct Less than	15ft

# Soil

Analyte: Pyrene CAS:

129-00-0

	0 705 04						
Concentration mg/kg:	8.78E-01		Calculated Hazard/Risk				
RfDo:	3.00E-01	Non-Ca	ancer Adult	Cancer			
RfCi:		Ingestion:	4.31E-06	Ingestion:			
SFO:		Dermal:	1.80E-06	Dermal:			
IUR:		Inhalation:		Inhalation:			
Mutagen:		Total:	6.11E-06	Total: 0.00E+00			
VOC:	Y						
% Contribution to Media Risk			0.00%	0.00%			

### Analyte: Toluene CAS:

108-88-3

Concentration mg/kg:	2.07E+00	Calculated Hazard/Risk				
RfDo:	8.00E-01	Non-Ca	ncer Adult		Cancer	
RfCi:	5.00E+00	Ingestion:	3.81E-06	Ingestion	:	
SFO:		Dermal:		Dermal:		
IUR:		Inhalation:	3.89E-11	Inhalatior	n:	
Mutagen:		Total:	3.81E-06	Total:	0.00E+00	
VOC:	Y					
% Contribution to Media Risk			0.00%		0.00%	

#### Analyte: Trimethylbenzene, 1,2,4-

CAS: 95-63-6

Concentration mg/kg:	1.47E+00	Calculated Hazard/Risk				
RfDo:	4.00E-02	Non-Ca	Non-Cancer Adult Cancer			
RfCi:	2.00E-01	Ingestion:	5.40E-05	Ingestion:		
SFO:		Dermal:		Dermal:		
IUR:		Inhalation:	6.89E-10	Inhalation	:	
Mutagen:		Total:	5.40E-05	Total:	0.00E+00	
VOC:	Y					
% Contribution to Media Risk			0.02%		0.00%	

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation		
		<u>Risk Based Performance Criteria</u>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Soil

CAS:

## Analyte: Trimethylbenzene, 1,3,5-

CAS: 108-67-8 Concentration mg/kg: 4.37E-01 **Calculated Hazard/Risk** RfDo: 4.00E-02 Non-Cancer Adult Cancer RfCi: 2.00E-01 Ingestion: 1.61E-05 Ingestion: SFO: Dermal: Dermal: IUR: Inhalation: 2.05E-10 Inhalation: Mutagen: Total: 1.61E-05 Total: 0.00E+00 VOC: Y % Contribution to Media Risk 0.01% 0.00%

### Analyte: Vanadium and Compounds

Concentration mg/kg:	4.04E+01	Calculated Hazard/Risk				
RfDo:	1.00E-02	Non-Ca	Non-Cancer Adult		Cancer	
RfCi:	1.00E-04	Ingestion:	5.95E-03	Ingestion	:	
SFO:		Dermal:		Dermal:		
IUR:		Inhalation:	3.79E-05	Inhalatior	ı:	
Mutagen:		Total:	5.98E-03	Total:	0.00E+00	
VOC:						
% Contribution to Media Risk			2.46%		0.00%	

## Analyte: Xylenes

CAS: 1330-20-7

Concentration mg/kg:	6.50E+00	Calculated Hazard/Risk				
RfDo:	4.00E-01	Non-Ca	ncer Adult		Cano	cer
RfCi:	4.00E-01	Ingestion:	2.39E-05	Ingest	ion:	
SFO:		Dermal:		Derma	al:	
IUR:		Inhalation:	1.53E-09	Inhala	tion:	
Mutagen:		Total:	2.39E-05	Total:		0.00E+00
VOC:	Y					
% Contribution to Media Risk			0.01%		0.0	00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation		
U	·	Risk Based Performance Criteria	
Default Hazard Index		Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1		1.00E-06	1.00E-04
	Contact D	epth to Groundwater: Direct Less than	15ft

# Soil

## Analyte: Zinc and Compounds

CAS: 7440-66-6

Concentration mg/kg:	4.97E+01	Calculated Hazard/Risk			
RfDo:	3.00E-01	Non-Ca	ncer Adult		Cancer
RfCi:	7.67E-02	Ingestion:	2.44E-04	Ingestion	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	6.09E-08	Inhalatior	1:
Mutagen:		Total:	2.44E-04	Total:	0.00E+00
VOC:					
% Contribution to Media Risk			0.10%		0.00%

# Total Calculated Hazard Index/Risk for Soil

Non-Canc	er Adult	Canc
Ingestion:	2.36E-01	Ingestion:
Dermal:	5.55E-03	Dermal:
Inhalation:	2.08E-03	Inhalation:
Total:	2.43E-01	Total:

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation		
-	-	<b>Risk Based Performance Criteria</b>	
Default Hazard Index		Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1		1.00E-06	1.00E-04
	Contact D	epth to Groundwater: Direct Less than	15ft

# Groundwater

Acenaphthene

Analyte:

CAS:	83-32-9						
Concentrat	tion µg/L :	5.18E-01			Calculated Hazard/Risk		
RfDo:		2.00E-01	Non-Ca	ancer Adult			Cancer
RfCi:			Ingestion:	2.31E-07		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	2.31E-07		Total:	0.00E+00
VOC:		Y					
% Contribu	ition to Media R	isk		0.00%			0.00%

#### CAS: 208-96-8

Concentration $\mu$ g/L :	1.50E-01	Calculated Hazard/Risk				
RfDo:	3.00E-01	Non-Ca	ancer Adult	Ca	Cancer	
RfCi:		Ingestion:	4.48E-08	Ingestion:		
SFO:		Dermal:	4.11E-06	Dermal:		
IUR:		Inhalation:		Inhalation:		
Mutagen:		Total:	4.16E-06	Total:	0.00E+00	
VOC:	Y					
% Contribution to Media Risk			0.00%		0.00%	

#### Analyte: Acetone

CAS: 67-64-1

Concentration $\mu$ g/L :	6.62E+00	Calculated Hazard/Risk				
RfDo:	1.00E+00	Non-Ca	ancer Adult	Cancer		
RfCi:	3.09E+01	Ingestion:	5.91E-07	Ingestion:		
SFO:		Dermal:		Dermal:		
IUR:		Inhalation:		Inhalation:		
Mutagen:		Total:	5.91E-07	Total: 0.00E+00		
VOC:	Y					
% Contribution to Media	Rick		0.00%	0.00%		

% Contribution to Media Risk

0.00%

Site Name:	Alexandria		Construction			
Program:	am: Voluntary Remediation Program <u>Risk Based Performance Criteria</u>					
Default Hazard Index		Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals			
	1	1.00E-06	1.00E-04			
Contact Depth to Groundwater: Direct Less than 15ft						
Group	adwatar					

## Groundwater Analyte:

Aluminum

CAS:	7429-90-5		_				
Concentration	ημg/L :	2.53E+03			Calculated Hazard/Risk		
RfDo:		1.00E+00	Non-Ca	ncer Adult			Cancer
RfCi:		5.00E-03	Ingestion:	2.26E-04		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	2.26E-04		Total:	0.00E+00
VOC:							
% Contributio	n to Media Ris	k		0.03%			0.00%

CAS:

120-12-7

Concentration $\mu$ g/L :	9.93E-02			Calculated Hazard/Risk	
RfDo:	1.00E+00	Non-Ca	ancer Adult		Cancer
RfCi:	1.00E-02	Ingestion:	8.87E-09	Ingest	ion:
SFO:		Dermal:		Derma	al:
IUR:		Inhalation:		Inhala	ition:
Mutagen:		Total:	8.87E-09	Total:	0.00E+00
VOC:	Y				
% Contribution to Media R	isk		0.00%		0.00%

### Analyte: Antimony (metallic) CAS: 7440-36-0

		_				
Concentration µg/L :	5.50E-01			Calculated Hazard/Risk		
RfDo:	4.00E-04	Non-Ca	ncer Adult		(	Cancer
RfCi:	1.00E-03	Ingestion:	1.23E-04		Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	1.23E-04		Total:	0.00E+00
VOC:						
% Contribution to Media Ris	sk		0.02%			0.00%

Wednesday, December 6, 2023

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	on Program	
U U	•	Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact D	epth to Groundwater: Direct Less than	15ft

# Groundwater

Analyte: CAS:	Arsenic, In 7440-38-2	•					
Concentratio	nμg/L :	5.50E+00			Calculated Hazard/Risk		
RfDo:		3.00E-04	Non-Ca	ncer Adult		С	Cancer
RfCi:		1.50E-05	Ingestion:	1.64E-03		Ingestion:	1.01E-08
SFO:		1.50E+00	Dermal:			Dermal:	
IUR:		4.30E-03	Inhalation:			Inhalation:	
Mutagen:			Total:	1.64E-03		Total:	1.01E-08
VOC:							
% Contributio	on to Media Ris	sk		0.22%			0.52%

### Analyte: Barium CAS:

7440-39-3

Concentration $\mu$ g/L :	1.06E+02			Calculated Hazard/Risk		
RfDo:	2.00E-01	Non-Ca	ncer Adult			Cancer
RfCi:	5.00E-03	Ingestion:	4.73E-05		Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	4.73E-05		Total:	0.00E+00
VOC:						
% Contribution to Media R	isk		0.01%			0.00%

### Analyte: Benz[a]anthracene CAS:

CAS:	56-55-3						
Concentra	tion µg/L :	7.93E-02			Calculated Hazard/Risk		
RfDo:			Non-0	Cancer Adult		Ca	ancer
RfCi:			Ingestion:			Ingestion:	9.70E-12
SFO:		1.00E-01	Dermal:			Dermal:	
IUR:		6.00E-05	Inhalation:			Inhalation:	4.05E-09
Mutagen:		Y	Total:	0.00E+00		Total:	4.06E-09
VOC:		Y					
				0.000/			0.040/

% Contribution to Media Risk

0.00%

0.21%

Site Name:	Alexandria		Construction		
Program:	Voluntary Remediation	on Program			
-	-	<b>Risk Based Performance Criteria</b>			
Default Hazard Index		Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals		
	1	1.00E-06	1.00E-04		
Contact Depth to Groundwater: Direct Less than 15ft					

# Groundwater

Benzene

Analyte:

CAS:

CAS:	71-43-2						
Concentration	ημg/L :	1.16E+00			Calculated Hazard/Risk		
RfDo:		1.00E-02	Non-Ca	ncer Adult		C	Cancer
RfCi:		8.00E-02	Ingestion:	1.04E-05		Ingestion:	7.80E-11
SFO:		5.50E-02	Dermal:			Dermal:	
IUR:		7.80E-06	Inhalation:	8.06E-03		Inhalation:	6.89E-08
Mutagen:			Total:	8.07E-03		Total:	6.90E-08
VOC:		Y					
% Contributio	on to Media Ris	ik		1.07%			3.53%

Analyte:	Benzo(g,h,i)perylene
----------	----------------------

1	g	1.	-2	Δ_	2
-	_	- <b>L</b>	- 6	-	~

Concentration $\mu$ g/L :	1.10E-01			Calculated Hazard/Risk	
RfDo:	3.00E-01	Non-Ca	ncer Adult		Cancer
RfCi:		Ingestion:	3.27E-08	Ingestio	n:
SFO:		Dermal:	4.25E-05	Dermal:	:
IUR:		Inhalation:		Inhalati	on:
Mutagen:		Total:	4.26E-05	Total:	0.00E+00
VOC:	Y				
% Contribution to Media F	Risk		0.01%		0.00%

# Analyte: Benzo[a]pyrene

CAS: 5	0-32-8						
Concentration $\mu$	g/L : 6.0	8E-02			Calculated Hazard/Risk		
RfDo:	3.0	0E-04	Non-Ca	ancer Adult		(	Cancer
RfCi:	2.0	0E-06	Ingestion:	1.81E-05		Ingestion:	7.43E-11
SFO:	1.00	0E+00	Dermal:			Dermal:	
IUR:	6.0	0E-04	Inhalation:			Inhalation:	
Mutagen:		Y	Total:	1.81E-05		Total:	7.43E-11
VOC:							
% Contribution t	o Media Risk			0.00%			0.00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	n Program	
		Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact Do	nth to Croundwater: Direct Loss then	1

Contact Depth to Groundwater: Direct Less than 15ft

# Groundwater

### Analyte: Benzo[b]fluoranthene

CAS:	205-99-2						
Concentratio	on µg/L :	2.00E-01			Calculated Hazard/Risk		
RfDo:			Non-Ca	ancer Adult		C	Cancer
RfCi:			Ingestion:			Ingestion:	2.45E-11
SFO:		1.00E-01	Dermal:			Dermal:	
IUR:		6.00E-05	Inhalation:			Inhalation:	
Mutagen:		Y	Total:	0.00E+00		Total:	2.45E-11
VOC:							
% Contribut	ion to Media Ri	sk		0.00%			0.00%

Analyte:	Benzo[k]fluoranthene
----------	----------------------

CAS: 207-08-9

Concentration $\mu$ g/L :	7.84E-02			Calculated Hazard/Risk	-	
RfDo:		Non	-Cancer Adult		С	Cancer
RfCi:		Ingestion:			Ingestion:	9.59E-13
SFO:	1.00E-02	Dermal:			Dermal:	
IUR:	6.00E-06	Inhalation:			Inhalation:	
Mutagen:	Y	Total:	0.00E+00		Total:	9.59E-13
VOC:						
% Contribution to Media I	Risk		0.00%			0.00%

### Analyte:

### **Beryllium and compounds** CAS: 7440-41-7 Concentration $\mu$ g/L : 1.71E+00 **Calculated Hazard/Risk** RfDo: 5.00E-03 **Non-Cancer Adult** Cancer RfCi: 2.00E-05 Ingestion: 3.05E-05 Ingestion: SFO: Dermal: Dermal: IUR: 2.40E-03 Inhalation: Inhalation: Mutagen: Total: 3.05E-05 Total: 0.00E+00 VOC: % Contribution to Media Risk 0.00% 0.00%

Site Name:	Alexandr	ia					Construction
Program:	Voluntary	y Remediat	t <b>ion Program</b> Risk Ba	sed Performan	ce Criteria		
[	Default Hazar	d Index		Risk Individual		Default Cumulative F	Risk-All Chemicals
	1			1.00E-06		1.00E-	-04
		Contact	Depth to Grou	ndwater: Dire	ect Less than	15ft	
Analyte:	ndwat _{Cadmium}						
CAS:	7440-43-9	-Water					
Concentratio	nμg/L :	2.64E+00			Calculated Ha	azard/Risk	
RfDo:		5.00E-04	Non-Ca	ncer Adult		C	Cancer
RfCi:		1.00E-05	Ingestion:	4.71E-04		Ingestion:	
SFO:			Dermal:			Dermal:	

IUR:	1.80E-03	Inhalation:		Inhalation:	
Mutagen:		Total:	4.71E-04	Total:	0.00E+00
VOC:					
% Contribution to Media Ris	k		0.06%	C	).00%

### Analyte: Carbazole

CAS: 86-74-8

Concentration µg/L : 9.00	DE-01	Calculated Hazard/Risk				
RfDo:		Non-C	ancer Adult			Cancer
RfCi:		Ingestion:			Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	0.00E+00		Total:	0.00E+00
VOC:						
% Contribution to Media Risk			0.00%			0.00%

### Analyte: Chlorobenzene

CAS:	108-90-7						
Concentration	nμg/L :	1.00E+00			Calculated Hazard/Risk		
RfDo:		7.00E-02	Non-Ca	ncer Adult			Cancer
RfCi:		5.00E-01	Ingestion:	1.28E-06		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:	9.19E-04		Inhalation:	
Mutagen:			Total:	9.21E-04		Total:	0.00E+00
VOC:		Y					
% Contributio	on to Media Ri	sk		0.12%			0.00%

Site Name	e: Alexandria		Construction
Program:	Voluntary Remediati	on Program Risk Based Performance Criteria	
	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

Contact Depth to Groundwater: Direct Less than 15ft

# Groundwater

### Analyte: Chromium(III), Insoluble Salts

CAS:	16065-83-1	L					
Concentration	μg/L :	4.33E+00			Calculated Hazard/Risk		
RfDo:		1.50E+00	Non-Ca	ncer Adult			Cancer
RfCi:		5.00E-03	Ingestion:	2.58E-07		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	2.58E-07		Total:	0.00E+00
VOC:							
% Contributior	n to Media Ris	k		0.00%			0.00%

Analyte:	Chrysene
CAS:	218-01-9

Concentration $\mu$ g/L :	8.14E-02	Calculated Hazard/Risk				
RfDo:	1.50E+00	Non-Cancer Adult		Non-Cancer Adult		Cancer
RfCi:	5.00E-03	Ingestion:	4.85E-09		Ingestion:	9.96E-14
SFO:	1.00E-03	Dermal:			Dermal:	
IUR:	6.00E-07	Inhalation:			Inhalation:	
Mutagen:	Y	Total:	4.85E-09		Total:	9.96E-14
VOC:						
% Contribution to Media Risk			0.00%			0.00%

### Analyte: Cobalt

CAS:	7440-48-4
LAJ.	/440-40-4

Concentration µg/L :	2.38E+02		0-1	and the stand (D's)	
Concentration µg/L :	2.301+02	Calculated Hazard/Risk			
RfDo:	3.00E-03	Non-Ca	Cancer		
RfCi:	2.00E-05	Ingestion:	7.08E-03	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:	9.00E-03	Inhalation:		Inhalation:	
Mutagen:		Total:	7.08E-03	Total: 0.00E+00	)
VOC:					
% Contribution to Madia	Dick		0.04%	0.00%	

% Contribution to Media Risk

0.94%

0.00%

Site Name:	Alexandr	-	tion Due				
Program:	voluntar	y Remedia	<b>tion Program</b> Risk Ba	I Ised Performance Criter	ia		
D	efault Hazar	rd Index		Risk Individual Chemica		umulative F	Risk-All Chemicals
	1			1.00E-06		1.00E-	04
		Contact	Depth to Grou	undwater: Direct Less t	han 15ft		
Groun	dwat	or					
Analyte:	Copper						
CAS:	7440-50-8	<b>b</b>	T				
Concentration	μg/L :	1.85E+01		Calculate	ed Hazard/Risk		
RfDo:		1.00E-02	Non-Ca	ncer Adult		C	ancer
RfCi:			Ingestion:	1.65E-04	I	ngestion:	
SFO:			Dermal:		C	Dermal:	
IUR:			Inhalation:		I	nhalation:	
Mutagen:			Total:	1.65E-04	Т	Total:	0.00E+00
VOC:							
% Contribution		isk	1	0.02%			0.00%
Analyte:	n to Media Ri Cresol, o- 95-48-7	isk	1	0.02%			0.00%
Analyte: CAS:	Cresol, o- 95-48-7	isk 1.36E+00	Ĩ		ed Hazard/Risk		0.00%
Analyte: CAS: Concentration	Cresol, o- 95-48-7				ed Hazard/Risk	C	0.00%
Analyte: CAS: Concentration RfDo:	Cresol, o- 95-48-7	1.36E+00		Calculat		C ngestion:	
% Contribution Analyte: CAS: Concentration RfDo: RfCi: SFO:	Cresol, o- 95-48-7	1.36E+00 2.00E-01	Non-Ca	Calculat ncer Adult	I	-	
Analyte: CAS: Concentration RfDo: RfCi: SFO:	Cresol, o- 95-48-7	1.36E+00 2.00E-01	Non-Ca Ingestion:	Calculat ncer Adult	l C	ngestion:	
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR:	Cresol, o- 95-48-7	1.36E+00 2.00E-01	<b>Non-Ca</b> Ingestion: Dermal:	Calculat ncer Adult	 [ 	ngestion: Dermal:	
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR:	Cresol, o- 95-48-7	1.36E+00 2.00E-01	Non-Ca Ingestion: Dermal: Inhalation:	Calculat ncer Adult 6.07E-07	 [ 	ngestion: Dermal: nhalation:	ancer
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen:	<b>Cresol, o-</b> <b>95-48-7</b> μg/L :	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculat ncer Adult 6.07E-07	 [ 	ngestion: Dermal: nhalation:	ancer
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen: VOC:	<b>Cresol, o-</b> <b>95-48-7</b> μg/L :	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculat ncer Adult 6.07E-07 <b>6.07E-07</b>	 [ 	ngestion: Dermal: nhalation:	ancer 0.00E+00
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen: VOC: % Contribution	<b>Cresol, o-</b> <b>95-48-7</b> μg/L : n to Media Ri	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculat ncer Adult 6.07E-07 <b>6.07E-07</b>	 [ 	ngestion: Dermal: nhalation:	ancer 0.00E+00
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen: VOC: % Contribution Analyte:	<b>Cresol, o-</b> <b>95-48-7</b> μg/L :	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculat ncer Adult 6.07E-07 <b>6.07E-07</b>	 [ 	ngestion: Dermal: nhalation:	ancer 0.00E+00
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen: VOC: % Contribution Analyte: CAS:	Cresol, ο- 95-48-7 μg/L : n to Media Ri Cresol, p- 106-44-5	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculat ncer Adult 6.07E-07 6.07E-07 0.00%	ן נ ד	ngestion: Dermal: nhalation:	ancer 0.00E+00
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen: VOC: % Contribution Analyte: CAS: Concentration	Cresol, ο- 95-48-7 μg/L : n to Media Ri Cresol, p- 106-44-5	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculate ncer Adult 6.07E-07 0.00% Calculate	 [ 	ngestion: Dermal: nhalation: Fotal:	ancer 0.00E+00 0.00%
Analyte: CAS: Concentration RfDo: RfCi: SFO: IUR: Mutagen: VOC:	Cresol, ο- 95-48-7 μg/L : n to Media Ri Cresol, p- 106-44-5	1.36E+00 2.00E-01 6.00E-01	Non-Ca Ingestion: Dermal: Inhalation: Total:	Calculat ncer Adult 6.07E-07 6.07E-07 0.00%	ן ד ד ed Hazard/Risk	ngestion: Dermal: nhalation: Fotal:	ancer 0.00E+00

2.68E-05

0.00%

Inhalation:

Total:

% Contribution to Media Risk

IUR:

VOC:

Mutagen:

0.00E+00

0.00%

Inhalation:

Total:

Site Name:	Alexandr	ia					Construction
Program:	Voluntar	y Remedia	tion Program	l Ised Performance	Criteria		
D	efault Hazaı	rd Index		Risk Individual C		Default Cumulative	e Risk-All Chemicals
Ľ	1			1.00E-06			)E-04
		Contact	Depth to Gro	undwater: Direct	: Less than	15ft	
Grour	ndwat	er					
Analyte: CAS:	Cresol, p- 59-50-7						
Concentration	ημg/L :	8.00E-01	Ţ	C	alculated H	azard/Risk	
RfDo:		1.00E-01	Non-Ca	ncer Adult			Cancer
RfCi:			Ingestion:	7.14E-07		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	7.14E-07		Total:	0.00E+00
VOC:							
% Contributio	n to Media Ri	isk		0.00%			0.00%
Analyte: CAS:	Cumene 98-82-8						
Concentration	ημg/L :	1.00E+00		C	alculated H	lazard/Risk	
RfDo:		4.00E-01	Non-Ca	ncer Adult		-	Cancer
RfCi:		9.00E-02	Ingestion:	2.23E-07		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:	5.01E-03		Inhalation:	

Mutagen:		Total:	5.0	01E-03	Total:
VOC:	Y				
% Contribution to Media Risk			0.66%	I.	

### Analyte: Dibenz[a,h]anthracene

CAS: 53-70-3

Concentration $\mu$ g/L :	4.54E-02		Calculated Hazard/Risk					
RfDo:		Non-Cancer Adult			Non-Cancer Adult Cancer			ancer
RfCi:		Ingestion:			Ingestion:	5.55E-11		
SFO:	1.00E+00	Dermal:			Dermal:			
IUR:	6.00E-04	Inhalation:			Inhalation:			
Mutagen:	Y	Total:	0.00E+00		Total:	5.55E-11		
VOC:								
% Contribution to Media	Risk		0.00%			0.00%		

0.00E+00

0.00%

Site Name:	Alexand	ria					Constructio
Program:	Voluntai	ry Remedia	tion Program		tovia		
	. <b>(</b> . 1. 1			sed Performance Cri Risk Individual Chem			
D	efault Haza	ird Index	Default	1.00E-06	iicai Default		isk-All Chemicals
	1	<b>•</b> • • •				1.00E-0	J4
		Contact	Depth to Grou	undwater: Direct Les	s than 15ft		
Grour	ndwat	ter					
Analyte:							
CAS:	106-93-4	ethane, 1,2	-				
			Ţ				
Concentration	ημg/L :	4.00E-01		Calcu	lated Hazard/Risk		
RfDo:		9.00E-03	Non-Ca	ncer Adult		Ca	ancer
RfCi:		2.00E-03	Ingestion:	3.97E-06		Ingestion:	9.78E-10
SFO:		2.00E+00	Dermal:			Dermal:	
IUR:		6.00E-04	Inhalation:	6.70E-02		Inhalation:	1.10E-06
Mutagen:			Total:	6.70E-02		Total:	1.10E-06
VOC:		Y					
% Contributio	n to Media R	Risk		8.87%			56.39%
	Ex	xceeds Risk	!				
Analyte:	Dibutyl P	hthalato					
CAS:	84-74-2	minalate					
			1				
Concentration	ημg/L :	3.00E+00			lated Hazard/Risk		
RfDo:		1.00E+00		ncer Adult			ancer
RfCi:			Ingestion:	2.68E-07		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	2.68E-07		Total:	0.00E+00
VOC:							
% Contributio	n to Media R	Risk		0.00%			0.00%
Analyte:	Dichloroe	ethylene, 1,	1-				
CAS:	75-35-4	,,=,					
		2 705 04	]				
Concentration	ημg/L :	3.70E-01			lated Hazard/Risk		
RfDo:		9.00E-03	Non-Ca	ncer Adult		C	ancer

RfDo:	9.00E-03	Non-Cancer Adult		Cancer
RfCi:	2.00E-01	Ingestion:	3.67E-06	Ingestion:
SFO:		Dermal:		Dermal:
IUR:		Inhalation:	9.31E-04	Inhalation:
Mutagen:		Total:	9.35E-04	Total: 0.00E+00
VOC:	Y			
% Contribution to Media Risk			0.12%	0.00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	on Program	
U U	•	Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact D	epth to Groundwater: Direct Less than	15ft

# Groundwater

### Analyte: Diisopropyl Ether

CAS: 108-20-3

Г

:	108-20-3

7

Concentration µg/L :	1.06E+00	Calculated Hazard/Risk			
RfDo:		Non-Ca	ncer Adult		Cancer
RfCi:	7.00E-01	Ingestion:		Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	7.28E-04	Inhalation:	
Mutagen:		Total:	7.28E-04	Total:	0.00E+00
VOC:	Y				
% Contribution to Media	Risk		0.10%		0.00%

### Analyte: Dimethylphenol, 2,4-

CAS:	105-67-9						
Concentration	µg/L :	9.00E+00	Ţ		Calculated Hazard/Risk		
RfDo:		5.00E-02	Non-Ca	ncer Adult			Cancer
RfCi:			Ingestion:	1.61E-05		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	1.61E-05		Total:	0.00E+00
VOC:							
% Contribution	to Media Ris	k		0.00%			0.00%

## Analyte: Ethylbenzene

CAS:	100-41-4						
Concentratio	on μg/L :	8.76E-01			Calculated Hazard/Risk		
RfDo:		5.00E-02	Non-Ca	ncer Adult		С	ancer
RfCi:		9.00E+00	Ingestion:	1.56E-06		Ingestion:	1.18E-11
SFO:		1.10E-02	Dermal:			Dermal:	
IUR:		2.50E-06	Inhalation:	4.66E-05		Inhalation:	1.44E-08
Mutagen:			Total:	4.81E-05		Total:	1.44E-08
VOC:		Y					
% Contributi	on to Media Ris	sk		0.01%			0.73%

Site Name: Alexa		_		Construct
Program: Volun	tary Remediation		sed Performance Criteria	
Dofault H	azard Index		Risk Individual Chemical	Default Cumulative Risk-All Chemic
	1	Delault	1.00E-06	1.00E-04
	Contact D	epth to Grou	Indwater: Direct Less thar	า 15ft
Groundwa Analyte: Fluorad	nthene			
Analyte: Fluora CAS: 206-44	nthene		Calculated F	lazard/Risk
Analyte: Fluora	nthene -0	Non-Ca	Calculated F ncer Adult	lazard/Risk Cancer
Analyte:       Fluoration         CAS:       206-44         Concentration μg/L       :	1.30E-01 1.00E-01	Non-Ca Ingestion:		•
Analyte:       Fluoration         CAS:       206-44         Concentration μg/L       :         RfDo:       :	1.30E-01 1.00E-01		ncer Adult	Cancer
Analyte:     Fluoration       CAS:     206-44       Concentration μg/L     :       RfDo:     RfCi:	1.30E-01 1.00E-01	Ingestion:	ncer Adult	Cancer Ingestion:

VOC:

% Contribution to Media Risk

### Analyte: Fluorene CAS:

86-73-7

Concentration µg/L :	4.87E-01			Calculated Hazard/Risk	
RfDo:	4.00E-01	Non-Cancer Adult			Cancer
RfCi:		Ingestion:	1.09E-07	Ingestion	:
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:		Inhalatio	n:
Mutagen:		Total:	1.09E-07	Total:	0.00E+00
VOC:	Y				
% Contribution to Media R	lisk		0.00%		0.00%

0.00%

### Analyte: Indeno[1,2,3-cd]pyrene

CAS: 193-39-5

Concentration $\mu$ g/L :	1.10E-01		Calc	ulated Hazard/Risk	
RfDo:	4.00E-01	Non-Ca	ncer Adult	(	Cancer
RfCi:		Ingestion:	2.46E-08	Ingestion:	1.35E-11
SFO:	1.00E-01	Dermal:		Dermal:	
IUR:	6.00E-05	Inhalation:		Inhalation:	
Mutagen:	Y	Total:	2.46E-08	Total:	1.35E-11
VOC:					
% Contribution to Madia	Diele		0.00%		0.000/

% Contribution to Media Risk

0.00%

0.00%

0.00%

Site Name:	Alexandri	а			Const	truction
Program:	Voluntary	Remedia	tion Program <u>Risk Ba</u>	sed Performance Criter	ia	
C	efault Hazar	d Index	Default	Risk Individual Chemica	Default Cumulative Risk-All Che	emicals
	1			1.00E-06	1.00E-04	
		Contact	Depth to Grou	Indwater: Direct Less t	han 15ft	
Grour Analyte: CAS:	Iron 7439-89-6	•••				
CAJ.	7455-65-0		т			
Concentration		6.89E+04		Calculat	ed Hazard/Risk	
		6.89E+04 7.00E-01	Non-Ca	Calculat	ed Hazard/Risk Cancer	
Concentration			Non-Ca Ingestion:			

8.78E-03

4.55E-07

4.89E-05

9.67E-03

9.72E-03

1.16%

**Non-Cancer Adult** 

1.29%

Inhalation:

Ingestion:

Inhalation:

Dermal:

Total:

Total:

Analy	to.	heal	and	Com	pounds
Allaly	ie.	Leau	anu	COIII	pounus

CAS:	7439-92-1
CAU.	/ <del>-</del> 35 52 1

% Contribution to Media Risk

IUR:

VOC:

Mutagen:

Analyte:

CAS:

RfDo:

RfCi:

SFO:

IUR:

VOC:

Mutagen:

% Contribution to Media Risk

Concentration  $\mu$ g/L :

isopropyltoluene

2.04E+00

4.00E-01

9.00E-02

Y

99-87-6

Concentration µg/L :	7.52E+00	Calculated Hazard/Risk				
RfDo:		Non-Cancer Adult				Cancer
RfCi:		Ingestion:			Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	0.00E+00		Total:	0.00E+00
VOC:						
% Contribution to Media Risk			0.00%			0.00%

% Contribution to Media Risk

0.00%

Inhalation:

Ingestion:

Inhalation:

Dermal:

Total:

0.00E+00

0.00E+00

0.00%

Cancer

0.00%

Total:

**Calculated Hazard/Risk** 

Site Name:	Alexandria		Construction
Program:	Voluntary Remedia	tion Program	
U U	•	<b>Risk Based Performance Criteria</b>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact	Depth to Groundwater: Direct Less than	15ft

# Groundwater

Manganese (Diet)

Analyte:

CAS:	7439-96-5-	Diet					
Concentration	μg/L :	1.24E+04			Calculated Hazard/Risk		
RfDo:		1.40E-01	Non-Ca	ncer Adult			Cancer
RfCi:		5.00E-05	Ingestion:	7.91E-03		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	7.91E-03		Total:	0.00E+00
VOC:							
% Contribution	n to Media Ris	k		1.05%			0.00%

Analyte:	Mercury (elemental)
----------	---------------------

CAS: 7439-97-6

Concentration $\mu$ g/L :	7.42E-02			Calculated Hazard/Risk	
RfDo:		Non-Ca	ncer Adult		Cancer
RfCi:	3.00E-04	Ingestion:		Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:	8.62E-02	Inhalation:	
Mutagen:		Total:	8.62E-02	Total:	0.00E+00
VOC:	Y				
% Contribution to Media R	isk		11.42%		0.00%

### Analyte: Methyl Ethyl Ketone (2-Butanone)

CAS: 78-93-3

Concentration $\mu$ g/L :	2.58E+00			Calculated Hazard/Risk		
RfDo:	2.00E+00	Non-Ca	ncer Adult		Can	ncer
RfCi:	1.00E+00	Ingestion:	1.15E-07	Ingest	ion:	
SFO:		Dermal:		Derma	il:	
IUR:		Inhalation:	7.21E-04	Inhala	tion:	
Mutagen:		Total:	7.21E-04	Total:		0.00E+00
VOC:	Y					
% Contribution to Media	Risk		0 10%		0	00%

% Contribution to Media Risk

0.10%

0.00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediation	on Program	
U U	•	Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact D	enth to Groundwater: Direct Less than	15ft

Contact Depth to Groundwater: Direct Less than 15ft

# Groundwater

### Analyte: Methylcyclohexane

CAS: 108-87-2

Concentration µg/L : 3	3.00E-01			Calculated Hazard/Risk	C C C C C C C C C C C C C C C C C C C	
RfDo:		Non-	Cancer Adult			Cancer
RfCi:		Ingestion:			Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	0.00E+00		Total:	0.00E+00
VOC:						
% Contribution to Media Risk			0.00%			0.00%

### Analyte: Methylnaphthalene, 1-

CAS:	90-12-0						
Concentrati	on μg/L :	9.29E-01			Calculated Hazard/Risk		
RfDo:		7.00E-02	Non-Ca	ancer Adult		c	Cancer
RfCi:		1.04E+00	Ingestion:	1.19E-06		Ingestion:	3.30E-11
SFO:		2.90E-02	Dermal:			Dermal:	
IUR:			Inhalation:			Inhalation:	
Mutagen:			Total:	1.19E-06		Total:	3.30E-11
VOC:		Y					
% Contribut	ion to Media Ri	isk		0.00%			0.00%

### Analyte: Methylnaphthalene, 2-

CAS: 91-57-6

Concentration µg/L :	5.98E-01		Calculated	l Hazard/Risk
RfDo:	4.00E-03	Non-Ca	Cancer	
RfCi:		Ingestion:	1.34E-05	Ingestion:
SFO:		Dermal:		Dermal:
IUR:		Inhalation:		Inhalation:
Mutagen:		Total:	1.34E-05	Total: 0.00E+00
VOC:	Y			
% Contribution to Modia	Pick		0.00%	0.00%

% Contribution to Media Risk

0.00%

Site Name:	Alexandria		Construction
Program:	Voluntary Remediatio	n Program	
-	-	<b>Risk Based Performance Criteria</b>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact De	onth to Groundwater: Direct Loss than	1 E f+

Contact Depth to Groundwater: Direct Less than 15ft

# Groundwater

Naphthalene

Analyte:

CAS:	91-20-3						
Concentratio	nμg/L :	4.16E+00			Calculated Hazard/Risk		
RfDo:		6.00E-01	Non-Ca	ncer Adult		C	Cancer
RfCi:		3.00E-03	Ingestion:	6.19E-07		Ingestion:	6.11E-10
SFO:		1.20E-01	Dermal:			Dermal:	
IUR:		3.40E-05	Inhalation:	5.39E-01		Inhalation:	7.53E-07
Mutagen:			Total:	5.39E-01		Total:	7.54E-07
VOC:		Y					
% Contribution to Media Risk			71.37%			38.56%	

Analyte: Nickel Soluble Sa	lts
----------------------------	-----

CAS:	7440-02-0						
Concentration	ημg/L :	7.48E+01			Calculated Hazard/Risk		
RfDo:		2.00E-02	Non-Ca	incer Adult			Cancer
RfCi:		2.00E-04	Ingestion:	3.34E-04		Ingestion:	
SFO:			Dermal:			Dermal:	
IUR:		2.60E-04	Inhalation:			Inhalation:	
Mutagen:			Total:	3.34E-04		Total:	0.00E+00
VOC:							
% Contributio	on to Media Ris	sk		0.04%			0.00%

### Analyte: Phenanthrene

CAS:	85-01-8
CAJ.	02-01-0

Concentration $\mu$ g/L :	2.21E-01	Calculated Hazard/Risk			
RfDo:	3.00E-01	Non-Cancer Adult Cancer			
RfCi:		Ingestion:	6.58E-08	Ingestion:	
SFO:		Dermal:	9.17E-06	Dermal:	
IUR:		Inhalation:		Inhalation:	
Mutagen:		Total:	9.23E-06	Total: 0.00E+00	)
VOC:	Y				
% Contribution to Media	Risk		0.00%	0.00%	

Program:	Voluntary	v Remedia	tion Program			
. ogi unit	, orantary	memedia		sed Performance Criteria		
De	efault Hazar	d Index	Default	Risk Individual Chemical	Default Cumulative Risk	K-All Chemica
	1			1.00E-06	1.00E-04	
		Contact	Depth to Grou	undwater: Direct Less thar	15ft	
_	_					
Groun	Idwat	er				
Analyte:	Pyrene					
CAS:	129-00-0					
			Т			
<u> </u>	/1	2 5 6 5 04				
Concentration	µg/L :	3.56E-01		Calculated H	lazard/Risk	
Concentration RfDo:	µg/L :	3.56E-01 3.00E-01	Non-Ca	Calculated H ncer Adult	lazard/Risk Can	cer
	µg/L :		Non-Ca Ingestion:		•	cer
RfDo:	μg/L :			ncer Adult	Can	cer
RfDo: RfCi:	μg/L :		Ingestion:	ncer Adult	Can Ingestion:	cer
RfDo: RfCi: SFO:	μg/L :		Ingestion: Dermal:	ncer Adult	Cano Ingestion: Dermal:	cer 0.00E+00
RfDo: RfCi: SFO: IUR:	μg/L :		Ingestion: Dermal: Inhalation:	ncer Adult 1.06E-07	Can Ingestion: Dermal: Inhalation:	
RfDo: RfCi: SFO: IUR: Mutagen:		3.00E-01 Y	Ingestion: Dermal: Inhalation: <b>Total:</b>	ncer Adult 1.06E-07	Can Ingestion: Dermal: Inhalation: Total:	

Concentration $\mu$ g/L :	8.74E+00	Calculated Hazard/Risk				
RfDo:	5.00E-03	Non-Ca	ancer Adult			Cancer
RfCi:	2.00E-02	Ingestion:	1.56E-04		Ingestion:	
SFO:		Dermal:			Dermal:	
IUR:		Inhalation:			Inhalation:	
Mutagen:		Total:	1.56E-04		Total:	0.00E+00
VOC:						
% Contribution to Media	Risk		0.02%			0.00%

## Analyte: Silver

Г

CAS: 7440-22-4

Concentration $\mu$ g/L :	1.27E-01	Calculated Hazard/Risk					
RfDo:	5.00E-03	Non-Ca	Non-Cancer Adult			Cancer	
RfCi:		Ingestion:	2.27E-06	Inges	stion:		
SFO:		Dermal:		Derm	nal:		
IUR:		Inhalation:		Inhala	lation:		
Mutagen:		Total:	2.27E-06	Total	l:	0.00E+00	
VOC:							
% Contribution to Media	Risk	0.00%			0.0	00%	

Site Name:	Alexandria		Construction
Program:	Voluntary Remediat	ion Program	
Ū	•	Risk Based Performance Criteria	
C	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact	Depth to Groundwater: Direct Less than	15ft

# Groundwater

### Analyte: Tetrachloroethylene

CAS:	127-18-4						
Concentrati	ion μg/L :	8.80E-01			Calculated Hazard/Risk		
RfDo:		8.00E-03	Non-Ca	ncer Adult		C	Cancer
RfCi:		4.07E-02	Ingestion:	9.82E-06		Ingestion:	2.26E-12
SFO:		2.10E-03	Dermal:			Dermal:	
IUR:		2.60E-07	Inhalation:	8.32E-03		Inhalation:	1.21E-09
Mutagen:			Total:	8.33E-03		Total:	1.21E-09
VOC:		Y					
% Contribut	tion to Media Ri	sk		1.10%			0.06%

### Analyte: Toluene CAS:

108-88-3

Concentration $\mu$ g/L :	5.43E-01			Calculated Hazard/Risk		
RfDo:	8.00E-01	Non-Ca	Non-Cancer Adult		Cancer	
RfCi:	5.00E+00	Ingestion:	6.06E-08	Ingestion	ו:	
SFO:		Dermal:		Dermal:		
IUR:		Inhalation:	5.57E-05	Inhalatic	on:	
Mutagen:		Total:	5.58E-05	Total:	0.00E+00	
VOC:	Y					
% Contribution to Media	Risk		0.01%		0.00%	

### Analyte: Vanadium and Compounds

CAS:	7440-62-2
CAJ.	/ ++0-02-2

Concentration $\mu$ g/L :	7.26E+00	Calculated Hazard/Risk				
RfDo:	1.00E-02	Non-Ca	Non-Cancer Adult		Cancer	
RfCi:	1.00E-04	Ingestion:	6.48E-05	Ingestion	:	
SFO:		Dermal:		Dermal:		
IUR:		Inhalation:		Inhalatio	n:	
Mutagen:		Total:	6.48E-05	Total:	0.00E+00	
VOC:						
% Contribution to Media Risk 0.01%		0.01%		0.00%		

Site Name:	Alexandr	ia				Construction	
Program:	Voluntary	y Remedia [.]	tion Program <u>Risk Ba</u>	sed Performance Criteria			
De	efault Hazar	d Index	Default	Risk Individual Chemical	Default Cumulative F	Risk-All Chemicals	
	1			1.00E-06	1.00E-	04	
		Contact	Depth to Grou	Indwater: Direct Less tha	n 15ft		
Groun	dwat	or					
Analyte: CAS:	Xylenes 1330-20-7	,					
			Ţ				
Concentration	μg/L :	1.09E+00		Calculated	Hazard/Risk		
RfDo:		4.00E-01	Non-Ca	ncer Adult	Cancer		
RfCi:		4.00E-01	Ingestion:	2.43E-07	Ingestion:		
SFO:			Dermal:		Dermal:		
IUR:			Inhalation:	1.30E-03	Inhalation:		
Mutagen:			Total:	1.30E-03	Total:	0.00E+00	
VOC:		Y					
% Contribution	n to Media Ri	sk		0.17%		0.00%	
Analyte:	Zinc and C	Compound	5				
CAS:	7440-66-6	•	-				
Concentration	μg/L :	1.27E+02		Calculated	Hazard/Risk		

Concentration $\mu$ g/L :	1.27E+02			Calculated Hazard/Risk	
RfDo:	3.00E-01	Non-Ca	ancer Adult		Cancer
RfCi:	7.67E-02	Ingestion:	3.78E-05	Ingestion:	
SFO:		Dermal:		Dermal:	
IUR:		Inhalation:		Inhalatior	ı:
Mutagen:		Total:	3.78E-05	Total:	0.00E+00
VOC:					
% Contribution to Media Risk			0.01%		0.00%

# Total Calculated Hazard Index/Risk for Groundwater

Non-Canc	er Adult	Can	cer
Ingestion:	2.72E-02	Ingestion:	1.20E-08
Dermal:	1.05E-04	Dermal:	0.00E+00
Inhalation:	7.28E-01	Inhalation:	1.94E-06
Total:	7.55E-01	Total:	1.96E-06

1

1.00E-06

1.00E-04

Contact Depth to Groundwater: Direct Less than 15ft

# **Report Summary**

Hazard/risk values of zero (0.00+00) are reflective of non-calculated values. Hazard/risk for zero value analytes must be evaluated outside of quantitative risk assessment.

## Hazard/Risk Summary for Soil

Analyte	CAS	Hazard	Risk
Acenaphthene	83-32-9	2.15E-06	0.00E+00
Acenaphthylene	208-96-8	9.74E-07	0.00E+00
Acetone	67-64-1	2.53E-06	0.00E+00
Acetophenone	98-86-2	2.78E-07	0.00E+00
Aluminum	7429-90-5	1.38E-02	0.00E+00
Anthracene	120-12-7	5.30E-07	0.00E+00
Antimony (metallic)	7440-36-0	4.95E-03	0.00E+00
Arsenic, Inorganic	7440-38-2	3.01E-02	2.92E-07
Barium	7440-39-3	5.37E-04	0.00E+00
Benz[a]anthracene	56-55-3	0.00E+00	1.38E-09
Benzene	71-43-2	7.37E-05	5.55E-10
Benzo(g,h,i)perylene	191-24-2	1.72E-06	0.00E+00
Benzo[a]pyrene	50-32-8	2.35E-03	9.61E-09
Benzo[b]fluoranthene	205-99-2	0.00E+00	1.90E-09
Benzo[k]fluoranthene	207-08-9	0.00E+00	1.03E-10
Benzoic Acid	65-85-0	6.40E-07	0.00E+00
Beryllium and compounds	7440-41-7	2.69E-04	2.78E-12
Bis(2-ethylhexyl)phthalate	117-81-7	2.25E-05	8.62E-11
Butylbenzene, n-	104-51-8	2.06E-06	0.00E+00
Cadmium (Diet)	7440-43-9-Diet	1.11E-03	7.72E-13
Carbazole	86-74-8	0.00E+00	0.00E+00
Chromium(III), Insoluble Salts	16065-83-1	2.06E-04	0.00E+00
Chrysene	218-01-9	9.75E-07	1.98E-11
Cobalt	7440-48-4	5.14E-03	1.20E-10
Copper	7440-50-8	2.28E-02	0.00E+00
Cresol, o-	95-48-7	1.26E-06	0.00E+00
Cresol, p-chloro-m-	59-50-7	2.32E-06	0.00E+00
Cumene	98-82-8	6.19E-07	0.00E+00
Cyanide (CN-)	57-12-5	6.46E-04	0.00E+00
Dibenz[a,h]anthracene	53-70-3	0.00E+00	5.66E-09
Dimethylphenol, 2,4-	105-67-9	7.78E-06	0.00E+00
Ethylbenzene	100-41-4	1.01E-05	7.59E-11

Construction

Default Hazard Index

Default Risk Individual Chemical

Default Cumulative Risk-All Chemicals 1.00E-04

1

1.00E-06

Contact Depth to Groundwater: Direct Less than 15ft

## Hazard/Risk Summary for Soil

Analyte	CAS	Hazard	Risk
Fluoranthene	206-44-0	1.87E-05	0.00E+00
Fluorene	86-73-7	1.20E-06	0.00E+00
Indeno[1,2,3-cd]pyrene	193-39-5	1.47E-06	8.06E-10
Iron	7439-89-6	1.38E-01	0.00E+00
isopropyltoluene	99-87-6	5.42E-06	0.00E+00
Lead and Compounds	7439-92-1	0.00E+00	0.00E+00
Manganese (Diet)	7439-96-5-Diet	6.40E-03	0.00E+00
Mercury (elemental)	7439-97-6	1.25E-04	0.00E+00
Methyl Ethyl Ketone (2-Butanone)	78-93-3	4.22E-07	0.00E+00
Methylcyclohexane	108-87-2	0.00E+00	0.00E+00
Methylene Chloride	75-09-2	1.69E-08	2.78E-14
Methylnaphthalene, 1-	90-12-0	6.50E-05	1.81E-09
Methylnaphthalene, 2-	91-57-6	1.83E-03	0.00E+00
Naphthalene	91-20-3	7.18E-06	7.02E-09
Nickel Soluble Salts	7440-02-0	8.22E-03	3.71E-11
Phenanthrene	85-01-8	1.18E-05	0.00E+00
Pyrene	129-00-0	6.11E-06	0.00E+00
Toluene	108-88-3	3.81E-06	0.00E+00
Trimethylbenzene, 1,2,4-	95-63-6	5.40E-05	0.00E+00
Trimethylbenzene, 1,3,5-	108-67-8	1.61E-05	0.00E+00
Vanadium and Compounds	7440-62-2	5.98E-03	0.00E+00
Xylenes	1330-20-7	2.39E-05	0.00E+00
Zinc and Compounds	7440-66-6	2.44E-04	0.00E+00

## Hazard/Risk Summary for Groundwater

Analyte	CAS	Hazard	Risk
Acenaphthene	83-32-9	2.31E-07	0.00E+00
Acenaphthylene	208-96-8	4.16E-06	0.00E+00
Acetone	67-64-1	5.91E-07	0.00E+00
Aluminum	7429-90-5	2.26E-04	0.00E+00
Anthracene	120-12-7	8.87E-09	0.00E+00
Antimony (metallic)	7440-36-0	1.23E-04	0.00E+00
Arsenic, Inorganic	7440-38-2	1.64E-03	1.01E-08
Barium	7440-39-3	4.73E-05	0.00E+00
Benz[a]anthracene	56-55-3	0.00E+00	4.06E-09
Benzene	71-43-2	8.07E-03	6.90E-08
Benzo(g,h,i)perylene	191-24-2	4.26E-05	0.00E+00

### Site Name: Alexandria Program: Voluntary Remediation Program Risk Based Performance Criteria

Default Hazard Index

Default Risk Individual Chemical

1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

Contact Depth to Groundwater: Direct Less than 15ft

## Hazard/Risk Summary for Groundwater

Analyte	CAS	Hazard	Risk
Benzo[a]pyrene	50-32-8	1.81E-05	7.43E-11
Benzo[b]fluoranthene	205-99-2	0.00E+00	2.45E-11
Benzo[k]fluoranthene	207-08-9	0.00E+00	9.59E-13
Beryllium and compounds	7440-41-7	3.05E-05	0.00E+00
Cadmium (Water)	7440-43-9-Water	4.71E-04	0.00E+00
Carbazole	86-74-8	0.00E+00	0.00E+00
Chlorobenzene	108-90-7	9.21E-04	0.00E+00
Chromium(III), Insoluble Salts	16065-83-1	2.58E-07	0.00E+00
Chrysene	218-01-9	4.85E-09	9.96E-14
Cobalt	7440-48-4	7.08E-03	0.00E+00
Copper	7440-50-8	1.65E-04	0.00E+00
Cresol, o-	95-48-7	6.07E-07	0.00E+00
Cresol, p-	106-44-5	2.68E-05	0.00E+00
Cresol, p-chloro-m-	59-50-7	7.14E-07	0.00E+00
Cumene	98-82-8	5.01E-03	0.00E+00
Dibenz[a,h]anthracene	53-70-3	0.00E+00	5.55E-11
Dibromoethane, 1,2-	106-93-4	6.70E-02	1.10E-06
Dibutyl Phthalate	84-74-2	2.68E-07	0.00E+00
Dichloroethylene, 1,1-	75-35-4	9.35E-04	0.00E+00
Diisopropyl Ether	108-20-3	7.28E-04	0.00E+00
Dimethylphenol, 2,4-	105-67-9	1.61E-05	0.00E+00
Ethylbenzene	100-41-4	4.81E-05	1.44E-08
Fluoranthene	206-44-0	1.16E-07	0.00E+00
Fluorene	86-73-7	1.09E-07	0.00E+00
Indeno[1,2,3-cd]pyrene	193-39-5	2.46E-08	1.35E-11
Iron	7439-89-6	8.78E-03	0.00E+00
isopropyltoluene	99-87-6	9.72E-03	0.00E+00
Lead and Compounds	7439-92-1	0.00E+00	0.00E+00
Manganese (Diet)	7439-96-5-Diet	7.91E-03	0.00E+00
Mercury (elemental)	7439-97-6	8.62E-02	0.00E+00
Methyl Ethyl Ketone (2-Butanone)	78-93-3	7.21E-04	0.00E+00
Methylcyclohexane	108-87-2	0.00E+00	0.00E+00
Methylnaphthalene, 1-	90-12-0	1.19E-06	3.30E-11
Methylnaphthalene, 2-	91-57-6	1.34E-05	0.00E+00
Naphthalene	91-20-3	5.39E-01	7.54E-07
Nickel Soluble Salts	7440-02-0	3.34E-04	0.00E+00
Phenanthrene	85-01-8	9.23E-06	0.00E+00

Site Name:	Alexandria		Construction
Program:	Voluntary Remediat	ion Program	
U U	•	Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04
	Contact	Depth to Groundwater: Direct Less than	15ft

## Hazard/Risk Summary for Groundwater

Analyte	CAS	Hazard	Risk
Pyrene	129-00-0	1.06E-07	0.00E+00
Selenium	7782-49-2	1.56E-04	0.00E+00
Silver	7440-22-4	2.27E-06	0.00E+00
Tetrachloroethylene	127-18-4	8.33E-03	1.21E-09
Toluene	108-88-3	5.58E-05	0.00E+00
Vanadium and Compounds	7440-62-2	6.48E-05	0.00E+00
Xylenes	1330-20-7	1.30E-03	0.00E+00
Zinc and Compounds	7440-66-6	3.78E-05	0.00E+00

## Total Hazard Index/Risk for All Media

Non-Cancer Adult		Can	Cancer	
Ingestion:	2.63E-01	Ingestion:	2.99E-07	
Dermal:	5.66E-03	Dermal:	3.40E-08	
Inhalation:	7.30E-01	Inhalation:	1.94E-06	
Total:	9.99E-01	Total:	2.28E-06	
does not exceed hazard index		does not exceed	cumulative risk	

## **Construction Exposure Default Values**

Description	Value	Units
Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	14.0111	(unitless)
Construction Worker Soil Adherence Factor	0.3	(mg/cm2)
Areal extent of the site or contamination	0.5	(acres)
Construction Worker Averaging Time: 365 x LT	25550	(days)
Construction Worker Averaging Time	365	(days/yr)
Construction Worker Averaging Time: EWcw x 7 x EDcw	350	(days)
Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	19.6154	(unitless)
Construction Worker Body Weight	80	(kg)
Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	225.3397	(unitless)
Construction Worker Days Worked	5	(days/week)
	Construction Worker Soil Inhalation Dispersion Constant - PhiladelphiaConstruction Worker Soil Adherence FactorAreal extent of the site or contaminationConstruction Worker Averaging Time: 365 x LTConstruction Worker Averaging TimeConstruction Worker Averaging Time: EWcw x 7 x EDcwConstruction Worker Soil Inhalation Dispersion Constant - PhiladelphiaConstruction Worker Body WeightConstruction Worker Soil Inhalation Dispersion Constant - Philadelphia	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia14.0111Construction Worker Soil Adherence Factor0.3Areal extent of the site or contamination0.5Construction Worker Averaging Time: 365 x LT25550Construction Worker Averaging Time365Construction Worker Averaging Time: EWcw x 7 x EDcw350Construction Worker Soil Inhalation Dispersion Constant - Philadelphia19.6154Construction Worker Body Weight80Construction Worker Soil Inhalation Dispersion Constant - Philadelphia225.3397

EDcw

### Construction

### **Voluntary Remediation Program** Program:

Risk Based Performance Criteria

1.00E-06

Contact Depth to Groundwater: Direct Less than 15ft

Default Cumulative Risk-All Chemicals 1.00E-04

1 (yrs)

## Default Risk Individual Chemical Default Hazard Index 1

Construction Worker Exposure Duration

EDCW		L L	(915)
EFcw	Construction Worker Exposure Frequency	250	(days/yrs)
EFcw-a	Construction Worker Air Exposure Frequency	250	(days/yr)
EFcw-s	Construction Worker Soil Exposure Frequency	250	(days/yr)
EFcw-vrp	Construction Worker Soil Exposure Frequency - VRP ONLY - Virginia DEQ	125	(days/yr)
ETcw	Construction Worker Exposure Time	8	(hrs/day)
ETcw-s	Construction Worker Soil Exposure Time	8	(hrs/day)
EWcw	Construction Worker Weeks Worked	50	(weeks/yr)
F(x)	Function Dependent on 0.886 × (Ut/Um)	0.194	(unitless)
Fd	Dispersion Correction Factor	0.185	(unitless)
IRcw	Construction Worker Soil Ingestion Rate	330	(mg/day)
n	Total soil porosity: 1-(pb/ps)	0.433962264150943	(unitless)
PEFsc	Particulate Emission Factor Subchronic - Virginia DEQ calculated	1266503136.97919	(m3/kg)
Q/C	Inverse of the ratio of the 1-h geometric mean concentration to the emission flux along a straight road segment bisecting a square site - Virginia DEQ calculated	87.3689772162309	(g/m2-s per kg/m)
SAcw	Construction Worker Surface Area	3527	(cm2/day)
Тс	Total time over which construction occurs: EDcw*EWcw*7days/wk*24hrs/day*3600s/hr	30240000	(s)
TR-ACH	Trench Air Changes per Hour - Virginia DEQ	2	(h)-1
TR-ACvad	Trench Advection Coefficient Groundwater greater than 15ft - Virginia DEQ	0.25	(cm3/cm3)
TR-CF1	Trench Conversion Factor-1	0.001	(L/cm3)
TR-CF2	Trench Conversion Factor-2	10000	(cm2/m2)
TR-CF3	Trench Conversion Factor-3	3600	(s/hr)
TR-CF4	Trench Conversion Factor-4	1000000	(cm3/m3)
TR-D-dir	Trench Depth - groundwater less Than 15ft - Virginia DEQ	2.44	(m)
TR-D-ind	Trench Depth - groundwater greater than 15ft - Virginia DEQ	4.57	(m)
TR-Dsg	Trench - Depth to soil gas vapor source - Virginia DEQ	1	(cm)
TR-EFcw	Trench Construction Worker Exposure Frequency - Virginia DEQ	125	(days/yr)
		1	1

## Voluntary Remediation Program Risk Based Performance Criteria Program:

Default Hazard Index 1

Default Risk Individual Chemical 1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

### Construction

	contact Depth to Groundwater. Direct Less than 15h		
TR-ETcw	Trench Construction Worker Exposure Time - Virginia DEQ	4	(hrs/day)
TR-EVcw	Trench Construction Worker Events - Virginia DEQ	1	(events/day)
TR-F	Trench Fraction of floor through which contaminant can enter - Virginia DEQ	1	(unitless)
TR-HV	Trench Thickness of Vadose Zone - groundwater greater than 15 ft - Virginia DEQ	30	(cm)
TR-IRcw	Trench Construction Worker Groundwater Ingestion Rate - Virginia DEQ	0.02	(L/day)
TR-KGH2O	Trench Gas-phase mass transfer coefficient of water vapor at 25deg C - Virginia DEQ	0.833	(cm/s)
TR-KLO2	Trench Liquid-phase mass transfer coefficient of oxygen at 25deg C - Virginia DEQ	0.002	(cm/s)
TR-L	Trench Length - Virginia DEQ	2.44	(m)
TR-Lgw	Trench Depth to groundwater - Virginia DEQ	488	(cm)
TR-MWH2O	Trench Molecular Weight of Water - Virginia DEQ	18	(unitless)
TR-MWO2	Trench Molecular Weight of Oxygen - Virginia DEQ	32	(unitless)
TR-Porvad	Trench Porosity in Vadose Zone - groundwater greater than 15ft - Virginia DEQ	0.44	(cm3/cm3)
TR-R	Trench Ideal Gas Constant - Virginia DEQ	0.000082	(atm-m3/mol-K)
TR-Temp-F	Trench Temperature Fahrenheit - Virginia DEQ	77	(F)
TR-Temp-K	Trench Temperature - Virginia DEQ	298	(К)
TR-W	Trench Width - Virginia DEQ	0.91	(m)
TR-W/D	Trench Width to Depth Ratio - Virginia DEQ	0.38	(unitless)
Um	Mean Annual Wind Speed	4.69	(m/s)
Ut	Equivalent Threshold Value of Wind Speed at 7m	11.32	(m/s)
V	V Fraction of Vegetative Cover	0.5	(unitless)
Θа	Air filled soil porosity: n-Ow	0.133962264150943	(unitless)
Θw	Water filled soil porosity	0.3	(unitless)
ρb	Dry soil bulk density	1.5	(kg/L)
ρs	Soil particle density	2.65	(kg/L)

## **END OF REPORT**

ATTACHMENT 3-3 COMPOSITE WORKER

## **Virginia Department of Environmental Quality**



## Virginia Unified Risk Assessment Model

## **VERSION: 3.2.1**

## Industrial/Commercial Worker Quantitative Risk Assessment Report

## **Program: Voluntary Remediation Program (VRP)**

## Site Name: Alexandria

## **Groundwater Declaration Restricted Use**

Restricted use of groundwater is for onsite use ONLY. Potential offsite risks and receptors are evaluated separately. The nature and extent of the groundwater plume is sufficiently characterized. Concentrations along the vertical and horizontal migration of the plume are stable.

No COPCs evaluated in Groundwater

By submitting this report to the Virginia DEQ, the user confirms that VURAM's default exposure parameters have not been altered, unless a complete unaltered VURAM analysis is provided and all modifications are detailed explicitly in an accompanying narrative or documentation that shows DEQ's prior concurrence with specific changes.

## **Chemical Specific Notes Displayed as Applicable**

Lead

VURAM does not perform an evaluation for lead exposure. Use other approved models for lead modeling.

## All Report Pages are Required for Risk Assessment Submission

### Voluntary Remediation Program (VRP) **Program:**

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil Analyte: Acenaphthene CAS: 83-32-9

Concentration mg/kg: 2.06E-01 **Calculated Hazard/Risk** RfDo (mg/kg-day): 6.00E-02 Non-Cancer Adult Cancer RfCi (mg/m3): Ingestion: 2.94E-06 Ingestion: SFO (mg/kg-day)-1: Dermal: Dermal: 1.62E-06 IUR (µg/m3)-1: Inhalation: Inhalation: Mutagen: Total: 4.56E-06 Total: 0.00E+00 VOC: Y % Contribution to Media Risk 0.00% 0.00% mg/kg Non-Cancer Adult Cancer Recommended Acceptable Concentration N/A N/A Analyte: Acenaphthylene CAS: 208-96-8

Concentration mg/kg:	1.40E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Ca	ancer Adult		C	Cancer
RfCi (mg/m3):		Ingestion:	4.00E-06		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.20E-06		Dermal:	
IUR (μg/m3)-1:		Inhalation:			Inhalation:	
Mutagen:		Total:	6.19E-06		Total:	0.00E+00
VOC:	Y					
	% Contribution	to Media Risk	0.00%			0.00%
		mg/kg Non-C	ancer Adult		(	Cancer
Recommended Acceptal	ble Concentrati	on	N/A			N/A

### Analyte: Acetone

CAS:	67-64-1
------	---------

Concentration mg/kg:	1.72E+00			Calculated Hazard/Risk		
RfDo (mg/kg-day):	9.00E-01	Non-Ca	incer Adult		Cancer	
RfCi (mg/m3):		Ingestion:	1.64E-06	Ingest	tion:	
SFO (mg/kg-day)-1:		Dermal:		Derm	al:	
IUR (µg/m3)-1:		Inhalation:		Inhala	ation:	
Mutagen:		Total:	1.64E-06	Total	: 0	.00E+00
VOC:	Y					
	% Contribution	to Media Risk	0.00%			0.00%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ncer Adult			Cancer
Recommended A	Acceptable	Concentrati	on I	V/A			N/A
	cetophen 3-86-2	one					
Concentration m	g/kg:	1.51E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day)	:	1.00E-01	Non-Car	cer Adult			Cancer
RfCi (mg/m3):			Ingestion:	1.29E-06		Ingestion:	
SFO (mg/kg-day)-	1:		Dermal:			Dermal:	
IUR (µg/m3)-1:			Inhalation:			Inhalation:	
Mutagen:			Total:	1.29E-06		Total:	0.00E+00
VOC:		Y					
	% (	Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommended A	Acceptable	Concentrati	on I	V/A			N/A
,	luminum 129-90-5						
Concentration ma	g/kg:	9.23E+03			Calculated Hazard/Risk		
RfDo (mg/kg-day)	:	1.00E+00	Non-Car	cer Adult			Cancer
RfCi (mg/m3):		5.00E-03	Ingestion:	7.90E-03		Ingestion:	
SFO (mg/kg-day)-	1:		Dermal:			Dermal:	
IUR (µg/m3)-1:			Inhalation:	3.10E-04		Inhalation:	
Mutagen:			Total:	8.21E-03		Total:	0.00E+00
VOC:							
	% (	Contribution	to Media Risk	4.52%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Decomposeded	Accentable	Concentrati	on l	V/A			N/A

### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

## Soil Analyte:

nalyte: Anthracene

CAS:	120-12-7	,					
Concentration	mg/kg:	2.53E-01			Calculated Hazard/Risk		
RfDo (mg/kg-d	lay):	3.00E-01	Non-Can	cer Adult	, -		Cancer
RfCi (mg/m3):			Ingestion:	7.22E-07		Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:	3.97E-07		Dermal:	
IUR (µg/m3)-1:	:		Inhalation:			Inhalation:	
Mutagen:			Total:	1.12E-06		Total:	0.00E+00
VOC:		Y					
		% Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommende	ed Acceptab	ole Concentrati	on I	V/A			N/A
Analyte: CAS:	Antimon 7440-36-	iy (metallic) -0					
Concentration		1.34E+00			Calculated Hazard/Risk		
RfDo (mg/kg-d	lay):	4.00E-04	Non-Can	cer Adult			Cancer
RfCi (mg/m3):		3.00E-04	Ingestion:	2.87E-03		Ingestion:	
SFO (mg/kg-da	ay)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:	:		Inhalation:	7.52E-07		Inhalation:	
Mutagen:			Total:	2.88E-03		Total:	0.00E+00
VOC:							
		% Contribution	to Media Risk	1.58%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommende	ed Acceptab	ole Concentrati	on I	V/A			N/A
Analyte:	Arsenic,	Inorganic					
CAS:	7440-38-	-2					
CAS:	/ 110 00						
Concentration		8.80E+00			Calculated Hazard/Risk		
	mg/kg:	8.80E+00 3.00E-04	Non-Can	cer Adult	Calculated Hazard/Risk		Cancer
Concentration	mg/kg: lay):		Non-Can	<b>cer Adult</b> 1.51E-02	Calculated Hazard/Risk	Ingestion:	<b>Cancer</b> 2.42E-06

9.85E-05

1.84E-02

IUR (µg/m3)-1: Mutagen:

VOC:

% Contribution to Media Risk 10.09%

Total:

Inhalation:

4.30E-03

	Cancer
Ingestion:	2.42E-06
Dermal:	5.12E-07
Inhalation:	2.27E-09
Total:	2.94E-06
	80.46%

### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04
Soil		
Exceeds Ris	<b>k!</b> mg/kg <i>Non-Cancer Adult</i>	Cancer

0	antalla Canada i	non	N/A		3.0	0E+00
Recommended Acc Analyte: Bari						
CAS: 744	0-39-3					
Concentration mg/k	g: 7.27E+01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	2.00E-01	Non-Car	ncer Adult		Ca	ancer
RfCi (mg/m3):	5.00E-04	Ingestion:	3.11E-04		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:		Inhalation:	2.44E-05		Inhalation:	
Mutagen:		Total:	3.36E-04		Total:	0.00E+00
VOC:						
	% Contributio	n to Media Risk	0.18%			0.00%
		mg/kg Non-Co	incer Adult		Ca	ancer
Recommended Acc	eptable Concentrat	0. 0	ncer Adult N/A			ancer N/A
	eptable Concentrat z[a]anthracene	0. 0				
Analyte: Ben	z[a]anthracene	0. 0				
Analyte: Ben CAS: 56-5	z[a]anthracene i5-3	0. 0		Calculated Hazard/Risk		
Analyte: Ben	z[a]anthracene i5-3	tion		Calculated Hazard/Risk		
Analyte: Ben CAS: 56-5 Concentration mg/k RfDo (mg/kg-day):	z[a]anthracene i5-3	tion	N/A	Calculated Hazard/Risk		N/A
Analyte: Ben CAS: 56-5 Concentration mg/k	z[a]anthracene i5-3	tion Non-Car	N/A	Calculated Hazard/Risk	Ca	N/A
Analyte:BenCAS:56-5Concentrationmg/kRfDo (mg/kg-day):RfCi (mg/m3):	z[a]anthracene 5 <b>5-3</b> :g: 4.82E-01	Non-Car Ingestion:	N/A	Calculated Hazard/Risk	Ca Ingestion:	N/A ancer 1.47E-08
Analyte:BenCAS:56-5Concentrationmg/kRfDo (mg/kg-day):RfCi (mg/m3):SFO (mg/kg-day)-1:IUR (μg/m3)-1:	z[a]anthracene 55-3 :g: 4.82E-01 1.00E-01	Non-Car Ingestion: Dermal:	N/A	Calculated Hazard/Risk	Ca Ingestion: Dermal:	N/A ancer 1.47E-08 8.11E-09
Analyte:BenCAS:56-5Concentrationmg/kRfDo (mg/kg-day):RfCi (mg/m3):SFO (mg/kg-day)-1:	z[a]anthracene 55-3 :g: 4.82E-01 1.00E-01 6.00E-05	Non-Car Ingestion: Dermal: Inhalation:	N/A	Calculated Hazard/Risk	Ca Ingestion: Dermal: Inhalation:	N/A ancer 1.47E-08 8.11E-09 5.36E-10
Analyte:BenCAS:56-5Concentration mg/kRfDo (mg/kg-day):RfCi (mg/m3):SFO (mg/kg-day)-1:IUR (µg/m3)-1:Mutagen:	z[a]anthracene i5-3 :g: 4.82E-01 1.00E-01 6.00E-05 Y Y Y	Non-Car Ingestion: Dermal: Inhalation:	N/A	Calculated Hazard/Risk	Ca Ingestion: Dermal: Inhalation:	N/A ancer 1.47E-08 8.11E-09 5.36E-10
Analyte:BenCAS:56-5Concentration mg/kRfDo (mg/kg-day):RfCi (mg/m3):SFO (mg/kg-day)-1:IUR (µg/m3)-1:Mutagen:	z[a]anthracene i5-3 :g: 4.82E-01 1.00E-01 6.00E-05 Y Y Y	Non-Car Ingestion: Dermal: Inhalation: Total:	<u>N/A</u> ncer Adult 0.00E+00 0.00%	Calculated Hazard/Risk	Ca Ingestion: Dermal: Inhalation: Total:	N/A ancer 1.47E-08 8.11E-09 5.36E-10 2.34E-08

Program:	Voluntary	y Remediati	on Program (\	/RP)				
			<u>Risk Based F</u>	erformance Crite	<u>eria</u>			
Defau	lt Hazard In	dex		or Individual Che	mical	Default Cu		sk-All Chemicals
	1			1.00E-06			1.00E-04	Ļ
Soil								
Analyte:	Benzene	ł						
CAS:	71-43-2							
Concentratio	n mg/kg:	5.00E-01		с	alculated Ha	zard/Risk		
RfDo (mg/kg-	-day):	4.00E-03	Non-Car	cer Adult		•	(	Cancer
RfCi (mg/m3)	):	3.00E-02	Ingestion:	1.07E-04			Ingestion:	8.41E-09
SFO (mg/kg-d	day)-1:	5.50E-02	Dermal:				Dermal:	
IUR (µg/m3)-:	1:	7.80E-06	Inhalation:	1.07E-03			Inhalation:	8.98E-08
Mutagen:			Total:	1.18E-03			Total:	9.82E-08
VOC:		Y						
		% Contribution	to Media Risk	0.65%				2.69%
			mg/kg Non-Ca	ncer Adult			(	Cancer
Recomment	ded Acceptab	ole Concentrati	on I	V/A				N/A
				/				,
Analyte:	Benzo(g,	h,i)perylene						
-	Benzo(g, 191-24-2	h,i)perylene		,				
CAS:	191-24-2	2			alculated Ha	zard/Risk		
CAS:	<b>191-24-2</b> n mg/kg:		•	c	alculated Ha	zard/Risk		
CAS: Concentration RfDo (mg/kg-	<b>191-24-2</b> in mg/kg: -day):	2.47E-01	Non-Car	C cer Adult	alculated Ha	zard/Risk		Cancer
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3)	<b>191-24-2</b> n mg/kg: -day): ):	2.47E-01	•	<b>C</b> cer Adult 7.05E-06	alculated Ha	zard/Risk	( Ingestion: Dermal:	
CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d	<b>191-24-2</b> n mg/kg: -day): ): day)-1:	2.47E-01	Non-Car	C cer Adult	alculated Ha	zard/Risk	Ingestion:	
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)-	<b>191-24-2</b> n mg/kg: -day): ): day)-1:	2.47E-01	<b>Non-Car</b> Ingestion: Dermal:	<b>C</b> cer Adult 7.05E-06	alculated Ha	zard/Risk	Ingestion: Dermal:	
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (µg/m3)- Mutagen:	<b>191-24-2</b> n mg/kg: -day): ): day)-1:	2.47E-01	Non-Car Ingestion: Dermal: Inhalation:	C cer Adult 7.05E-06 3.88E-06	alculated Ha	zard/Risk	Ingestion: Dermal: Inhalation:	Cancer
CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen:	<b>191-24-2</b> n mg/kg: -day): ): day)-1: 1:	2.47E-01 3.00E-02	Non-Car Ingestion: Dermal: Inhalation: Total:	C cer Adult 7.05E-06 3.88E-06	alculated Ha	zard/Risk	Ingestion: Dermal: Inhalation:	Cancer
CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen:	<b>191-24-2</b> n mg/kg: -day): ): day)-1: 1:	2.47E-01 3.00E-02 Y	Non-Car Ingestion: Dermal: Inhalation: Total:	C cer Adult 7.05E-06 3.88E-06 1.09E-05 0.01%	alculated Ha	zard/Risk	Ingestion: Dermal: Inhalation: Total:	Cancer 0.00E+00
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC:	<b>191-24-2</b> n mg/kg: day): ): day)-1: 1:	2.47E-01 3.00E-02 Y	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca	C cer Adult 7.05E-06 3.88E-06 1.09E-05 0.01%	alculated Ha	zard/Risk	Ingestion: Dermal: Inhalation: Total:	Cancer 0.00E+00 0.00%
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC: Recommenc	<b>191-24-2</b> n mg/kg: day): ): day)-1: 1: ded Acceptab	2.47E-01 3.00E-02 Y % Contribution	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca	C cer Adult 7.05E-06 3.88E-06 <b>1.09E-05</b> 0.01% ncer Adult	alculated Ha	zard/Risk	Ingestion: Dermal: Inhalation: Total:	Cancer 0.00E+00 0.00% Cancer
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC: Recommence Analyte:	<b>191-24-2</b> n mg/kg: day): ): day)-1: 1:	2.47E-01 3.00E-02 Y % Contribution	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca	C cer Adult 7.05E-06 3.88E-06 <b>1.09E-05</b> 0.01% ncer Adult	alculated Ha	zard/Risk	Ingestion: Dermal: Inhalation: Total:	Cancer 0.00E+00 0.00% Cancer
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC: Recommenc Analyte: CAS:	<b>191-24-2</b> n mg/kg: -day): ): day)-1: 1: <i>ded Acceptak</i> <b>Benzo[a]</b> <b>50-32-8</b>	2.47E-01 3.00E-02 Y % Contribution	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca	C cer Adult 7.05E-06 3.88E-06 1.09E-05 0.01% ncer Adult V/A			Ingestion: Dermal: Inhalation: Total:	Cancer 0.00E+00 0.00% Cancer
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC: Recomment Analyte: CAS: Concentration	<b>191-24-2</b> n mg/kg: day): ): day)-1: 1: <i>ded Acceptate</i> <b>Benzo[a]</b> <b>50-32-8</b> n mg/kg:	2.47E-01 3.00E-02 Y % Contribution	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca on I	C cer Adult 7.05E-06 3.88E-06 1.09E-05 0.01% ncer Adult V/A	alculated Ha		Ingestion: Dermal: Inhalation: <b>Total:</b>	Cancer 0.00E+00 0.00% Cancer N/A
Analyte: CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC: VOC: <i>Recommence</i> Analyte: CAS: Concentration RfDo (mg/kg- RfCi (mg/m3)	<b>191-24-2</b> n mg/kg: day): ): day)-1: 1: <i>ded Acceptab</i> <b>Benzo[a]</b> <b>50-32-8</b> n mg/kg: day):	2.47E-01 3.00E-02 Y % Contribution ole Concentrati <b>[pyrene</b> 3.36E-01	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca on I	C cer Adult 7.05E-06 3.88E-06 1.09E-05 0.01% ncer Adult V/A			Ingestion: Dermal: Inhalation: <b>Total:</b>	Cancer 0.00E+00 0.00% Cancer
CAS: Concentration RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-d IUR (μg/m3)- Mutagen: VOC: <i>Recommence</i> Analyte: CAS: Concentration RfDo (mg/kg-	<b>191-24-2</b> n mg/kg: day): : day)-1: 1: <i>ded Acceptab</i> <b>Benzo[a]</b> <b>50-32-8</b> n mg/kg: -day): :	2.47E-01 3.00E-02 Y % Contribution ole Concentrati <b>pyrene</b> 3.36E-01 3.00E-04	Non-Car Ingestion: Dermal: Inhalation: Total: to Media Risk mg/kg Non-Ca on I	C cer Adult 7.05E-06 3.88E-06 1.09E-05 0.01% ncer Adult v/A C cer Adult			Ingestion: Dermal: Inhalation: Total:	Cancer 0.00E+00 0.00% Cancer N/A

1.51E-03

% Contribution to Media Risk 0.83%

Total:

Y

Mutagen:

VOC:

1.59E-07

4.37%

Total:

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-C			-	ancer
Recommended	Acceptabl	e Concentrati	on	N/A			N/A
Analyte: B	Benzo[b]f	fluoranther	ne				
CAS: 2	205-99-2						
Concentration m	ng/kg:	6.65E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day	<b>/)</b> :		Non-Ca	ncer Adult		Ca	ancer
RfCi (mg/m3):			Ingestion:			Ingestion:	2.03E-08
SFO (mg/kg-day)	)-1:	1.00E-01	Dermal:			Dermal:	1.12E-08
IUR (µg/m3)-1:		6.00E-05	Inhalation:			Inhalation:	2.39E-12
Mutagen:		Y	Total:	0.00E+00		Total:	3.15E-08
VOC:							
	%	6 Contribution	to Media Risk	0.00%			0.86%
			mg/kg Non-C	ancer Adult		C	ancer
Recommended	Acceptabl	e Concentrati	on	N/A			N/A
	-						N/A
Analyte: B	-	e Concentrati <b>luoranther</b>					N/A
Analyte: B CAS: 2	Benzo[k]f 207-08-9				Calculated Hazard/Risk		N/A
Analyte: B CAS: 2 Concentration m	Benzo[k]f 207-08-9	luoranther	ne		Calculated Hazard/Risk		N/A
Analyte: B CAS: 2 Concentration m RfDo (mg/kg-day	Benzo[k]f 207-08-9	luoranther	ne	N/A	Calculated Hazard/Risk		
Analyte: B CAS: 2 Concentration m RfDo (mg/kg-day RfCi (mg/m3):	<b>3enzo[k]f</b> 2 <b>07-08-9</b> ng/kg: γ):	luoranther	ie Non-Ca	N/A	Calculated Hazard/Risk	C	ancer
Analyte: B CAS: 2 Concentration m RfDo (mg/kg-day RfCi (mg/m3): SFO (mg/kg-day)	<b>3enzo[k]f</b> 2 <b>07-08-9</b> ng/kg: γ):	<b>luoranther</b> 3.61E-01	Non-Ca Ingestion:	N/A	Calculated Hazard/Risk	Ca Ingestion:	ancer 1.10E-09
Analyte: B CAS: 2 Concentration m RfDo (mg/kg-day RfCi (mg/m3): SFO (mg/kg-day) IUR (µg/m3)-1:	<b>3enzo[k]f</b> 2 <b>07-08-9</b> ng/kg: γ):	<b>luoranther</b> 3.61E-01 1.00E-02	Non-Ca Ingestion: Dermal:	N/A	Calculated Hazard/Risk	Ca Ingestion: Dermal:	ancer 1.10E-09 6.07E-10
Analyte: B CAS: 2 Concentration m RfDo (mg/kg-day RfCi (mg/m3): SFO (mg/kg-day) IUR (µg/m3)-1: Mutagen:	<b>3enzo[k]f</b> 2 <b>07-08-9</b> ng/kg: γ):	<b>Huoranther</b> 3.61E-01 1.00E-02 6.00E-06	Non-Ca Ingestion: Dermal: Inhalation:	<i>N/A</i> ncer Adult	Calculated Hazard/Risk	Ca Ingestion: Dermal: Inhalation:	ancer 1.10E-09 6.07E-10 1.30E-13
Analyte: B CAS: 2 Concentration m RfDo (mg/kg-day RfCi (mg/m3): SFO (mg/kg-day) IUR (µg/m3)-1: Mutagen:	Benzo[k]f 207-08-9 ng/kg: y):	<b>Huoranther</b> 3.61E-01 1.00E-02 6.00E-06 Y	Non-Ca Ingestion: Dermal: Inhalation:	<i>N/A</i> ncer Adult	Calculated Hazard/Risk	Ca Ingestion: Dermal: Inhalation:	ancer 1.10E-09 6.07E-10 1.30E-13
Analyte: B	Benzo[k]f 207-08-9 ng/kg: y):	<b>Huoranther</b> 3.61E-01 1.00E-02 6.00E-06 Y	Non-Ca Ingestion: Dermal: Inhalation: Total:	<i>N/A</i> ncer Adult 0.00E+00 0.00%	Calculated Hazard/Risk	Ca Ingestion: Dermal: Inhalation: Total:	ancer 1.10E-09 6.07E-10 1.30E-13 <b>1.71E-09</b>

### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte: Benzoic Acid CAS: 65-85-0

CAS: 05-0	85-0					
Concentration mg/	kg: 1.20E+00			Calculated Hazard/Risk		
RfDo (mg/kg-day):	4.00E+00	Non-Car	ncer Adult		Ca	ancer
RfCi (mg/m3):		Ingestion:	2.57E-07		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.09E-07		Dermal:	
IUR (µg/m3)-1:		Inhalation:			Inhalation:	
Mutagen:		Total:	3.66E-07		Total:	0.00E+00
VOC:						
	% Contribution	n to Media Risk	0.00%			0.00%
		mg/kg Non-Ca	incer Adult		Cu	ancer
Recommended Act	ceptable Concentrat	ion i	N/A			N/A
Analyte: Ber	yllium and comp	ounds				
CAS: 744	0-41-7					
Concentration mg/	kg: 9.00E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	2.00E-03	Non-Car	ncer Adult		Ca	ancer
RfCi (mg/m3):	2.00E-05	Ingestion:	3.85E-04		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:			Dermal:	
IUR (μg/m3)-1:	2.40E-03	Inhalation:	7.55E-06		Inhalation:	1.30E-10
Mutagen:		Total:	3.93E-04		Total:	1.30E-10
VOC:						
	0/ Contribution	- to Madia Dick	0.220/			0.000/

 % Contribution to Media Risk
 0.22%
 0.00%

 mg/kg
 Non-Cancer Adult
 Cancer

 Recommended Acceptable Concentration
 N/A
 N/A

### Analyte: Bis(2-ethylhexyl)phthalate CAS: 117-81-7

Concentration mg/kg:	2.31E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Ca	ncer Adult		C	ancer
RfCi (mg/m3):		Ingestion:	9.89E-06		Ingestion:	9.89E-10
SFO (mg/kg-day)-1:	1.40E-02	Dermal:	4.19E-06		Dermal:	4.19E-10
IUR (μg/m3)-1:	2.40E-06	Inhalation:			Inhalation:	3.32E-14
Mutagen:		Total:	1.41E-05		Total:	1.41E-09
VOC:						
	% Contribution	to Media Risk	0.01%			0.04%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ncer Adult		(	Cancer
Recommende	ed Acceptat	ole Concentrati	on I	N/A			N/A
Analyte: CAS:	Butylber 104-51-8	nzene, n- B					
Concentration	mg/kg:	1.40E-01			Calculated Hazard/Risk		
RfDo (mg/kg-d	ay):	5.00E-02	Non-Car	ncer Adult	-	C	Cancer
RfCi (mg/m3):			Ingestion:	2.40E-06		Ingestion:	
SFO (mg/kg-da	ıy)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1	:		Inhalation:			Inhalation:	
Mutagen:			Total:	2.40E-06		Total:	0.00E+00
VOC:		Y					
		% Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Ca	ncer Adult		(	Cancer
Recommende	ed Acceptak	ole Concentrati	on I	N/A			N/A
Analyte:	Cadmiur	n (Diet)					
CAS:	7440-43	-9-Diet					
Concentration	mg/kg:	3.33E-01			Calculated Hazard/Risk		
RfDo (mg/kg-d	ay):	1.00E-04	Non-Car	ncer Adult		C	Cancer
RfCi (mg/m3):		1.00E-05	Ingestion:	2.85E-03		Ingestion:	
SFO (mg/kg-da	ıy)-1:		Dermal:	3.02E-07		Dermal:	
IUR (µg/m3)-1	:	1.80E-03	Inhalation:	5.59E-06		Inhalation:	3.59E-11
Mutagen:			Total:	2.86E-03		Total:	3.59E-11
VOC:							
		% Contribution	to Media Risk	1.57%			0.00%
			mg/kg Non-Ca	ncer Adult		(	Cancer
1		ole Concentrati		N/A			N/A

Cancer

Cancer

N/A

0.00E+00

0.00%

### Voluntary Remediation Program (VRP) Program:

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil Analyte: Carbazole

CAS:	86-74-8					
Concentrat	tion mg/kg:	2.42E-01			Calculated Hazard/Risk	
RfDo (mg/ł	kg-day):		Non-Ca	incer Adult		
RfCi (mg/m	13):		Ingestion:			Ingestion:
SFO (mg/k	g-day)-1:		Dermal:			Dermal:
IUR (µg/m3	3)-1:		Inhalation:			Inhalation:
Mutagen:			Total:	0.00E+00		Total:
VOC:						
	ç	% Contribution	to Media Risk	0.00%		

mg/kg Non-Cancer Adult

N/A

Recommended Acceptable Concentration

### Analyte: Chromium(III), Insoluble Salts CAS: 16065-83-1

Concentration mg/kg:	2.06E+02			Calculated Hazard/Risk		
RfDo (mg/kg-day):	1.50E+00	Non-Ca	ncer Adult		C	Cancer
RfCi (mg/m3):		Ingestion:	1.18E-04		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:		Inhalation:			Inhalation:	
Mutagen:		Total:	1.18E-04		Total:	0.00E+00
VOC:						
	% Contribution	n to Media Risk	0.06%			0.00%
		mg/kg Non-C	ancer Adult		(	Cancer
Recommended Acceptat	ole Concentrati	on	N/A			N/A

### Analyte: Chrysene CAS: 218-01-9

Concentration mg/kg:	6.91E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):		Non-Ca	ancer Adult		Ca	ancer
RfCi (mg/m3):		Ingestion:			Ingestion:	2.11E-10
SFO (mg/kg-day)-1:	1.00E-03	Dermal:			Dermal:	1.16E-10
IUR (μg/m3)-1:	6.00E-07	Inhalation:			Inhalation:	2.49E-14
Mutagen:	Y	Total:	0.00E+00		Total:	3.28E-10
VOC:						
	% Contribution	n to Media Risk	0.00%			0.01%

## Program: Voluntary Remediation Program (VRP)

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals		
1	1.00E-06	1.00E-04		

# Soil

			mg/kg <i>Non-Ca</i>	ncer Adult		C	ancer
Recomment	ded Acceptabl	le Concentrati	on .	N/A			N/A
Analyte:	Cobalt						
CAS:	7440-48-4	4					
Concentratio	on mg/kg:	1.04E+01			Calculated Hazard/Risk		
RfDo (mg/kg-day): 3.00E-04		Non-Cancer Adult		Cancer			
RfCi (mg/m3)	):	6.00E-06	Ingestion:	2.96E-02		Ingestion:	
SFO (mg/kg-o	day)-1:		Dermal:			Dermal:	
IUR (µg/m3)-	-1:	9.00E-03	Inhalation:	2.90E-04		Inhalation:	5.60E-09
Mutagen:			Total:	2.99E-02		Total:	5.60E-09
VOC:							
	%	6 Contribution	to Media Risk	16.44%			0.15%
mg/kg Non-Cancer Adult					Cancer		
Recommended Acceptable Concentration N/A					N/A		
Recomment	ded Acceptabl	le Concentrati	ion i	N/A			N/A
		le Concentrati	on i	N/A			N/A
Recomment Analyte: CAS:	ded Acceptabl Copper 7440-50-8		on i	N/A			N/A
Analyte:	Copper 7440-50-8		on 1	N/A	Calculated Hazard/Risk		N/A
Analyte: CAS:	Copper 7440-50-8	8		N/A	Calculated Hazard/Risk		
Analyte: CAS: Concentratio	Copper 7440-50-8 on mg/kg: -day):	<b>8</b> 1.55E+02		·	Calculated Hazard/Risk		N/A ancer
Analyte: CAS: Concentratio RfDo (mg/kg-	Copper 7440-50-8 on mg/kg: -day): ):	<b>8</b> 1.55E+02	Non-Car	ncer Adult	Calculated Hazard/Risk	C	
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-o	Copper 7440-50-8 on mg/kg: -day): ): day)-1:	<b>8</b> 1.55E+02	Non-Car Ingestion:	ncer Adult	Calculated Hazard/Risk	C Ingestion:	
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3)	Copper 7440-50-8 on mg/kg: -day): ): day)-1:	<b>8</b> 1.55E+02	<b>Non-Car</b> Ingestion: Dermal:	ncer Adult	Calculated Hazard/Risk	C Ingestion: Dermal:	
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3)- SFO (mg/kg-c IUR (µg/m3)- Mutagen:	Copper 7440-50-8 on mg/kg: -day): ): day)-1:	<b>8</b> 1.55E+02	<b>Non-Car</b> Ingestion: Dermal: Inhalation:	ncer Adult 3.32E-03	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation:	ancer
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3)- SFO (mg/kg-c IUR (µg/m3)- Mutagen:	Copper 7440-50-8 on mg/kg: -day): ): day)-1: -1:	<b>B</b> 1.55E+02 4.00E-02	<b>Non-Car</b> Ingestion: Dermal: Inhalation:	ncer Adult 3.32E-03	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation:	ancer
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-α IUR (μg/m3)-	Copper 7440-50-8 on mg/kg: -day): ): day)-1: -1:	<b>B</b> 1.55E+02 4.00E-02	Non-Car Ingestion: Dermal: Inhalation: Total:	ncer Adult 3.32E-03 <b>3.32E-03</b> 1.82%	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation: <b>Total:</b>	ancer 0.00E+00

#### Voluntary Remediation Program (VRP) Program:

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

Analyte: Cresol, o-

•	95-48-7						
Concentration	mg/kg:	1.30E-01			Calculated Hazard/Risk		
RfDo (mg/kg-da	ay):	5.00E-02	Non-Can	cer Adult			Cancer
RfCi (mg/m3):		6.00E-01	Ingestion:	2.23E-06		Ingestion:	
SFO (mg/kg-da	y)-1:		Dermal:	9.42E-07		Dermal:	
IUR (µg/m3)-1:			Inhalation:	3.64E-11		Inhalation:	
Mutagen:			Total:	3.17E-06		Total:	0.00E+00
VOC:							
	%	Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommende	d Acceptable	e Concentrati	on I	V/A			N/A
Analyte:	Cresol, p-	chloro-m-					
CAS:	59-50-7						
Concentration	mg/kg:	1.19E-01			Calculated Hazard/Risk		
RfDo (mg/kg-da	ay):	1.00E-01	Non-Can	cer Adult			Cancer
RfCi (mg/m3):			Ingestion:	1.02E-06		Ingestion:	
SFO (mg/kg-da	y)-1:		Dermal:	4.31E-07		Dermal:	
IUR (µg/m3)-1:	:		Inhalation:			Inhalation:	
Mutagen:			Total:	1.45E-06		Total:	0.00E+00
VOC:							
	%	Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommende	d Acceptable	e Concentrati	on I	V/A			N/A
Analyte:	Cumene						
CAS:	98-82-8						
Concentration	mg/kg:	1.68E-01			Calculated Hazard/Risk		
RfDo (mg/kg-da	ay):	1.00E-01	Non-Can	cer Adult	-		Cancer
RfCi (mg/m3):		4.00E-01	Ingestion:	1.44E-06		Ingestion:	
SFO (mg/kg-da	y)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:			Inhalation:	1.54E-05		Inhalation:	

% Contribution to Media Risk 0.01%

Υ

VOC:

### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	incer Adult		C	ancer
Recomment	led Acceptab	le Concentrati	on	N/A			N/A
Analyte:	Cyanide	(CN-)					
CAS:	57-12-5						
Concentratio	n mg/kg:	8.26E-01			Calculated Hazard/Risk		
RfDo (mg/kg-	day):	6.00E-04	Non-Ca	ncer Adult		С	ancer
RfCi (mg/m3)	:	8.00E-04	Ingestion:	1.18E-03		Ingestion:	
SFO (mg/kg-c	lay)-1:		Dermal:			Dermal:	
IUR (µg/m3)-	1:		Inhalation:	4.42E-03		Inhalation:	
Mutagen:			Total:	5.60E-03		Total:	0.00E+00
VOC:		Y					
	ģ	% Contribution	to Media Risk	3.08%			0.00%
			mg/kg Non-Ca	ancer Adult		С	ancer
Recomment	led Acceptab	le Concentrati	0. 0	ancer Adult N/A		-	`ancer N/A
	-		on			-	
Analyte:	-	le Concentrati , <b>h]anthrace</b>	on			-	
Analyte: CAS:	Dibenz[a 53-70-3		on		Calculated Hazard/Risk	-	
Analyte: CAS: Concentratio	Dibenz[a 53-70-3 n mg/kg:	,h]anthrace	on ne		Calculated Hazard/Risk		
Analyte: CAS: Concentratio RfDo (mg/kg-	Dibenz[a 53-70-3 n mg/kg: day):	,h]anthrace	on ne	N/A	Calculated Hazard/Risk		N/A
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3)	Dibenz[a 53-70-3 n mg/kg: day):	,h]anthrace	ne Non-Ca	N/A	Calculated Hazard/Risk	c	N/A
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-c	Dibenz[a 53-70-3 n mg/kg: day): : lay)-1:	<b>,h]anthrace</b> 1.98E-01	on ne Non-Car Ingestion:	N/A	Calculated Hazard/Risk	C Ingestion:	<i>N/A</i> ancer 6.05E-08
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-c IUR (μg/m3)-	Dibenz[a 53-70-3 n mg/kg: day): : lay)-1:	<b>,h]anthrace</b> 1.98E-01 1.00E+00	ne Non-Ca Ingestion: Dermal:	N/A	Calculated Hazard/Risk	C Ingestion: Dermal:	<i>N/A</i> ancer 6.05E-08 3.33E-08
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-c IUR (μg/m3)- Mutagen:	Dibenz[a 53-70-3 n mg/kg: day): : lay)-1:	<b>,h]anthrace</b> 1.98E-01 1.00E+00 6.00E-04	Non-Car Ingestion: Dermal: Inhalation:	<i>N/A</i> ncer Adult	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation:	<i>N/A</i> ancer 6.05E-08 3.33E-08 7.12E-12
Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-c IUR (µg/m3)- Mutagen:	Dibenz[a 53-70-3 n mg/kg: day): : lay)-1: 1:	<b>,h]anthrace</b> 1.98E-01 1.00E+00 6.00E-04 Y	Non-Car Ingestion: Dermal: Inhalation:	<i>N/A</i> ncer Adult	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation:	<i>N/A</i> ancer 6.05E-08 3.33E-08 7.12E-12
Recomment Analyte: CAS: Concentratio RfDo (mg/kg- RfCi (mg/m3) SFO (mg/kg-c IUR (µg/m3)- Mutagen: VOC:	Dibenz[a 53-70-3 n mg/kg: day): : lay)-1: 1:	<b>,h]anthrace</b> 1.98E-01 1.00E+00 6.00E-04 Y	Non-Car Ingestion: Dermal: Inhalation: Total:	<u>N/A</u> ncer Adult 0.00E+00 0.00%	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation: Total:	<i>N/A</i> ancer 6.05E-08 3.33E-08 7.12E-12 <b>9.39E-08</b>

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte: Dimethylphenol, 2,4-

CAS: 105-67-9

		-				
Concentration mg/kg:	2.00E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Car	ncer Adult		Ca	ancer
RfCi (mg/m3):		Ingestion:	8.56E-06		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.62E-06		Dermal:	
IUR (µg/m3)-1:		Inhalation:			Inhalation:	
Mutagen:		Total:	1.22E-05		Total:	0.00E+00
VOC:						
	% Contribution	n to Media Risk	0.01%			0.00%
		mg/kg Non-Ca	ncer Adult		Сс	ancer
Recommended Accepta	ble Concentrati	ion I	N/A		I	N/A
Analyte: Ethylber	nzene					
CAS: 100-41-4						
Concentration mg/kg:	3.42E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	5.00E-02	Non-Car	ncer Adult		Ca	ancer
RfCi (mg/m3):	1.00E+00	Ingestion:	5.86E-06		Ingestion:	1.15E-09
SFO (mg/kg-day)-1:	1 105 00	Dermal:			Dermal:	
	1.10E-02	20000				
IUR (μg/m3)-1:	2.50E-06	Inhalation:	1.38E-05		Inhalation:	1.23E-08
IUR (μg/m3)-1: Mutagen:			1.38E-05 <b>1.96E-05</b>		Inhalation: <b>Total:</b>	1.23E-08 <b>1.34E-08</b>

 % Contribution to Media Risk
 0.01%
 0.37%

 mg/kg
 Non-Cancer Adult
 Cancer

 Recommended Acceptable Concentration
 N/A
 N/A

### Analyte: Fluoranthene

CAS:	206-44-0

Concentration mg/kg:	8.95E-01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Ca	ncer Adult			Cancer
RfCi (mg/m3):		Ingestion:	1.92E-05		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.05E-05		Dermal:	
IUR (µg/m3)-1:		Inhalation:			Inhalation:	
Mutagen:		Total:	2.97E-05		Total:	0.00E+00
VOC:						
	% Contribution	to Media Risk	0.02%			0.00%

### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Co	ancer Adult		C	ancer
Recommend	led Acceptabl	le Concentrati	on	N/A			N/A
Analyte:	Fluorene						
CAS:	86-73-7						
Concentration	n mg/kg:	2.30E-01			Calculated Hazard/Risk		
RfDo (mg/kg-	day):	4.00E-02	Non-Ca	ncer Adult		c	ancer
RfCi (mg/m3)	:		Ingestion:	4.92E-06		Ingestion:	
SFO (mg/kg-d	ay)-1:		Dermal:	2.71E-06		Dermal:	
IUR (µg/m3)-1	1:		Inhalation:			Inhalation:	
Mutagen:			Total:	7.63E-06		Total:	0.00E+00
VOC:		Y					
	%	6 Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Co	ancer Adult		C	ancer
Recommend	led Acceptabl	le Concentrati		ancer Adult N/A		-	`ancer N/A
	-	le Concentrati <b>,2,3-cd]pyr</b> o	on			-	
Analyte:	-		on			-	
Analyte: CAS:	Indeno[1, 193-39-5		on		Calculated Hazard/Risk	-	
Analyte: CAS: Concentration	Indeno[1, 193-39-5 n mg/kg:	,2,3-cd]pyr	ene		Calculated Hazard/Risk		
Analyte: CAS: Concentration RfDo (mg/kg-0	Indeno[1, 193-39-5 n mg/kg: day):	,2,3-cd]pyr	ene	N/A	Calculated Hazard/Risk		N/A
Analyte: CAS: Concentration RfDo (mg/kg-0 RfCi (mg/m3):	Indeno[1, 193-39-5 n mg/kg: day):	,2,3-cd]pyr	ene Non-Ca	N/A	Calculated Hazard/Risk	C	N/A
Analyte: CAS: Concentration RfDo (mg/kg-0 RfCi (mg/m3): SFO (mg/kg-d	Indeno[1, 193-39-5 n mg/kg: day): : ay)-1:	<b>,2,3-cd]pyr</b> 2.82E-01	ene Non-Ca Ingestion:	N/A	Calculated Hazard/Risk	C Ingestion:	<i>N/A</i> ancer 8.62E-09
Analyte: CAS: Concentration RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-2	Indeno[1, 193-39-5 n mg/kg: day): : ay)-1:	<b>,2,3-cd]pyr</b> 2.82E-01 1.00E-01	ene Non-Ca Ingestion: Dermal:	N/A	Calculated Hazard/Risk	C Ingestion: Dermal:	<i>N/A</i> ancer 8.62E-09 4.74E-09
Analyte: CAS: Concentration RfDo (mg/kg-4 RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-2 Mutagen:	Indeno[1, 193-39-5 n mg/kg: day): : ay)-1:	<b>,2,3-cd]pyr</b> 2.82E-01 1.00E-01 6.00E-05	ene Non-Ca Ingestion: Dermal: Inhalation:	<i>N/A</i> ncer Adult	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation:	N/A ancer 8.62E-09 4.74E-09 1.01E-12
Analyte: CAS: Concentration RfDo (mg/kg-4 RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-2 Mutagen:	Indeno[1, 193-39-5 n mg/kg: day): ay)-1:	<b>,2,3-cd]pyr</b> 2.82E-01 1.00E-01 6.00E-05 Y	ene Non-Ca Ingestion: Dermal: Inhalation:	<i>N/A</i> ncer Adult	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation:	N/A ancer 8.62E-09 4.74E-09 1.01E-12
Recommend Analyte: CAS: Concentration RfDo (mg/kg-0 RfCi (mg/m3): SFO (mg/kg-d IUR (µg/m3)-1 Mutagen: VOC:	Indeno[1, 193-39-5 n mg/kg: day): ay)-1:	<b>,2,3-cd]pyr</b> 2.82E-01 1.00E-01 6.00E-05 Y	ene Non-Ca Ingestion: Dermal: Inhalation: Total:	<i>N/A</i> ncer Adult 0.00E+00 0.00%	Calculated Hazard/Risk	C Ingestion: Dermal: Inhalation: Total:	N/A ancer 8.62E-09 4.74E-09 1.01E-12 1.34E-08

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04
Soil		

### Soil Analyte:

Analyte: Iron

CAS:	7439-89 [.]	-6					
Concentration	mg/kg:	6.57E+04			Calculated Hazard/Risk		
RfDo (mg/kg-da	iy):	7.00E-01	Non-Can	cer Adult			Cancer
RfCi (mg/m3):			Ingestion:	8.04E-02		Ingestion:	
SFO (mg/kg-day	/)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:			Inhalation:			Inhalation:	
Mutagen:			Total:	8.04E-02		Total:	0.00E+00
VOC:							
		% Contribution	to Media Risk	44.20%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommended	d Acceptal	ble Concentrati	on I	V/A			N/A
Analyte: i	isopropy	ltoluene					
CAS:	99-87-6						
Concentration	mg/kg:	9.93E-02			Calculated Hazard/Risk		
RfDo (mg/kg-da	iy):	1.00E-01	Non-Can	cer Adult			Cancer
RfCi (mg/m3):		4.00E-01	Ingestion:	8.50E-07		Ingestion:	
SFO (mg/kg-day	/)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:			Inhalation:	5.91E-06		Inhalation:	
Mutagen:			Total:	6.76E-06		Total:	0.00E+00
VOC:		Y					
		% Contribution	to Media Risk	0.00%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommended	d Acceptal	ble Concentrati	on I	V/A			N/A
Analyte:	Lead and	d Compound	s				
CAS:	7439-92	-1					
Concentration	mg/kg:	2.05E+01			Calculated Hazard/Risk		
RfDo (mg/kg-da	iy):		Non-Can	cer Adult			Cancer
RfCi (mg/m3):			Ingestion:			Ingestion:	
			0			0	

0.00E+00

IUR (µg/m3)-1: Mutagen: VOC:

% Contribution to Media Risk 0.00%

Total:

Inhalation:

0.00E+00

0.00%

Inhalation:

Total:

### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ancer Adult			Cancer
Recommended Acceptable Concentration N/A							N/A
Analyte: M	langanes	se (Diet)					
CAS: 74	439-96-5	-Diet					
Concentration m	ıg/kg:	5.16E+02			Calculated Hazard/Risk		
RfDo (mg/kg-day)	):	1.40E-01	Non-Ca	ncer Adult			Cancer
RfCi (mg/m3):		5.00E-05	Ingestion:	3.16E-03		Ingestion:	
SFO (mg/kg-day)-	-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:			Inhalation:	1.73E-03		Inhalation:	
Mutagen:			Total:	4.89E-03		Total:	0.00E+00
VOC:							
	%	Contribution	to Media Risk	2.69%			0.00%
			mg/kg Non-Ca	ancer Adult			Cancer
Recommended	Acceptable	e Concentrati	on	N/A			N/A
		concentration	011	10,11			10,11
Analyte: M	-	elemental)					
-	-	elemental)					
CAS: 74	1ercury ( 439-97-6	elemental)			Calculated Hazard/Risk		
CAS: 74 Concentration m	1ercury ( 439-97-6 ^{1g/kg:}	elemental)		ncer Adult	Calculated Hazard/Risk		Cancer
CAS: 74 Concentration m RfDo (mg/kg-day)	1ercury ( 439-97-6 ^{1g/kg:}	elemental)			Calculated Hazard/Risk	Ingestion:	
CAS: 74 Concentration m RfDo (mg/kg-day) RfCi (mg/m3):	1ercury ( 439-97-6 g/kg: ):	elemental) 5.07E-02	Non-Ca		Calculated Hazard/Risk	Ingestion: Dermal:	
CAS: 74 Concentration m RfDo (mg/kg-day) RfCi (mg/m3): SFO (mg/kg-day)-	1ercury ( 439-97-6 g/kg: ):	elemental) 5.07E-02	Non-Ca Ingestion:		Calculated Hazard/Risk	-	
CAS: 74 Concentration m RfDo (mg/kg-day) RfCi (mg/m3): SFO (mg/kg-day)- IUR (µg/m3)-1:	1ercury ( 439-97-6 g/kg: ):	elemental) 5.07E-02	Non-Ca Ingestion: Dermal:	ncer Adult	Calculated Hazard/Risk	Dermal:	
CAS: 74 Concentration m RfDo (mg/kg-day) RfCi (mg/m3): SFO (mg/kg-day)- IUR (µg/m3)-1: Mutagen:	1ercury ( 439-97-6 g/kg: ):	elemental) 5.07E-02	Non-Car Ingestion: Dermal: Inhalation:	ncer Adult 1.11E-03	Calculated Hazard/Risk	Dermal: Inhalation:	Cancer
CAS: 74 Concentration m RfDo (mg/kg-day) RfCi (mg/m3): SFO (mg/kg-day)- IUR (µg/m3)-1: Mutagen:	<b>1ercury (</b> <b>439-97-6</b> g/kg: ): -1:	elemental) 5.07E-02 3.00E-04	Non-Car Ingestion: Dermal: Inhalation:	ncer Adult 1.11E-03	Calculated Hazard/Risk	Dermal: Inhalation:	Cancer
-	<b>1ercury (</b> <b>439-97-6</b> g/kg: ): -1:	elemental) 5.07E-02 3.00E-04	Non-Cal Ingestion: Dermal: Inhalation: Total:	ncer Adult 1.11E-03 <b>1.11E-03</b> 0.61%	Calculated Hazard/Risk	Dermal: Inhalation:	Cancer 0.00E+00

#### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

# Analyte:Methyl Ethyl Ketone (2-Butanone)CAS:78-93-3

ancer 0.00E+00 0.00% ancer N/A
0.00E+00 0.00% ancer N/A
0.00% ancer N/A
0.00% ancer N/A
0.00% ancer N/A
0.00% ancer N/A
ancer N/A
ancer N/A
N/A
<u>.</u>
ancer
ancer
ancer
0.00E+00
0.002+00
0.00%
ancer
N/A
ancer
4.22E-13
2.57E-13

% Contribution to Media Risk 0.00%

Υ

VOC:

0.00%

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ncer Adult		C	Cancer
Recommen	Recommended Acceptable Concentration N/A						N/A
Analyte:	Methyln	aphthalene	, 1-				
CAS:	90-12-0						
Concentratio	on mg/kg:	2.18E+00			Calculated Hazard/Risk		
RfDo (mg/kg	-day):	7.00E-02	Non-Car	ncer Adult		C	ancer
RfCi (mg/m3	):		Ingestion:	2.67E-05		Ingestion:	1.93E-08
SFO (mg/kg-	day)-1:	2.90E-02	Dermal:	1.47E-05		Dermal:	1.06E-08
IUR (µg/m3)·	-1:		Inhalation:			Inhalation:	
Mutagen:			Total:	4.13E-05		Total:	3.00E-08
VOC:		Y					
		% Contribution	to Media Risk	0.02%			0.82%
			mg/kg Non-Ca	ncer Adult		(	Cancer
Recommen	ded Acceptab	ole Concentrati	ion i	N/A			N/A
Analyte:	Methyln	aphthalene	, 2-				
CAS:	91-57-6	-					
Concentratic	on mg/kg:	3.51E+00			Calculated Hazard/Risk		
RfDo (mg/kg	-day):	4.00E-03	Non-Car	ncer Adult		C	ancer
RfCi (mg/m3	):		Ingestion:	7.51E-04		Ingestion:	
SFO (mg/kg-	day)-1:		Dermal:	4.13E-04		Dermal:	
IUR (µg/m3)·	-1:		Inhalation:			Inhalation:	
Mutagen:			Total:	1.16E-03		Total:	0.00E+00
		Y					
VOC:		% Contribution	to Media Risk	0.64%			0.00%
VOC:		/ Contribution					
VOC:			mg/kg Non-Ca	ncer Adult		(	Cancer

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte: Naphthalene CAS: 91-20-3

CAJ. <u>J1-20-</u>	5					
Concentration mg/kg:	2.05E+00			Calculated Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	-	Ca	ancer
RfCi (mg/m3):	3.00E-03 I	ngestion:	8.76E-05		Ingestion:	7.51E-08
SFO (mg/kg-day)-1:	1.20E-01 [	Dermal:	4.82E-05		Dermal:	4.13E-08
IUR (μg/m3)-1:	3.40E-05 I	nhalation:	3.36E-03		Inhalation:	1.23E-07
Mutagen:	r	Fotal:	3.50E-03		Total:	2.39E-07
VOC:	Y					
	% Contribution to	o Media Risk	1.92%			6.55%
	n	ng/kg <i>Non-Ca</i>	ncer Adult		Ca	ancer
Recommended Accept	table Concentration	n 1	V/A		l	N/A
Analyte: Nickel	Soluble Salts					
CAS: 7440-0	02-0					
Concentration mg/kg:	1.11E+02			Calculated Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult		Ca	ancer
RfCi (mg/m3):	9.00E-05 I	ngestion:	4.75E-03		Ingestion:	
SFO (mg/kg-day)-1:	[	Dermal:			Dermal:	
IUR (μg/m3)-1:	2.60E-04 I	nhalation:	2.07E-04		Inhalation:	1.73E-09
Mutagen:	٦	Fotal:	4.95E-03		Total:	1.73E-09
VOC:						
	% Contribution to	o Media Risk	2.72%			0.05%
	n	ng/kg <i>Non-Ca</i>	ncer Adult		Co	ancer
Recommended Accept	table Concentration	n 1	V/A			N/A
Analyte: Phena	nthrene					
CAS: 85-01-	8					
Concentration mg/kg:	1.70E+00			Calculated Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult		Ca	ancer

RfDo (mg/kg-day):	3.00E-02	Non-Cancer Adult		Cancer	
RfCi (mg/m3):		Ingestion:	4.84E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.66E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:	
Mutagen:		Total:	7.51E-05	Total: 0.00E+00	)
VOC:	Y				
	% Contribution	to Media Risk	0.04%	0.00%	

Wednesday, December 6, 2023

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ncer Adult			Cancer
Recommended Acceptable Concentration N/A							N/A
Analyte: CAS:	Pyrene 129-00-0						
Concentration	n mg/kg:	8.78E-01			Calculated Hazard/Risk		
RfDo (mg/kg-	day):	3.00E-02	Non-Can	cer Adult			Cancer
RfCi (mg/m3)	:		Ingestion:	2.51E-05		Ingestion:	
SFO (mg/kg-d	ay)-1:		Dermal:	1.38E-05		Dermal:	
IUR (µg/m3)-1	1:		Inhalation:			Inhalation:	
Mutagen:			Total:	3.88E-05		Total:	0.00E+00
VOC:		Y					
	%	6 Contribution	to Media Risk	0.02%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommend	led Acceptabl	e Concentrati	on I	V/A			N/A
Analyte: CAS:	Toluene 108-88-3						
			]				
Concentration		2.07E+00			Calculated Hazard/Risk		
RfDo (mg/kg-		8.00E-02		cer Adult			Cancer
RfCi (mg/m3):	:	5.00E+00	Ingestion:	2.22E-05			
		J.002+00	_	2.22E-05		Ingestion:	
SFO (mg/kg-d		5.002+00	Dermal:	2.222-05		Ingestion: Dermal:	
SFO (mg/kg-d		5.002100	_	2.22E-05		-	
SFO (mg/kg-d IUR (µg/m3)-1		3.002100	Dermal:			Dermal:	0.00E+00
SFO (mg/kg-d IUR (μg/m3)-1 Mutagen: VOC:		Y	Dermal: Inhalation:	2.20E-05		Dermal: Inhalation:	0.00E+00
SFO (mg/kg-d IUR (µg/m3)-1 Mutagen:	1:	Y	Dermal: Inhalation:	2.20E-05		Dermal: Inhalation:	<b>0.00E+00</b> 0.00%
SFO (mg/kg-d IUR (μg/m3)-1 Mutagen:	1:	Y	Dermal: Inhalation: Total:	2.20E-05 <b>4.42E-05</b> 0.02%		Dermal: Inhalation:	

#### Program: Voluntary Remediation Program (VRP)

_____

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

#### Analyte: Trimethylbenzene, 1,2,4-

Concentration mg/kg:						
	1.47E+00			Calculated Hazard/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Car	ncer Adult			Cancer
RfCi (mg/m3):	6.00E-02	Ingestion:	1.26E-04		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:		Inhalation:	7.06E-04		Inhalation:	
Mutagen:		Total:	8.31E-04		Total:	0.00E+00
VOC:	Y					
	% Contribution t	to Media Risk	0.46%			0.00%
	r	mg/kg <i>Non-Ca</i>	ncer Adult			Cancer
Recommended Acceptal	ble Concentratio	n l	N/A			N/A
-	ylbenzene, 1,	3,5-				
Analyte: Trimeth CAS: 108-67-8	ylbenzene, 1,	3,5-				
CAS: 108-67-8	ylbenzene, 1,3 3	3,5-		Calculated Hazard/Rick		
CAS: 108-67-8 Concentration mg/kg:	ylbenzene, 1,		ocer Adult	Calculated Hazard/Risk		Cancer
CAS: 108-67-8 Concentration mg/kg: RfDo (mg/kg-day):	ylbenzene, 1,3 3 4.37E-01 1.00E-02		ncer Adult 3.74E-05	Calculated Hazard/Risk	Ingestion:	Cancer
CAS: 108-67-8	ylbenzene, 1,3 3 4.37E-01 1.00E-02 6.00E-02	Non-Car		Calculated Hazard/Risk	Ingestion: Dermal:	Cancer
CAS: 108-67-8 Concentration mg/kg: RfDo (mg/kg-day): RfCi (mg/m3):	ylbenzene, 1,3 3 4.37E-01 1.00E-02 6.00E-02	Non-Car Ingestion:		Calculated Hazard/Risk	•	Cancer
CAS: 108-67-8 Concentration mg/kg: RfDo (mg/kg-day): RfCi (mg/m3): SFO (mg/kg-day)-1:	ylbenzene, 1,3 8 4.37E-01 1.00E-02 6.00E-02	Non-Car Ingestion: Dermal:	3.74E-05	Calculated Hazard/Risk	Dermal:	Cancer 0.00E+00
CAS: 108-67-8 Concentration mg/kg: RfDo (mg/kg-day): RfCi (mg/m3): SFO (mg/kg-day)-1: IUR (μg/m3)-1:	ylbenzene, 1,3 8 4.37E-01 1.00E-02 6.00E-02	Non-Car Ingestion: Dermal: Inhalation:	3.74E-05 2.52E-04	Calculated Hazard/Risk	Dermal: Inhalation:	
CAS: 108-67-8 Concentration mg/kg: RfDo (mg/kg-day): RfCi (mg/m3): SFO (mg/kg-day)-1: IUR (μg/m3)-1: Mutagen: VOC:	ylbenzene, 1,3 3 4.37E-01 1.00E-02 6.00E-02	Non-Car Ingestion: Dermal: Inhalation: Total:	3.74E-05 2.52E-04	Calculated Hazard/Risk	Dermal: Inhalation:	
CAS: 108-67-8 Concentration mg/kg: RfDo (mg/kg-day): RfCi (mg/m3): SFO (mg/kg-day)-1: IUR (μg/m3)-1: Mutagen: VOC:	ylbenzene, 1,3 3 4.37E-01 1.00E-02 6.00E-02 Y % Contribution t	Non-Car Ingestion: Dermal: Inhalation: Total:	3.74E-05 2.52E-04 <b>2.89E-04</b> 0.16%	Calculated Hazard/Risk	Dermal: Inhalation:	0.00E+00

#### Analyte: Vanadium and Compounds CAS: 7440-62-2

Concentration mg/kg:	4.04E+01			Calculated Hazard/Risk		
RfDo (mg/kg-day):	5.00E-03	Non-Ca	ncer Adult			Cancer
RfCi (mg/m3):	1.00E-04	Ingestion:	6.91E-03		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1:		Inhalation:	6.78E-05		Inhalation:	
Mutagen:		Total:	6.98E-03		Total:	0.00E+00
VOC:						
	% Contribution	to Media Risk	3.84%			0.00%

#### Program: Voluntary Remediation Program (VRP)

	<u>Risk Based Performance Criteria</u>	
Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

			mg/kg Non-Ca	ncer Adult			Cancer
Recommend	ed Acceptable	? Concentrati	on I	V/A			N/A
Analyte:	Xylenes						
CAS:	1330-20-7	1					
Concentratior	n mg/kg:	6.50E+00			Calculated Hazard/Risk		
RfDo (mg/kg-0	day):	2.00E-01	Non-Can	cer Adult			Cancer
RfCi (mg/m3):		1.00E-01	Ingestion:	2.78E-05		Ingestion:	
SFO (mg/kg-d	ay)-1:		Dermal:			Dermal:	
IUR (µg/m3)-1	L:		Inhalation:	2.58E-03		Inhalation:	
Mutagen:			Total:	2.61E-03		Total:	0.00E+00
VOC:		Y					
	%	Contribution	to Media Risk	1.44%			0.00%
			mg/kg Non-Ca	ncer Adult			Cancer
Recommend	ed Acceptable	? Concentrati	on I	V/A			N/A
Analyte:	Zinc and C	Compounds	5				
CAS:	7440-66-6	-					
Concentratior							
concentration	n mg/kg:	4.97E+01			Calculated Hazard/Risk		
		4.97E+01 3.00E-01	Non-Can	icer Adult	Calculated Hazard/Risk		Cancer
RfDo (mg/kg-o	day):		Non-Can	<b>cer Adult</b> 1.42E-04	Calculated Hazard/Risk	Ingestion:	Cancer
RfDo (mg/kg-o RfCi (mg/m3):	day):				Calculated Hazard/Risk	Ingestion: Dermal:	Cancer
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1	day): ay)-1:		Ingestion:		Calculated Hazard/Risk	•	Cancer
RfDo (mg/kg-o RfCi (mg/m3): SFO (mg/kg-d	day): ay)-1:		Ingestion: Dermal:		Calculated Hazard/Risk	Dermal:	Cancer 0.00E+00
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1 Mutagen:	day): ay)-1:		Ingestion: Dermal: Inhalation:	1.42E-04	Calculated Hazard/Risk	Dermal: Inhalation:	
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1 Mutagen:	day): ay)-1: L:	3.00E-01	Ingestion: Dermal: Inhalation:	1.42E-04	Calculated Hazard/Risk	Dermal: Inhalation:	
RfDo (mg/kg-α RfCi (mg/m3): SFO (mg/kg-d IUR (μg/m3)-1	day): ay)-1: L:	3.00E-01	Ingestion: Dermal: Inhalation: <b>Total:</b>	1.42E-04 <b>1.42E-04</b> 0.08%	Calculated Hazard/Risk	Dermal: Inhalation:	0.00E+00

### Total Calculated Hazard Index/Risk for Soil

Non-Cano	er Adult	Can	cer
Ingestion:	1.61E-01	Ingestion:	2.73E-06
Dermal:	4.26E-03	Dermal:	6.79E-07
Inhalation:	1.63E-02	Inhalation:	2.35E-07
Total:	1.82E-01	Total:	3.65E-06

#### Program: Voluntary Remediation Program (VRP)

Default Hazard Index

<u>Risk Based Performance Criteria</u> Default Risk for Individual Chemical

1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

# **Report Summary**

Hazard/risk values of zero (0.00+00) are reflective of non-calculated values. Hazard/risk for zero value analytes must be evaluated outside of quantitative risk assessment.

#### Hazard/Risk Summary for Soil

Analyte	CAS	Hazard	Risk
Acenaphthene	83-32-9	4.56E-06	0.00E+00
Acenaphthylene	208-96-8	6.19E-06	0.00E+00
Acetone	67-64-1	1.64E-06	0.00E+00
Acetophenone	98-86-2	1.29E-06	0.00E+00
Aluminum	7429-90-5	8.21E-03	0.00E+00
Anthracene	120-12-7	1.12E-06	0.00E+00
Antimony (metallic)	7440-36-0	2.88E-03	0.00E+00
Arsenic, Inorganic	7440-38-2	1.84E-02	2.94E-06
Barium	7440-39-3	3.36E-04	0.00E+00
Benz[a]anthracene	56-55-3	0.00E+00	2.34E-08
Benzene	71-43-2	1.18E-03	9.82E-08
Benzo(g,h,i)perylene	191-24-2	1.09E-05	0.00E+00
Benzo[a]pyrene	50-32-8	1.51E-03	1.59E-07
Benzo[b]fluoranthene	205-99-2	0.00E+00	3.15E-08
Benzo[k]fluoranthene	207-08-9	0.00E+00	1.71E-09
Benzoic Acid	65-85-0	3.66E-07	0.00E+00
Beryllium and compounds	7440-41-7	3.93E-04	1.30E-10
Bis(2-ethylhexyl)phthalate	117-81-7	1.41E-05	1.41E-09
Butylbenzene, n-	104-51-8	2.40E-06	0.00E+00
Cadmium (Diet)	7440-43-9-Diet	2.86E-03	3.59E-11
Carbazole	86-74-8	0.00E+00	0.00E+00
Chromium(III), Insoluble Salts	16065-83-1	1.18E-04	0.00E+00
Chrysene	218-01-9	0.00E+00	3.28E-10
Cobalt	7440-48-4	2.99E-02	5.60E-09
Copper	7440-50-8	3.32E-03	0.00E+00
Cresol, o-	95-48-7	3.17E-06	0.00E+00
Cresol, p-chloro-m-	59-50-7	1.45E-06	0.00E+00
Cumene	98-82-8	1.69E-05	0.00E+00
Cyanide (CN-)	57-12-5	5.60E-03	0.00E+00
Dibenz[a,h]anthracene	53-70-3	0.00E+00	9.39E-08
Dimethylphenol, 2,4-	105-67-9	1.22E-05	0.00E+00
Ethylbenzene	100-41-4	1.96E-05	1.34E-08

#### Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Hazard/Risk Summary for Soil

Analyte	CAS	Hazard	Risk
Fluoranthene	206-44-0	2.97E-05	0.00E+00
Fluorene	86-73-7	7.63E-06	0.00E+00
Indeno[1,2,3-cd]pyrene	193-39-5	0.00E+00	1.34E-08
Iron	7439-89-6	8.04E-02	0.00E+00
isopropyltoluene	99-87-6	6.76E-06	0.00E+00
Lead and Compounds	7439-92-1	0.00E+00	0.00E+00
Manganese (Diet)	7439-96-5-Diet	4.89E-03	0.00E+00
Mercury (elemental)	7439-97-6	1.11E-03	0.00E+00
Methyl Ethyl Ketone (2-Butanone)	78-93-3	2.96E-06	0.00E+00
Methylcyclohexane	108-87-2	0.00E+00	0.00E+00
Methylene Chloride	75-09-2	2.18E-07	6.79E-13
Methylnaphthalene, 1-	90-12-0	4.13E-05	3.00E-08
Methylnaphthalene, 2-	91-57-6	1.16E-03	0.00E+00
Naphthalene	91-20-3	3.50E-03	2.39E-07
Nickel Soluble Salts	7440-02-0	4.95E-03	1.73E-09
Phenanthrene	85-01-8	7.51E-05	0.00E+00
Pyrene	129-00-0	3.88E-05	0.00E+00
Toluene	108-88-3	4.42E-05	0.00E+00
Trimethylbenzene, 1,2,4-	95-63-6	8.31E-04	0.00E+00
Trimethylbenzene, 1,3,5-	108-67-8	2.89E-04	0.00E+00
Vanadium and Compounds	7440-62-2	6.98E-03	0.00E+00
Xylenes	1330-20-7	2.61E-03	0.00E+00
Zinc and Compounds	7440-66-6	1.42E-04	0.00E+00

#### Total Hazard Index/Risk for All Media

Non-Car	ncer Adult	Car	icer
Ingestion:	1.61E-01	Ingestion:	2.73E-06
Dermal:	4.26E-03	Dermal:	6.79E-07
Inhalation:	1.63E-02	Inhalation:	2.35E-07
Total:	1.82E-01	Total:	3.65E-06
does not exc	eed hazard index	does not excee	d cumulative risk

#### Program: Voluntary Remediation Program (VRP)

<u>Risk Based Performance Criteria</u> Default Risk for Individual Chemical

Default Hazard Index

1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

#### **Industrial Exposure Default Values**

Symbol	Description	Value	Units
4Fw	Composite Worker Soil Adherence Factor	0.12	(mg/cm2)
ATw	Composite Worker Averaging Time	365	(days/yr)
ATw	Composite Worker Averaging Time: 365 x LT	25550	(days)
ATw-a	Composite Worker Averaging Time: 365 x EDw	9125	(days)
BWw	Composite Worker Body Weight	80	(kg)
EDw	Composite Worker Total Exposure Duration	25	(yrs)
EFw	Composite Worker Exposure Frequency	250	(days/yr)
ETw	Composite Worker Exposure Time	8	(hrs/day)
ETw-ai	Composite Worker Air Inhalation Exposure Time	8	(hrs/day)
ETw-si	Composite Worker Soil Inhalation Exposure Time	8	(hrs/day)
IRw	Composite Worker Soil Ingestion Rate	100	(mg/day)
SAw	Composite Worker Soil Surface Area	3527	(cm2/day)

#### **END OF REPORT**

#### **Groundwater Declaration Restricted Use**

Restricted use of groundwater is for onsite use ONLY. Potential offsite risks and receptors are evaluated separately. The nature and extent of the groundwater plume is sufficiently characterized. Concentrations along the vertical and horizontal migration of the plume are stable.

#### No COPCs evaluated in Groundwater

#### ATTACHMENT 3-4 RECREATOR

### Virginia Department of Environmental Quality

# VURAM

### Virginia Unified Risk Assessment Model

### **VERSION: 3.2.1**

### **Recreator Quantitative Risk Assessment Report**

### **Program:** Voluntary Remediation Program (VRP)

#### Site Name: Alexandria

By submitting this report to the Virginia DEQ, the user confirms that VURAM's default exposure parameters have not been altered, unless a complete unaltered VURAM analysis is provided and all modifications are detailed explicitly in an accompanying narrative or documentation that shows DEQ's prior concurrence with specific changes.

#### **Chemical Specific Notes Displayed as Applicable**

Lead

VURAM does not perform an evaluation for lead exposure. Use other approved models for lead modeling.

#### All Report Pages are Required for Risk Assessment Submission

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Acenaphthene CAS: 83-32-9

Concentration mg/kg : RfDo (mg/kg-day):	2.06E-01 6.00E-02	Non-Can	cer Adult		l Hazard/Risk ancer Child	c	Cancer
RfCi (mg/m3):		Ingestion:	2.29E-06	Ingestion:	2.45E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.26E-06	Dermal:	7.54E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.55E-06	Total:	3.20E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Acenaphthylene CAS: 208-96-8

Concentration mg/kg :	1.40E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	С	ancer
RfCi (mg/m3):		Ingestion:	3.12E-06	Ingestion:	3.32E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.71E-06	Dermal:	1.03E-05	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	4.83E-06	Total:	4.35E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

### Analyte: Acetone

CAS: 67-64-1

Г

Concentration mg/kg :	1.72E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	9.00E-01	Non-Can	cer Adult	Non-Ca	ancer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	1.28E-06	Ingestion:	1.36E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.28E-06	Total:	1.36E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

Recreator

#### Program: Voluntary Remediation Program (VRP)

#### **Risk Based Performance Criteria**

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Acetophenone CAS: 98-86-2

Concentration mg/kg : RfDo (mg/kg-day):	1.51E-01 1.00E-01	Non-Can	icer Adult		l Hazard/Risk ancer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	1.01E-06	Ingestion:	1.08E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.01E-06	Total:	1.08E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Aluminum CAS: 7429-90-5

Concentration mg/kg :	9.23E+03			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E+00	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	5.00E-03	Ingestion:	6.16E-03	Ingestion:	6.57E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	6.04E-05	Inhalation:	6.04E-05	Inhalation:	
Mutagen:		Total:	6.22E-03	Total:	6.58E-02	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	4.69%		4.81%		0.00%

#### Analyte: Anthracene

CAS:

```
120-12-7
```

Concentration mg/kg :	2.53E-01			Calculated	d Hazard/Risk		
RfDo (mg/kg-day):	3.00E-01	Non-Can	cer Adult	Non-Ca	ancer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	5.63E-07	Ingestion:	6.01E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.09E-07	Dermal:	1.85E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	8.72E-07	Total:	7.86E-06	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

# Analyte:Antimony (metallic)CAS:7440-36-0

Concentration mg/kg :	1.34E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	4.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	3.00E-04	Ingestion:	2.24E-03	Ingestion:	2.39E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.47E-07	Inhalation:	1.47E-07	Inhalation:	
Mutagen:		Total:	2.24E-03	Total:	2.39E-02	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	1.69%		1.75%		0.00%

# Analyte:Arsenic, InorganicCAS:7440-38-2

Concentration mg/kg :	8.80E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-04	Non-Can	icer Adult	Non-Ca	ancer Child	Ca	ancer
RfCi (mg/m3):	1.50E-05	Ingestion:	1.18E-02	Ingestion:	1.25E-01	Ingestion:	6.35E-06
SFO (mg/kg-day)-1:	1.50E+00	Dermal:	2.48E-03	Dermal:	1.49E-02	Dermal:	8.93E-07
IUR (µg/m3)-1:	4.30E-03	Inhalation:	1.92E-05	Inhalation:	1.92E-05	Inhalation:	4.60E-10
Mutagen:		Total:	1.43E-02	Total:	1.40E-01	Total:	7.24E-06
VOC:							
	% Contribution	to Media Risk	10.75%		10.26%		66.06%

Exceeds Risk!

### Analyte: Barium

CAS: 7440-39-3

Concentration mg/kg :	7.27E+01				Hazard/Risk		
RfDo (mg/kg-day):	2.00E-01	Non-Car	icer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):	5.00E-04	Ingestion:	2.43E-04	Ingestion:	2.59E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	4.76E-06	Inhalation:	4.76E-06	Inhalation:	
Mutagen:		Total:	2.48E-04	Total:	2.59E-03	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.19%		0.19%		0.00%

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

# Analyte:Benz[a]anthraceneCAS:56-55-3

Concentration mg/kg :	4.82E-01			Calculated	d Hazard/Risk		
RfDo (mg/kg-day):		Non-Car	ncer Adult	Non-Ca	ancer Child	Ca	incer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.75E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	5.85E-08
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	3.01E-10
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	2.34E-07
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		2.14%

#### Analyte: Benzene CAS: 71-43-2

CAS:	71-43-2	
Concontrati	on malkas	F 00F 01

Concentration mg/kg:	5.00E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	4.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	3.00E-02	Ingestion:	8.35E-05	Ingestion:	8.90E-04	Ingestion:	2.20E-08
SFO (mg/kg-day)-1:	5.50E-02	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	7.80E-06	Inhalation:	2.10E-04	Inhalation:	2.10E-04	Inhalation:	1.82E-08
Mutagen:		Total:	2.93E-04	Total:	1.10E-03	Total:	4.03E-08
VOC:	Y						
	% Contribution	to Media Risk	0.22%		0.08%		0.37%

### Analyte: Benzo(g,h,i)perylene

٦

Concentration mg/kg :	2.47E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	C	ancer
RfCi (mg/m3):		Ingestion:	5.50E-06	Ingestion:	5.86E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.02E-06	Dermal:	1.81E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	8.52E-06	Total:	7.67E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.01%		0.01%		0.00%

Recreator

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

Analyte:	Benzo[a]pyrene
CAS:	50-32-8

Concentration mg/kg :	3.36E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	3.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	2.00E-06	Ingestion:	7.48E-04	Ingestion:	7.98E-03	Ingestion:	1.22E-06
SFO (mg/kg-day)-1:	1.00E+00	Dermal:	4.11E-04	Dermal:	2.46E-03	Dermal:	4.08E-07
IUR (µg/m3)-1:	6.00E-04	Inhalation:	5.50E-06	Inhalation:	5.50E-06	Inhalation:	6.79E-12
Mutagen:	Y	Total:	1.16E-03	Total:	1.04E-02	Total:	1.63E-06
VOC:							
	% Contribution	to Media Risk	0.88%		0.76%		14.88%

Exceeds Risk!

٦

# Analyte:Benzo[b]fluorantheneCAS:205-99-2

Concentration mg/kg :	6.65E-01			Calculate	d Hazard/Risk		
RfDo (mg/kg-day):		Non-Car	ncer Adult	Non-C	Cancer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	2.42E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	8.07E-08
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	1.34E-12
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	3.23E-07
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		2.94%

### Analyte: Benzo[k]fluoranthene

CAS: 207-08-9

Concentration mg/kg :	3.61E-01			Calculated	d Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	icer Adult	Non-Ca	ancer Child	Ca	incer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.31E-08
SFO (mg/kg-day)-1:	1.00E-02	Dermal:		Dermal:		Dermal:	4.38E-09
IUR (µg/m3)-1:	6.00E-06	Inhalation:		Inhalation:		Inhalation:	7.29E-14
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	1.75E-08
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.16%

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### **Risk Based Performance Criteria**

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

Analyte:	Benzoic Acid
CAS:	65-85-0

Concentration mg/kg :	1.20E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E+00	Non-Can	cer Adult	Non-Ca	ancer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	2.00E-07	Ingestion:	2.14E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	8.46E-08	Dermal:	5.07E-07	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.85E-07	Total:	2.64E-06	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

Analyte:	Beryllium and compounds
CAS:	7440-41-7

Concentration mg/kg :	9.00E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	2.00E-05	Ingestion:	3.01E-04	Ingestion:	3.21E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	2.40E-03	Inhalation:	1.47E-06	Inhalation:	1.47E-06	Inhalation:	2.63E-11
Mutagen:		Total:	3.02E-04	Total:	3.21E-03	Total:	2.63E-11
VOC:							
	% Contribution	to Media Risk	0.23%		0.23%		0.00%

#### Bis(2-ethylhexyl)phthalate Analyte:

CAS:

117-81-7

Concentration mg/kg :	2.31E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:	7.71E-06	Ingestion:	8.23E-05	Ingestion:	2.59E-09
SFO (mg/kg-day)-1:	1.40E-02	Dermal:	3.26E-06	Dermal:	1.95E-05	Dermal:	7.29E-10
IUR (μg/m3)-1:	2.40E-06	Inhalation:		Inhalation:		Inhalation:	6.74E-15
Mutagen:		Total:	1.10E-05	Total:	1.02E-04	Total:	3.32E-09
VOC:							
	% Contribution	to Media Risk	0.01%		0.01%		0.03%

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Butylbenzene, n-CAS: 104-51-8

Concentration mg/kg : RfDo (mg/kg-day):	1.40E-01 5.00E-02	Non-Can	cer Adult		l Hazard/Risk ancer Child	c	ancer
RfCi (mg/m3):		Ingestion:	1.87E-06	Ingestion:	1.99E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.87E-06	Total:	1.99E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Cadmium (Diet) CAS: 7440-43-9-Diet

Concentration mg/kg :	3.33E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E-04	Non-Cancer Adult Non-Cancer Child		Ca	ancer		
RfCi (mg/m3):	1.00E-05	Ingestion:	2.22E-03	Ingestion:	2.37E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.76E-04	Dermal:	2.25E-03	Dermal:	
IUR (µg/m3)-1:	1.80E-03	Inhalation:	1.09E-06	Inhalation:	1.09E-06	Inhalation:	7.29E-12
Mutagen:		Total:	2.60E-03	Total:	2.60E-02	Total:	7.29E-12
VOC:							
	% Contribution	to Media Risk	1.96%		1.90%		0.00%

### Analyte: Carbazole

CAS: 86-74-8

Concentration mg/kg :	2.42E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ancer Child	(	Cancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Program: Voluntary Remediation Program (VRP)

Recreator

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Chromium(III), Insoluble Salts

CAS: 16065-83-1

Concentration mg/kg :	2.06E+02			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.50E+00	Non-Can	cer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	9.17E-05	Ingestion:	9.78E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	9.17E-05	Total:	9.78E-04	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.07%		0.07%		0.00%

# Analyte: Chrysene CAS: 218-01-9

Concentration mg/kg :	6.91E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	icer Adult	Non-Ca	ancer Child	Ca	incer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	2.51E-09
SFO (mg/kg-day)-1:	1.00E-03	Dermal:		Dermal:		Dermal:	8.39E-10
IUR (µg/m3)-1:	6.00E-07	Inhalation:		Inhalation:		Inhalation:	1.40E-14
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	3.35E-09
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.03%

### Analyte: Cobalt

CAS: 7440-48-4

Concentration mg/kg :	1.04E+01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	3.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	6.00E-06	Ingestion:	2.31E-02	Ingestion:	2.46E-01	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:	9.00E-03	Inhalation:	5.66E-05	Inhalation:	5.66E-05	Inhalation:	1.13E-09
Mutagen:		Total:	2.31E-02	Total:	2.46E-01	Total:	1.13E-09
VOC:							
	% Contribution	to Media Risk	17.45%		18.02%		0.01%

Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Copper CAS: 7440-50-8

Concentration mg/kg :	1.55E+02			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	2.59E-03	Ingestion:	2.76E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.59E-03	Total:	2.76E-02	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	1.95%		2.02%		0.00%

#### Analyte: Cresol, o-CAS: 95-48-7

Concentration mg/kg :	1.30E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	5.00E-02	Non-Car	ncer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	6.00E-01	Ingestion:	1.74E-06	Ingestion:	1.85E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	7.33E-07	Dermal:	4.39E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:	7.09E-12	Inhalation:	7.09E-12	Inhalation:	
Mutagen:		Total:	2.47E-06	Total:	2.29E-05	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

### Analyte: Cresol, p-chloro-m-

1

CAS: 59-50-7

Concentration mg/kg :	1.19E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ancer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	7.95E-07	Ingestion:	8.48E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.36E-07	Dermal:	2.01E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.13E-06	Total:	1.05E-05	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

Risk Based	Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Cumene CAS: 98-82-8

Concentration mg/kg : RfDo (mg/kg-day):	1.68E-01 1.00E-01	Non-Can	cer Adult		Hazard/Risk ncer Child	Ca	ancer
RfCi (mg/m3):	4.00E-01	Ingestion:	1.12E-06	Ingestion:	1.20E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	3.01E-06	Inhalation:	3.01E-06	Inhalation:	
Mutagen:		Total:	4.13E-06	Total:	1.50E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

# Analyte:Cyanide (CN-)CAS:57-12-5

Concentration mg/kg :	8.26E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	6.00E-04	Non-Can	icer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	8.00E-04	Ingestion:	9.19E-04	Ingestion:	9.81E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	8.62E-04	Inhalation:	8.62E-04	Inhalation:	
Mutagen:		Total:	1.78E-03	Total:	1.07E-02	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	1.34%		0.78%		0.00%

#### Analyte: Dibenz[a,h]anthracene

CAS: 53-70-3

Concentration mg/kg :	1.98E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Car	ncer Adult	Non-C	ancer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	7.20E-07
SFO (mg/kg-day)-1:	1.00E+00	Dermal:		Dermal:		Dermal:	2.40E-07
IUR (µg/m3)-1:	6.00E-04	Inhalation:		Inhalation:		Inhalation:	4.00E-12
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	9.61E-07
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		8.77%

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Dimethylphenol, 2,4-CAS: 105-67-9

Concentration mg/kg : RfDo (mg/kg-day):	2.00E-01 2.00E-02	Non-Can	cer Adult		l Hazard/Risk ancer Child	С	ancer
RfCi (mg/m3):		Ingestion:	6.68E-06	Ingestion:	7.12E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.82E-06	Dermal:	1.69E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	9.50E-06	Total:	8.81E-05	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.01%		0.01%		0.00%

#### Analyte: Ethylbenzene CAS: 100-41-4

Concentration mg/kg :	3.42E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	5.00E-02	Non-Can	icer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	1.00E+00	Ingestion:	4.57E-06	Ingestion:	4.87E-05	Ingestion:	3.01E-09
SFO (mg/kg-day)-1:	1.10E-02	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	2.50E-06	Inhalation:	2.69E-06	Inhalation:	2.69E-06	Inhalation:	2.49E-09
Mutagen:		Total:	7.25E-06	Total:	5.14E-05	Total:	5.51E-09
VOC:	Y						
	% Contribution	to Media Risk	0.01%		0.00%		0.05%

#### Analyte: Fluoranthene CAS: 206-44-0

Concentration mg/kg :	8.95E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	С	ancer
RfCi (mg/m3):		Ingestion:	1.49E-05	Ingestion:	1.59E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	8.20E-06	Dermal:	4.92E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.31E-05	Total:	2.09E-04	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.02%		0.02%		0.00%

Wednesday, December 6, 2023

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

Analyte:	Fluorene
CAS:	86-73-7

Concentration mg/kg :	2.30E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	3.84E-06	Ingestion:	4.10E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.11E-06	Dermal:	1.26E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	5.95E-06	Total:	5.36E-05	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

Analyte:	Indeno[1,2,3-cd]pyrene
CAS:	193-39-5

-

1

Concentration mg/kg :	2.82E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Car	ncer Adult	Non-C	Cancer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.03E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	3.42E-08
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	5.70E-13
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	1.37E-07
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		1.25%

### Analyte: Iron

Г

CAS: 7439-89-6

Concentration mg/kg :	6.57E+04			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	7.00E-01	Non-Can	cer Adult	Non-Ca	ancer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	6.27E-02	Ingestion:	6.69E-01	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	6.27E-02	Total:	6.69E-01	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	47.26%		48.92%		0.00%

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: isopropyltoluene CAS: 99-87-6

Concentration mg/kg : RfDo (mg/kg-day):	9.93E-02 1.00E-01	Non-Can	cer Adult		Hazard/Risk	Ca	ancer
RfCi (mg/m3):	4.00E-01	Ingestion:	6.63E-07	Ingestion:	7.07E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.15E-06	Inhalation:	1.15E-06	Inhalation:	
Mutagen:		Total:	1.81E-06	Total:	8.23E-06	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

# Analyte:Lead and CompoundsCAS:7439-92-1

Concentration mg/kg :	2.05E+01			Calculated	d Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	icer Adult	Non-C	ancer Child	C	Cancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

### Analyte: Manganese (Diet)

#### CAS: 7439-96-5-Diet

Concentration mg/kg :	5.16E+02			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.40E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	5.00E-05	Ingestion:	2.46E-03	Ingestion:	2.63E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	3.38E-04	Inhalation:	3.38E-04	Inhalation:	
Mutagen:		Total:	2.80E-03	Total:	2.66E-02	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	2.11%		1.95%		0.00%

Recreator

#### Program: Voluntary Remediation Program (VRP)

#### **Risk Based Performance Criteria**

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Mercury (elemental) CAS: 7439-97-6

Concentration mg/kg : RfDo (mg/kg-day):	5.07E-02	Non-Can	icer Adult	Cancer			
RfCi (mg/m3):	3.00E-04	Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	2.17E-04	Inhalation:	2.17E-04	Inhalation:	
Mutagen:		Total:	2.17E-04	Total:	2.17E-04	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.16%		0.02%		0.00%

#### Analyte: Methyl Ethyl Ketone (2-Butanone) CAS: 78-93-3

Concentration mg/kg :	5.73E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	6.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	5.00E+00	Ingestion:	6.38E-07	Ingestion:	6.80E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	4.18E-07	Inhalation:	4.18E-07	Inhalation:	
Mutagen:		Total:	1.06E-06	Total:	7.22E-06	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Methylcyclohexane CAS:

108-87-2

Concentration mg/kg :	7.39E+00	Calculated Hazard/Risk						
RfDo (mg/kg-day):		Non-Cancer Adult		Non-Ca	ancer Child	Cancer		
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:		
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:		
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:		
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00	
VOC:								
% Contribution to Media Risk		0.00%		0.00%		0.00%		

#### Program: Voluntary Remediation Program (VRP)

-

Recreator

#### **Risk Based Performance Criteria**

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

Analyte:	Methylene Chloride
CAS:	75-09-2

Concentration mg/kg :	6.90E-04			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	6.00E-03	Non-Cancer Adult		Non-Ca	ncer Child	Cancer	
RfCi (mg/m3):	6.00E-01	Ingestion:	7.68E-08	Ingestion:	8.19E-07	Ingestion:	5.02E-12
SFO (mg/kg-day)-1:	2.00E-03	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	1.00E-08	Inhalation:	2.34E-08	Inhalation:	2.34E-08	Inhalation:	1.44E-13
Mutagen:	Y	Total:	1.00E-07	Total:	8.43E-07	Total:	5.16E-12
VOC:	Y						
	% Contribution	to Media Risk	0.00%		0.00%		0.00%

Analyte:	Methylnaphthalene, 1-
CAS:	90-12-0

Concentration mg/kg :	2.18E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	7.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:	2.08E-05	Ingestion:	2.22E-04	Ingestion:	5.06E-08
SFO (mg/kg-day)-1:	2.90E-02	Dermal:	1.14E-05	Dermal:	6.84E-05	Dermal:	1.85E-08
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.22E-05	Total:	2.90E-04	Total:	6.92E-08
VOC:	Y						
	% Contribution	to Media Risk	0.02%		0.02%		0.63%

#### Analyte: Methylnaphthalene, 2-

CAS: 91-57-6

Concentration mg/kg :	3.51E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	4.00E-03	Non-Car	icer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):		Ingestion:	5.86E-04	Ingestion:	6.25E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.22E-04	Dermal:	1.93E-03	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	9.08E-04	Total:	8.18E-03	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.68%		0.60%		0.00%

#### Recreator

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

Analyte:	Naphthalene
CAS:	91-20-3

Concentration mg/kg :	2.05E+00	Calculated Hazard/Risk					
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	Ca	ancer
RfCi (mg/m3):	3.00E-03	Ingestion:	6.83E-05	Ingestion:	7.29E-04	Ingestion:	1.97E-07
SFO (mg/kg-day)-1:	1.20E-01	Dermal:	3.75E-05	Dermal:	2.25E-04	Dermal:	7.20E-08
IUR (μg/m3)-1:	3.40E-05	Inhalation:	6.56E-04	Inhalation:	6.56E-04	Inhalation:	2.48E-08
Mutagen:		Total:	7.62E-04	Total:	1.61E-03	Total:	2.94E-07
VOC:	Y						
% Contribution to Media Risk		0.57%		0.12%		2.68%	

Analyte:	Nickel Soluble Salts
CAS:	7440-02-0

Concentration mg/kg :	1.11E+02			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	9.00E-05	Ingestion:	3.70E-03	Ingestion:	3.95E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	2.60E-04	Inhalation:	4.03E-05	Inhalation:	4.03E-05	Inhalation:	3.51E-10
Mutagen:		Total:	3.74E-03	Total:	3.95E-02	Total:	3.51E-10
VOC:							
	% Contribution	to Media Risk	2.82%		2.89%		0.00%

### Analyte: Phenanthrene

٦

```
CAS: 85-01-8
```

Concentration mg/kg :	1.70E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	c	ancer
RfCi (mg/m3):		Ingestion:	3.78E-05	Ingestion:	4.03E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.07E-05	Dermal:	1.24E-04	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	5.85E-05	Total:	5.27E-04	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.04%		0.04%		0.00%

#### Recreator

Cancer

0.01%

0.00E+00

0.00%

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

#### Analyte: Pyrene CAS: 129-00-0

Concentration mg/kg :	8.78E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ancer Child	C	ancer
RfCi (mg/m3):		Ingestion:	1.95E-05	Ingestion:	2.08E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.07E-05	Dermal:	6.43E-05	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.03E-05	Total:	2.73E-04	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.02%		0.02%		0.00%

#### Analyte: Toluene CAS: 108-88-3

		_				
Concentration mg/kg :	2.07E+00			Calculated	Hazard/Risk	
RfDo (mg/kg-day):	8.00E-02	Non-Ca	ncer Adult	Non-Ca	ncer Child	C
RfCi (mg/m3):	5.00E+00	Ingestion:	1.73E-05	Ingestion:	1.84E-04	Ingestion:
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:
IUR (µg/m3)-1:		Inhalation:	4.30E-06	Inhalation:	4.30E-06	Inhalation:
Mutagen:		Total:	2.16E-05	Total:	1.89E-04	Total:
VOC:	Y					

% Contribution to Media Risk 0.02%

#### Analyte: Trimethylbenzene, 1,2,4-

CAS: 95-63-6

Concentration mg/kg :	1.47E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	6.00E-02	Ingestion:	9.80E-05	Ingestion:	1.04E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.38E-04	Inhalation:	1.38E-04	Inhalation:	
Mutagen:		Total:	2.36E-04	Total:	1.18E-03	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.18%		0.09%		0.00%

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

### Soil

### Analyte: Trimethylbenzene, 1,3,5-

CAS: 108-67-8

Concentration mg/kg :	4.37E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):	6.00E-02	Ingestion:	2.92E-05	Ingestion:	3.11E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	4.91E-05	Inhalation:	4.91E-05	Inhalation:	
Mutagen:		Total:	7.82E-05	Total:	3.60E-04	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.06%		0.03%		0.00%

# Analyte:Vanadium and CompoundsCAS:7440-62-2

Concentration mg/kg :	4.04E+01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	5.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	1.00E-04	Ingestion:	5.39E-03	Ingestion:	5.75E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.32E-05	Inhalation:	1.32E-05	Inhalation:	
Mutagen:		Total:	5.40E-03	Total:	5.75E-02	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	4.07%		4.21%		0.00%

### Analyte: Xylenes

CAS: 1330-20-7

Concentration mg/kg :	6.50E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):	1.00E-01	Ingestion:	2.17E-05	Ingestion:	2.31E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	5.04E-04	Inhalation:	5.04E-04	Inhalation:	
Mutagen:		Total:	5.26E-04	Total:	7.35E-04	Total:	0.00E+00
VOC:	Y						
	% Contribution	to Media Risk	0.40%		0.05%		0.00%

1

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard IndexDefault Risk for Individual ChemicalDefault Cumulative Risk-All Chemicals11.00E-061.00E-04

### Soil

# Analyte:Zinc and CompoundsCAS:7440-66-6

Concentration mg/kg : RfDo (mg/kg-day):	4.97E+01 3.00E-01	Non-Can	cer Adult		Hazard/Risk	(	Cancer
RfCi (mg/m3):		Ingestion:	1.11E-04	Ingestion:	1.18E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.11E-04	Total:	1.18E-03	Total:	0.00E+00
VOC:							
	% Contribution	to Media Risk	0.08%		0.09%		0.00%

#### Total Calculated Hazard Index/Risk for Soil

Non-Cancer Adult		Non-Cancer Child		Cancer	
Ingestion:	1.26E-01	Ingestion:	1.34E+00	Ingestion:	9.10E-06
Dermal:	3.69E-03	Dermal:	2.21E-02	Dermal:	1.81E-06
Inhalation:	3.19E-03	Inhalation:	3.19E-03	Inhalation:	4.79E-08
Total:	1.33E-01	Total:	1.37E+00	Total:	1.10E-05

Voluntary Remediation Program (VRP)

Default Hazard Index

Risk Based Performance Criteria

Default Risk for Individual Chemical 1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

# **Report Summary**

Hazard/risk values of zero (0.00+00) are reflective of non-calculated values. Hazard/risk for zero value analytes must be evaluated outside of quantitative risk assessment.

# Hazard/Risk Summary for Soil

Analyte	CAS	Hazard Adult	Hazard Child	Risk
Acenaphthene	83-32-9	3.55E-06	3.20E-05	0.00E+00
Acenaphthylene	208-96-8	4.83E-06	4.35E-05	0.00E+00
Acetone	67-64-1	1.28E-06	1.36E-05	0.00E+00
Acetophenone	98-86-2	1.01E-06	1.08E-05	0.00E+00
Aluminum	7429-90-5	6.22E-03	6.58E-02	0.00E+00
Anthracene	120-12-7	8.72E-07	7.86E-06	0.00E+00
Antimony (metallic)	7440-36-0	2.24E-03	2.39E-02	0.00E+00
Arsenic, Inorganic	7440-38-2	1.43E-02	1.40E-01	7.24E-06
Barium	7440-39-3	2.48E-04	2.59E-03	0.00E+00
Benz[a]anthracene	56-55-3	0.00E+00	0.00E+00	2.34E-07
Benzene	71-43-2	2.93E-04	1.10E-03	4.03E-08
Benzo(g,h,i)perylene	191-24-2	8.52E-06	7.67E-05	0.00E+00
Benzo[a]pyrene	50-32-8	1.16E-03	1.04E-02	1.63E-06
Benzo[b]fluoranthene	205-99-2	0.00E+00	0.00E+00	3.23E-07
Benzo[k]fluoranthene	207-08-9	0.00E+00	0.00E+00	1.75E-08
Benzoic Acid	65-85-0	2.85E-07	2.64E-06	0.00E+00
Beryllium and compounds	7440-41-7	3.02E-04	3.21E-03	2.63E-11
Bis(2-ethylhexyl)phthalate	117-81-7	1.10E-05	1.02E-04	3.32E-09
Butylbenzene, n-	104-51-8	1.87E-06	1.99E-05	0.00E+00
Cadmium (Diet)	7440-43-9-Diet	2.60E-03	2.60E-02	7.29E-12
Carbazole	86-74-8	0.00E+00	0.00E+00	0.00E+00
Chromium(III), Insoluble Salts	16065-83-1	9.17E-05	9.78E-04	0.00E+00
Chrysene	218-01-9	0.00E+00	0.00E+00	3.35E-09
Cobalt	7440-48-4	2.31E-02	2.46E-01	1.13E-09
Copper	7440-50-8	2.59E-03	2.76E-02	0.00E+00
Cresol, o-	95-48-7	2.47E-06	2.29E-05	0.00E+00
Cresol, p-chloro-m-	59-50-7	1.13E-06	1.05E-05	0.00E+00
Cumene	98-82-8	4.13E-06	1.50E-05	0.00E+00
Cyanide (CN-)	57-12-5	1.78E-03	1.07E-02	0.00E+00
Dibenz[a,h]anthracene	53-70-3	0.00E+00	0.00E+00	9.61E-07
Dimethylphenol, 2,4-	105-67-9	9.50E-06	8.81E-05	0.00E+00
Ethylbenzene	100-41-4	7.25E-06	5.14E-05	5.51E-09

### Recreator

# Program: Voluntary Remediation Program (VRP)

**Risk Based Performance Criteria** 

Default Hazard Index
----------------------

1

Default Risk for Individual Chemical 1.00E-06 Default Cumulative Risk-All Chemicals 1.00E-04

# Hazard/Risk Summary for Soil

Analyte	CAS	Hazard Adult	Hazard Child	Risk
Fluoranthene	206-44-0	2.31E-05	2.09E-04	0.00E+00
Fluorene	86-73-7	5.95E-06	5.36E-05	0.00E+00
Indeno[1,2,3-cd]pyrene	193-39-5	0.00E+00	0.00E+00	1.37E-07
Iron	7439-89-6	6.27E-02	6.69E-01	0.00E+00
isopropyltoluene	99-87-6	1.81E-06	8.23E-06	0.00E+00
Lead and Compounds	7439-92-1	0.00E+00	0.00E+00	0.00E+00
Manganese (Diet)	7439-96-5-Diet	2.80E-03	2.66E-02	0.00E+00
Mercury (elemental)	7439-97-6	2.17E-04	2.17E-04	0.00E+00
Methyl Ethyl Ketone (2-Butanone)	78-93-3	1.06E-06	7.22E-06	0.00E+00
Methylcyclohexane	108-87-2	0.00E+00	0.00E+00	0.00E+00
Methylene Chloride	75-09-2	1.00E-07	8.43E-07	5.16E-12
Methylnaphthalene, 1-	90-12-0	3.22E-05	2.90E-04	6.92E-08
Methylnaphthalene, 2-	91-57-6	9.08E-04	8.18E-03	0.00E+00
Naphthalene	91-20-3	7.62E-04	1.61E-03	2.94E-07
Nickel Soluble Salts	7440-02-0	3.74E-03	3.95E-02	3.51E-10
Phenanthrene	85-01-8	5.85E-05	5.27E-04	0.00E+00
Pyrene	129-00-0	3.03E-05	2.73E-04	0.00E+00
Toluene	108-88-3	2.16E-05	1.89E-04	0.00E+00
Trimethylbenzene, 1,2,4-	95-63-6	2.36E-04	1.18E-03	0.00E+00
Trimethylbenzene, 1,3,5-	108-67-8	7.82E-05	3.60E-04	0.00E+00
Vanadium and Compounds	7440-62-2	5.40E-03	5.75E-02	0.00E+00
Xylenes	1330-20-7	5.26E-04	7.35E-04	0.00E+00
Zinc and Compounds	7440-66-6	1.11E-04	1.18E-03	0.00E+00

# Total Hazard Index/Risk for All Media

Non-Cancer Adult		ncer Child	Cancer		
1.26E-01	Ingestion:	1.34E+00	Ingestion:	9.10E-06	
3.69E-03	Dermal:	2.21E-02	Dermal:	1.81E-06	
3.19E-03	Inhalation:	3.19E-03	Inhalation:	4.79E-08	
1.33E-01	Total:	1.37E+00	Total:	1.10E-05	
eed hazard index	Exceeds H	lazard Index!	does not excee	d cumulative risk	
	1.26E-01 3.69E-03 3.19E-03 <b>1.33E-01</b>	1.26E-01     Ingestion:       3.69E-03     Dermal:       3.19E-03     Inhalation: <b>1.33E-01</b> Total:	1.26E-01       Ingestion:       1.34E+00         3.69E-03       Dermal:       2.21E-02         3.19E-03       Inhalation:       3.19E-03 <b>1.33E-01</b> Total: <b>1.37E+00</b>	1.26E-01       Ingestion:       1.34E+00       Ingestion:         3.69E-03       Dermal:       2.21E-02       Dermal:         3.19E-03       Inhalation:       3.19E-03       Inhalation: <b>1.33E-01 Total: 1.37E+00 Total:</b>	

### Program: Voluntary Remediation Program (VRP)

#### Recreator

### Risk Based Performance Criteria

Default Hazard Index

1

Default Risk for Individual Chemical Default Cumulative Risk-All Chemicals 1.00E-06 1.00E-04

# **Recreator Exposure Default Values**

Symbol	Description	Value	Units
\F0-02	Soil Adherence Factor - age segment 0-2	0.2	(mg/cm2)
AF02-06	Soil Adherence Factor - age segment 2-6	0.2	(mg/cm2)
\F06-16	Soil Adherence Factor - age segment 6-16	0.07	(mg/cm2)
AF16-26	Soil Adherence Factor - age segment 16-26	0.07	(mg/cm2)
AFrec-a	Recreator Soil Adherence Factor - adult	0.07	(mg/cm2)
AFrec-c	Recreator Soil Adherence Factor - child	0.2	(mg/cm2)
AFrec-sed-a	Recreator Sediment Adherence Factor - adult - Exposure Factors Handboon	0.2	(mg/cm2)
\Frec-sed-c	Recreator Sediment Adherence Factor - child - Exposure Factors Handbook	0.3	(mg/cm2)
AFsed0-02	Recreator/Trepasser Sediment Adherence Factor - age segment 0-2 - Exposure Factors Handbook	0.3	(mg/cm2)
AFsed02-06	Recreator/Trepasser Sediment Adherence Factor - age segment 2-6 - Exposure Factors Handbook	0.3	(mg/cm2)
AFsed06-16	Recreator/Trepasser Sediment Adherence Factor - age segment 6-16 - Exposure Factors Handbook	0.2	(mg/cm2)
AFsed16-26	Recreator/Trepasser Sediment Adherence Factor - age segment 16-26 - Exposure Factors Handbook	0.2	(mg/cm2)
ATrec	Recreator Averaging Time: 365 x LT	25550	(days)
ATrec	Recreator Averaging Time	365	(days/yr)
ATrec-a	Recreator Averaging Time - adult: 365 x EDrec-a	7300	(days)
ATrec-c	Recreator Averaging Time - child: 365 x EDrec-c	2190	(days)
3W0-02	Body Weight - age segment 0-2	15	(kg)
BW02-06	Body Weight - age segment 2-6	15	(kg)
3W06-16	Body Weight - age segment 6-16	80	(kg)
3W16-26	Body Weight - age segment 16-26	80	(kg)
3Wrec-a	Recreator Body Weight - adult	80	(kg)
3Wrec-c	Recreator Body Weight - child	15	(kg)
DFSMrec-adj	Recreator Soil Mutagenic Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	238602	(mg/kg)
DFSMrec-sed-adj	Recreator Sediment Mutagenic Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	413774.4	(mg/kg)

# Program: Voluntary Remediation Program (VRP)

### Risk Based Performance Criteria

Default Haz	Risk Based Performance Criteria zard Index Default Risk for Individual Chemical Default	Cumulative Risl	<-All Chemica
1	1.00E-06	1.00E-04	
DFSrec-adj	Recreator Soil Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	57603	(mg/kg)
DFSrec-sed-adj	Recreator Sediment Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	114340.2	(mg/kg)
DFWMrec-adj	Recreator Surface Water Mutagenic Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	4563910	(cm2-event/kg)
DFWrec-adj	Recreator Surface Water Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	1454505	(cm2-event/kg)
D0-02	Exposure Duration - age segment 0-2	2	(yrs)
ED02-06	Exposure Duration - age segment 2-6	4	(yrs)
ED06-16	Exposure Duration -age segment 6-16	10	(yrs)
ED16-26	Exposure Duration -age segment 16-26	10	(yrs)
EDrec	Recreator Exposure Duration	26	(yrs)
EDrec-a	Recreator Exposure Duration - adult	20	(yrs)
EDrec-c	Recreator Exposure Duration - child	6	(yrs)
EFrec	Recreator Exposure Frequency - Virginia DEQ	195	(days/yr)
EFrec0-02	Recreator/Trepasser Exposure Frequency - age segment 0-2 - Virginia DEQ	195	(days/yr)
EFrec02-06	Recreator/Trepasser Exposure Frequency - age segment 2-6 - Virginia DEQ	195	(days/yr)
EFrec06-16	Recreator/Trepasser Exposure Frequency - age segment 6-16 - Virginia DEQ	195	(days/yr)
EFrec16-26	Recreator/Trepasser Exposure Frequency - age segment 16-26 - Virginia DEQ	195	(days/yr)
EFrec-a	Recreator Exposure Frequency - adult - Virginia DEQ	195	(days/yr)
EFrec-c	Recreator Exposure Frequency - child - Virginia DEQ	195	(days/yr)
ETevent-rec/trs(0- 02)	Recreator/Trespasser Exposure Time - age segment 0-2 - Virginia DEQ	2	(hrs/event)
ETevent-rec/trs(02- 06)	Recreator/Trespasser Exposure Time - age segment 2-6 - Virginia DEQ	2	(hrs/event)
ETevent-rec/trs(06- 16)	Recreator/Trespasser Exposure Time - age segment 6-16 - Virginia DEQ	2	(hrs/event)
ETevent-rec/trs(16- 26)	Recreator/Trespasser Exposure Time - age segment 16-26 - Virginia DEQ	2	(hrs/event)
Tevent-rec-a	Recreator Surface Water Exposure Time - adult - Virginia DEQ	2	(hrs/event)
ETevent-rec-adj	Recreator Exposure Time - age adjusted - Virginia DEQ calculated using age- segment values	2	(hrs/event)
Tevent-rec-c	Recreator Surface Water Exposure Time - child - Virginia DEQ	2	(hrs/event)
ETevent-rec-madj	Recreator Exposure Time - mutagen age adjusted - Virginia DEQ calculated using age-segment values	2	(hrs/event)

## Program: Voluntary Remediation Program (VRP)

# Risk Based Performance Criteria

Dofault Ha	izard Index Default Risk for Individual Chemical Default	Cumulative Risl	All Chami
Derault Ha		1.00E-04	
ETrec	Recreator Soil Exposure Time - Virginia DEQ	2	(hrs/day)
ETrec/trs0-02	Recreator/Trespasser Exposure Time - age segment 0-2 - Virginia DEQ	2	(hrs/day)
ETrec/trs02-06	Recreator/Trespasser Exposure Time - age segment 2-6 - Virginia DEQ	2	(hrs/day)
ETrec/trs06-16	Recreator/Trespasser Exposure Time - age segment 6-16 - Virginia DEQ	2	(hrs/day)
ETrec/trs16-26	Recreator/Trespasser Exposure Time - age segment 16-26 - Virginia DEQ	2	(hrs/day)
ETrec-a	Recreator Exposure Time - adult - Virginia DEQ	2	(hrs/day)
ETrec-c	Recreator Exposure Time - child - Virginia DEQ	2	(hrs/day)
ETrec-sed	Recreator Sediment Exposure Time - Virginia DEQ	2	(hrs/day)
EV0-02	Events - age segment 0-2	1	(events/day)
EV02-06	Events - age segment 2-6	1	(events/day)
EV06-16	Events - age segment 6-16	1	(events/day)
EV16-26	Events - age segment 16-26	1	(events/day)
EVrec-a	Recreator Events - adult - Virginia DEQ	1	(events/day)
EVrec-c	Recreator Events - child - Virginia DEQ	1	(events/day)
IFMrec-sed-adj	Recreator Mutagenic Sediment Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	92950	(mg/kg)
IFrec-sed-adj	Recreator Sediment Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	20475	(mg/kg)
IFSMrec-adj	Recreator Mutagenic Soil Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	92950	(mg/kg)
IFSrec-adj	Recreator Soil Ingestion Rate - age adjusted - Virginia DEQ calculated using age- segment values	20475	(mg/kg)
IFWMrec-adj	Recreator Mutagenic Surface Water Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	122.776875	(L/kg)
FWrec-adj	Recreator Surface Water Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	29.445	(L/kg)
INHMrec-s-adj	Recreator Soil Inhalation Exposure Duration Mutagen - age adjusted - Virginia DEQ calculated using age-segment values	1170	(days)
INHMrec-sed-adj	Recreator Sediment Inhalation Exposure Duration Mutagen - age adjusted - Virginia DEQ calculated using age-segment values	1170	(days)
IRS0-02	Soil/Sediment Ingestion Rate - age segment 0-2	200	(mg/day)
IRS02-06	Soil/Sediment Ingestion Rate - age segment 2-6	200	(mg/day)
RS06-16	Soil/Sediment Ingestion Rate - age segment 6-16	100	(mg/day)
IRS16-26	Soil/Sediment Ingestion Rate - age segment 16-26	100	(mg/day)

# Program: Voluntary Remediation Program (VRP)

# Risk Based Performance Criteria

Default I	Hazard Index Default Risk for Individual Cl		
	1 1.00E-06	1.00E-04	ł
RSrec-a	Recreator Soil Ingestion Rate - adult	100	(mg/day)
RSrec-c	Recreator Soil Ingestion Rate - child	200	(mg/day)
RSrec-sed-a	Recreator Sediment Ingestion Rate - adult	100	(mg/day)
RSrec-sed-c	Recreator Sediment Ingestion Rate - child	200	(mg/day)
RW0-02	Surface Water Ingestion Rate - age segment 0-2	0.12	(L/hr)
RW02-06	Surface Water Ingestion Rate - age segment 2-6	0.12	(L/hr)
RW06-16	Surface Water Ingestion Rate - age segment 6-16	0.124	(L/hr)
RW16-26	Surface Water Ingestion Rate - age segment 16-26	0.0985	(L/hr)
RWrec-a	Recreator Surface Water Ingestion Rate - adult	0.11	(L/hr)
RWrec-c	Recreator Surface Water Ingestion Rate - child	0.12	(L/hr)
Arec-a	Recreator Surface Water Surface Area - adult	19652	(cm2)
SArec-a	Recreator Soil Surface Area - adult	6032	(cm2/day)
Arec-c	Recreator Surface Water Surface Area - child	6365	(cm2)
Arec-c	Recreator Soil Surface Area - child	2373	(cm2/day)
Arec-sed-a	Recreator Sediment Surface Area - adult	6032	(cm2/day)
Arec-sed-c	Recreator Sediment Surface Area - child	2373	(cm2/day)
As0-02	Surface Area Soil/Sediment - age segment 0-2	2373	(cm2/day)
As02-06	Surface Area Soil/Sediment - age segment 2-6	2373	(cm2/day)
As06-16	Surface Area Soil/Sediment - age segment 6-16	6032	(cm2/day)
As16-26	Surface Area Soil/Sediment - age segment 16-26	6032	(cm2/day)
Aw0-02	Surface Area Water - age segment 0-2	6365	(cm2)
Aw02-06	Surface Area Water - age segment 2-6	6365	(cm2)
Aw06-16	Surface Area Water - age segment 6- 16	19652	(cm2)
Aw16-26	Surface Area Water - age segment 16- 26	19652	(cm2)

END OF REPORT

## ATTACHMENT 3-5 TRESPASSER

# **Virginia Department of Environmental Quality**



# Virginia Unified Risk Assessment Model

# **VERSION: 3.2.1**

# **Trespasser Quantitative Risk Assessment Report**

# **Program:** Voluntary Remediation Program (VRP)

# Site Name: Alexandria

By submitting this report to the Virginia DEQ, the user confirms that VURAM's default exposure parameters have not been altered, unless a complete unaltered VURAM analysis is provided and all modifications are detailed explicitly in an accompanying narrative or documentation that shows DEQ's prior concurrence with specific changes.

# **Chemical Specific Notes Displayed as Applicable**

**Lead** VURAM does not perform an evaluation for lead exposure. Use other approved models for lead modeling.

# All Report Pages are Required for Risk Assessment Submission

### Trespasser

# Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte:	Acenaphthene
CAS:	83-32-9

Concentration mg/kg:	2.06E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	6.00E-02	Non-Can	Non-Cancer Adult Non-Cancer Child Can				Cancer
RfCi (mg/m3):		Ingestion:	2.82E-07	Ingestion:	3.01E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.55E-07	Dermal:	9.29E-07	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	4.37E-07	Total:	3.94E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

# Analyte: Acenaphthylene CAS: 208-96-8

Concentration mg/kg:	1.40E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	3.84E-07	Ingestion:	4.09E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.11E-07	Dermal:	1.26E-06	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	5.94E-07	Total:	5.35E-06	Total:	0.00E+00
L	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

# Analyte: Acetone CAS: 67-64-1

Concentration mg/kg:	1.72E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	9.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	1.57E-07	Ingestion:	1.68E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.57E-07	Total:	1.68E-06	Total:	0.00E+00
	% Contribution	n to Media Risk	0.00%		0.00%		0.00%

Site Name:	Alexandria		Trespasser				
Program:	Voluntary Remediation Program (VRP)						
		<b>Risk Based Performance Criteria</b>					
De	fault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals				
	1	1.00E-06	1.00E-04				

# Soil

Analyte:	Acetophenone
CAS:	98-86-2

Concentration mg/kg:	1.51E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):		Ingestion:	1.24E-07	Ingestion:	1.32E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.24E-07	Total:	1.32E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Aluminum CAS: 7429-90-5

Concentration mg/kg:	9.23E+03			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	1.00E+00	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	5.00E-03	Ingestion:	7.58E-04	Ingestion:	8.09E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	7.43E-06	Inhalation:	7.43E-06	Inhalation:	
Mutagen:		Total:	7.66E-04	Total:	8.10E-03	Total:	0.00E+00
	% Contributio	n to Media Risk	4.69%		4.81%		0.00%

Analyte:	Anthracene
CAS:	120-12-7

Concentration mg/kg:	2.53E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	6.93E-08	Ingestion:	7.39E-07	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.80E-08	Dermal:	2.28E-07	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.07E-07	Total:	9.67E-07	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

# Analyte: Antimony (metallic) CAS: 7440-36-0

Concentration mg/kg:	1.34E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	3.00E-04	Ingestion:	2.76E-04	Ingestion:	2.94E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.80E-08	Inhalation:	1.80E-08	Inhalation:	
Mutagen:		Total:	2.76E-04	Total:	2.94E-03	Total:	0.00E+00
	% Contributio	n to Media Risk	1.69%		1.75%		0.00%

## Analyte: Arsenic, Inorganic CAS: 7440-38-2

Concentration mg/kg:	8.80E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	1.50E-05	Ingestion:	1.45E-03	Ingestion:	1.54E-02	Ingestion:	7.81E-07
SFO (mg/kg-day)-1:	1.50E+00	Dermal:	3.05E-04	Dermal:	1.83E-03	Dermal:	1.10E-07
IUR (µg/m3)-1:	4.30E-03	Inhalation:	2.36E-06	Inhalation:	2.36E-06	Inhalation:	5.66E-11
Mutagen:		Total:	1.75E-03	Total:	1.73E-02	Total:	8.91E-07
	% Contribution	n to Media Risk	10.75%		10.26%		66.06%

# Analyte: Barium CAS: 7440-39-3

Concentration mg/kg:	7.27E+01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	2.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	5.00E-04	Ingestion:	2.99E-05	Ingestion:	3.19E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	5.86E-07	Inhalation:	5.86E-07	Inhalation:	
Mutagen:		Total:	3.05E-05	Total:	3.19E-04	Total:	0.00E+00
	% Contributio	n to Media Risk	0.19%		0.19%		0.00%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte:	Benz[a]anthracene
CAS:	56-55-3

Concentration mg/kg:	4.82E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	2.16E-08
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	7.20E-09
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	3.71E-11
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	2.88E-08
	% Contribution	n to Media Risk	0.00%		0.00%		2.14%

## Analyte: Benzene CAS: 71-43-2

Concentration mg/kg:	5.00E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):	3.00E-02	Ingestion:	1.03E-05	Ingestion:	1.10E-04	Ingestion:	2.71E-09
SFO (mg/kg-day)-1:	5.50E-02	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	7.80E-06	Inhalation:	2.58E-05	Inhalation:	2.58E-05	Inhalation:	2.24E-09
Mutagen:		Total:	3.61E-05	Total:	1.35E-04	Total:	4.95E-09
	% Contributio	n to Media Risk	0.22%		0.08%		0.37%

# Analyte: Benzo(g,h,i)perylene CAS: 191-24-2

Concentration mg/kg:	2.47E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	6.77E-07	Ingestion:	7.22E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.71E-07	Dermal:	2.23E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.05E-06	Total:	9.45E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.01%		0.01%		0.00%

## Program: Voluntary Remediation Program (VRP)

-

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte:	Benzo[a]pyrene
CAS:	50-32-8

Concentration mg/kg:	3.36E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	3.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	2.00E-06	Ingestion:	9.21E-05	Ingestion:	9.82E-04	Ingestion:	1.50E-07
SFO (mg/kg-day)-1:	1.00E+00	Dermal:	5.05E-05	Dermal:	3.03E-04	Dermal:	5.02E-08
IUR (µg/m3)-1:	6.00E-04	Inhalation:	6.77E-07	Inhalation:	6.77E-07	Inhalation:	8.35E-13
Mutagen:	Y	Total:	1.43E-04	Total:	1.29E-03	Total:	2.01E-07
	% Contribution	n to Media Risk	0.88%		0.76%		14.88%

# Analyte:Benzo[b]fluorantheneCAS:205-99-2

Concentration mg/kg:	6.65E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	2.98E-08
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	9.94E-09
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	1.65E-13
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	3.97E-08
	% Contributio	n to Media Risk	0.00%		0.00%		2.94%

# Analyte: Benzo[k]fluoranthene CAS: 207-08-9

Concentration mg/kg:	3.61E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.62E-09
SFO (mg/kg-day)-1:	1.00E-02	Dermal:		Dermal:		Dermal:	5.39E-10
IUR (μg/m3)-1:	6.00E-06	Inhalation:		Inhalation:		Inhalation:	8.98E-15
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	2.16E-09
	% Contributio	n to Media Risk	0.00%		0.00%		0.16%

Site I	Name:	Alexandria

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte:	Benzoic Acid
CAS:	65-85-0

Concentration mg/kg:	1.20E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E+00	Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):		Ingestion:	2.47E-08	Ingestion:	2.63E-07	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.04E-08	Dermal:	6.24E-08	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.51E-08	Total:	3.25E-07	Total:	0.00E+00
	% Contribution	n to Media Risk	0.00%		0.00%		0.00%

# Analyte:Beryllium and compoundsCAS:7440-41-7

		T					
Concentration mg/kg:	9.00E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	2.00E-05	Ingestion:	3.70E-05	Ingestion:	3.95E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:	2.40E-03	Inhalation:	1.81E-07	Inhalation:	1.81E-07	Inhalation:	3.23E-12
Mutagen:		Total:	3.72E-05	Total:	3.95E-04	Total:	3.23E-12
	% Contributio	n to Media Risk	0.23%		0.23%		0.00%

# Analyte: Bis(2-ethylhexyl)phthalate

CAS: 11/-81-/	CAS:	117-81-7
---------------	------	----------

Concentration mg/kg:	2.31E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:	9.49E-07	Ingestion:	1.01E-05	Ingestion:	3.19E-10
SFO (mg/kg-day)-1:	1.40E-02	Dermal:	4.01E-07	Dermal:	2.40E-06	Dermal:	8.97E-11
IUR (µg/m3)-1:	2.40E-06	Inhalation:		Inhalation:		Inhalation:	8.30E-16
Mutagen:		Total:	1.35E-06	Total:	1.25E-05	Total:	4.09E-10
	% Contributio	n to Media Risk	0.01%		0.01%		0.03%

Site Name:	Alexandria	

#### Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Г

#### Analyte: Butylbenzene, n-CAS: 104-51-8

Concentration mg/kg:	1.40E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	5.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	2.30E-07	Ingestion:	2.45E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.30E-07	Total:	2.45E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Cadmium (Diet) CAS: 7440-43-9-Diet

Concentration mg/kg:	3.33E-01		Calculated Hazard/Risk					
RfDo (mg/kg-day):	1.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer	
RfCi (mg/m3):	1.00E-05	Ingestion:	2.74E-04	Ingestion:	2.92E-03	Ingestion:		
SFO (mg/kg-day)-1:		Dermal:	4.62E-05	Dermal:	2.77E-04	Dermal:		
IUR (µg/m3)-1:	1.80E-03	Inhalation:	1.34E-07	Inhalation:	1.34E-07	Inhalation:	8.97E-13	
Mutagen:		Total:	3.20E-04	Total:	3.20E-03	Total:	8.97E-13	
	% Contribution	n to Media Risk	1.96%		1.90%		0.00%	

Analyte:	Carbazole
CAS:	86-74-8

Concentration mg/kg:	2.42E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
L	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

#### Voluntary Remediation Program (VRP) **Program:**

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

#### Analyte: Chromium(III), Insoluble Salts

CAS: 16065-83-1

Concentration mg/kg:	2.06E+02			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.50E+00	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	1.13E-05	Ingestion:	1.20E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.13E-05	Total:	1.20E-04	Total:	0.00E+00
	% Contribution	n to Media Risk	0.07%		0.07%		0.00%

#### Analyte: Chrysene CAS: 218-01-9

Concentration mg/kg:	6.91E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	3.09E-10
SFO (mg/kg-day)-1:	1.00E-03	Dermal:		Dermal:		Dermal:	1.03E-10
IUR (µg/m3)-1:	6.00E-07	Inhalation:		Inhalation:		Inhalation:	1.72E-15
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	4.13E-10
	% Contributio	n to Media Risk	0.00%		0.00%		0.03%

Analyte: CAS:	Cobalt 7440-48-4				
Concentrati	on mg/kg:	1.04E+01			
RfDo (mg/k	g-day):	3.00E-04	Non-Ca	ncer Adult	
RfCi (mg/m3	3):	6.00E-06	Ingestion:	2.84E-03	Ir
SFO (mg/kg	-day)-1:		Dermal:		D

9.00E-03

Calculated Hazard/Risk							
er Adult	Non-Car	ncer Child	Ca	ncer			
2.84E-03	Ingestion:	3.03E-02	Ingestion:				
	Dermal:		Dermal:				
6.96E-06	Inhalation:	6.96E-06	Inhalation:	1.40E-10			
2.85E-03	Total:	3.03E-02	Total:	1.40E-10			

18.02%

% Contribution to Media Risk

Total: 2.85E-03 17.45%

Inhalation:

0.01%

IUR (µg/m3)-1:

Mutagen:

Site Name:	Alexandria		Trespasser		
Program:	Voluntary Remediation Program (VRP)				
		<b>Risk Based Performance Criteria</b>			
Def	ault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals		
	1	1.00E-06	1.00E-04		

# Soil

# Analyte: Copper CAS: 7440-50-8

S:	7440-50-8

T

Concentration mg/kg:	1.55E+02			Calculated	d Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	incer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	3.18E-04	Ingestion:	3.40E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.18E-04	Total:	3.40E-03	Total:	0.00E+00
	% Contribution	n to Media Risk	1.95%		2.02%		0.00%

# Analyte: Cresol, o-CAS: 95-48-7

Concentration mg/kg:	1.30E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	5.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	6.00E-01	Ingestion:	2.14E-07	Ingestion:	2.28E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	9.02E-08	Dermal:	5.41E-07	Dermal:	
IUR (µg/m3)-1:		Inhalation:	8.73E-13	Inhalation:	8.73E-13	Inhalation:	
Mutagen:		Total:	3.04E-07	Total:	2.82E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

	_		

Analyte:	Cresol, p-chloro-m-
CAS:	59-50-7

Concentration mg/kg:	1.19E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	9.78E-08	Ingestion:	1.04E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	4.13E-08	Dermal:	2.48E-07	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.39E-07	Total:	1.29E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

Site Name:	Alexandria		Trespasser			
Program:	Voluntary Remediation Program (VRP)					
		<b>Risk Based Performance Criteria</b>				
Det	fault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals			
	1	1.00E-06	1.00E-04			

# Soil

Analyte:	Cumene
CAS:	98-82-8

Concentration mg/kg:	1.68E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	4.00E-01	Ingestion:	1.38E-07	Ingestion:	1.47E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	3.71E-07	Inhalation:	3.71E-07	Inhalation:	
Mutagen:		Total:	5.09E-07	Total:	1.84E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

# Analyte:Cyanide (CN-)CAS:57-12-5

Concentration mg/kg:	8.26E-01		Calculated Hazard/Risk					
RfDo (mg/kg-day):	6.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	incer	
RfCi (mg/m3):	8.00E-04	Ingestion:	1.13E-04	Ingestion:	1.21E-03	Ingestion:		
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:		
IUR (µg/m3)-1:		Inhalation:	1.06E-04	Inhalation:	1.06E-04	Inhalation:		
Mutagen:		Total:	2.19E-04	Total:	1.31E-03	Total:	0.00E+00	
L	% Contributio	n to Media Risk	1.34%		0.78%		0.00%	

# Analyte: Dibenz[a,h]anthracene

CAS:	53-70-3

Concentration mg/kg:	1.98E-01	Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	8.87E-08
SFO (mg/kg-day)-1:	1.00E+00	Dermal:		Dermal:		Dermal:	2.96E-08
IUR (µg/m3)-1:	6.00E-04	Inhalation:		Inhalation:		Inhalation:	4.92E-13
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	1.18E-07
	% Contributio	n to Media Risk	0.00%		0.00%		8.77%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

# Analyte: Dimethylphenol, 2,4-CAS: 105-67-9

Concentration mg/kg:	2.00E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):		Ingestion:	8.22E-07	Ingestion:	8.77E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.47E-07	Dermal:	2.08E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.17E-06	Total:	1.08E-05	Total:	0.00E+00
	% Contribution	n to Media Risk	0.01%		0.01%		0.00%

## Analyte: Ethylbenzene CAS: 100-41-4

Concentration mg/kg:	3.42E-01		Calculated Hazard/Risk					
RfDo (mg/kg-day):	5.00E-02	Non-Can	Non-Cancer Adult Non-Cancer Child				Cancer	
RfCi (mg/m3):	1.00E+00	Ingestion:	5.62E-07	Ingestion:	6.00E-06	Ingestion:	3.71E-10	
SFO (mg/kg-day)-1:	1.10E-02	Dermal:		Dermal:		Dermal:		
IUR (µg/m3)-1:	2.50E-06	Inhalation:	3.31E-07	Inhalation:	3.31E-07	Inhalation:	3.07E-10	
Mutagen:		Total:	8.93E-07	Total:	6.33E-06	Total:	6.78E-10	
	% Contribution	n to Media Risk	0.01%		0.00%		0.05%	

## Analyte: Fluoranthene CAS: 206-44-0

Concentration mg/kg:	8.95E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):		Ingestion:	1.84E-06	Ingestion:	1.96E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.01E-06	Dermal:	6.05E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	2.85E-06	Total:	2.57E-05	Total:	0.00E+00
	% Contributio	n to Media Risk	0.02%		0.02%		0.00%

Site Name:	Alexandria								
Program:	Voluntary Remediat	ion Program (VRP)							
		Risk Based Performance Criteria							
Def	fault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals						
	1	1.00E-06	1.00E-04						

# Soil

Analyte: Fluorene CAS: 86-73-7

Concentration mg/kg:	2.30E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	4.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	4.73E-07	Ingestion:	5.04E-06	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.59E-07	Dermal:	1.56E-06	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	7.32E-07	Total:	6.60E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

#### Analyte: Indeno[1,2,3-cd]pyrene CAS: 193-39-5

Concentration mg/kg:	2.82E-01		Calculated Hazard/Risk					
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer	
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.26E-08	
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	4.21E-09	
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	7.01E-14	
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	1.68E-08	
	% Contributio	n to Media Risk	0.00%		0.00%		1.25%	

#### Analyte: Iron CAS:

7439-89-6

Concentration mg/kg:	6.57E+04	Calculated Hazard/Risk					
RfDo (mg/kg-day):	7.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	(	Cancer
RfCi (mg/m3):		Ingestion:	7.71E-03	Ingestion:	8.23E-02	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	7.71E-03	Total:	8.23E-02	Total:	0.00E+00
	% Contributio	n to Media Risk	47.26%		48.92%		0.00%

te Name: Alexandria

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte:	isopropyltoluene
CAS:	99-87-6

Concentration mg/kg:	9.93E-02			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	1.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):	4.00E-01	Ingestion:	8.16E-08	Ingestion:	8.71E-07	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.42E-07	Inhalation:	1.42E-07	Inhalation:	
Mutagen:		Total:	2.23E-07	Total:	1.01E-06	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

# Analyte:Lead and CompoundsCAS:7439-92-1

Concentration mg/kg:	2.05E+01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

# Analyte: Manganese (Diet) CAS: 7439-96-5-Diet

Concentration mg/kg:	5.16E+02			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.40E-01	Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):	5.00E-05	Ingestion:	3.03E-04	Ingestion:	3.23E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	4.16E-05	Inhalation:	4.16E-05	Inhalation:	
Mutagen:		Total:	3.45E-04	Total:	3.27E-03	Total:	0.00E+00
	% Contributio	n to Media Risk	2.11%		1.95%		0.00%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

# Analyte: Mercury (elemental)

CAS: 7439-97-6

Concentration mg/kg:	5.07E-02			Calculated	Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	3.00E-04	Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	2.67E-05	Inhalation:	2.67E-05	Inhalation:	
Mutagen:		Total:	2.67E-05	Total:	2.67E-05	Total:	0.00E+00
	% Contributio	n to Media Risk	0.16%		0.02%		0.00%

# Analyte: Methyl Ethyl Ketone (2-Butanone)

Т

CAS: 78-93-3

Concentration mg/kg:	5.73E-01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	6.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	5.00E+00	Ingestion:	7.85E-08	Ingestion:	8.37E-07	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	5.15E-08	Inhalation:	5.15E-08	Inhalation:	
Mutagen:		Total:	1.30E-07	Total:	8.89E-07	Total:	0.00E+00
L	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

# Analyte: Methylcyclohexane CAS: 108-87-2

Concentration mg/kg:	7.39E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	0.00E+00	Total:	0.00E+00	Total:	0.00E+00
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

## Program: Voluntary Remediation Program (VRP)

____

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Analyte:	Methylene Chloride
CAS:	75-09-2

Concentration mg/kg:	6.90E-04			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	6.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	6.00E-01	Ingestion:	9.45E-09	Ingestion:	1.01E-07	Ingestion:	6.18E-13
SFO (mg/kg-day)-1:	2.00E-03	Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	1.00E-08	Inhalation:	2.88E-09	Inhalation:	2.88E-09	Inhalation:	1.78E-14
Mutagen:	Y	Total:	1.23E-08	Total:	1.04E-07	Total:	6.36E-13
	% Contributio	n to Media Risk	0.00%		0.00%		0.00%

## Analyte: Methylnaphthalene, 1-CAS: 90-12-0

Concentration mg/kg:	2.18E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	7.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:	2.56E-06	Ingestion:	2.73E-05	Ingestion:	6.23E-09
SFO (mg/kg-day)-1:	2.90E-02	Dermal:	1.40E-06	Dermal:	8.42E-06	Dermal:	2.28E-09
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.96E-06	Total:	3.57E-05	Total:	8.51E-09
L	% Contributio	n to Media Risk	0.02%		0.02%		0.63%

# Analyte: Methylnaphthalene, 2-

CAS: 91-57-6

Concentration mg/kg:	3.51E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	4.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):		Ingestion:	7.21E-05	Ingestion:	7.70E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	3.96E-05	Dermal:	2.37E-04	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.12E-04	Total:	1.01E-03	Total:	0.00E+00
	% Contributio	n to Media Risk	0.68%		0.60%		0.00%

# Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Г

Analyte:	Naphthalene
CAS:	91-20-3

Concentration mg/kg:	2.05E+00	Calculated Hazard/Risk						
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer	
RfCi (mg/m3):	3.00E-03	Ingestion:	8.41E-06	Ingestion:	8.97E-05	Ingestion:	2.42E-08	
SFO (mg/kg-day)-1:	1.20E-01	Dermal:	4.62E-06	Dermal:	2.77E-05	Dermal:	8.86E-09	
IUR (µg/m3)-1:	3.40E-05	Inhalation:	8.07E-05	Inhalation:	8.07E-05	Inhalation:	3.06E-09	
Mutagen:		Total:	9.37E-05	Total:	1.98E-04	Total:	3.61E-08	
	% Contribution	n to Media Risk	0.57%		0.12%		2.68%	

## Analyte: Nickel Soluble Salts CAS: 7440-02-0

Concentration mg/kg:	1.11E+02			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	2.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):	9.00E-05	Ingestion:	4.56E-04	Ingestion:	4.86E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:	2.60E-04	Inhalation:	4.96E-06	Inhalation:	4.96E-06	Inhalation:	4.31E-11
Mutagen:		Total:	4.61E-04	Total:	4.87E-03	Total:	4.31E-11
	% Contribution	n to Media Risk	2.82%		2.89%		0.00%

## Analyte: Phenanthrene CAS: 85-01-8

Concentration mg/kg:	1.70E+00			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	4.65E-06	Ingestion:	4.96E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	2.55E-06	Dermal:	1.53E-05	Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	7.20E-06	Total:	6.49E-05	Total:	0.00E+00
	% Contributio	n to Media Risk	0.04%		0.04%		0.00%

Site Name:	Alexandria Trespass							
Program:	Voluntary Remediat	tion Program (VRP)						
		<b>Risk Based Performance Criteria</b>						
Def	ault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals					
	1	1.00E-06	1.00E-04					

# Soil

#### Analyte: Pyrene 20.00.0 CA

AS:	129-00-0	

Concentration mg/kg:	8.78E-01	Ţ		Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	C	Cancer
RfCi (mg/m3):		Ingestion:	2.41E-06	Ingestion:	2.57E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:	1.32E-06	Dermal:	7.92E-06	Dermal:	
IUR (μg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	3.73E-06	Total:	3.36E-05	Total:	0.00E+00
	% Contributio	n to Media Risk	0.02%		0.02%		0.00%

#### Analyte: Toluene CAS: 108-88-3

Г

Concentration mg/kg:	2.07E+00		Calculated Hazard/Risk					
RfDo (mg/kg-day):	8.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	incer	
RfCi (mg/m3):	5.00E+00	Ingestion:	2.13E-06	Ingestion:	2.27E-05	Ingestion:		
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:		
IUR (µg/m3)-1:		Inhalation:	5.29E-07	Inhalation:	5.29E-07	Inhalation:		
Mutagen:		Total:	2.66E-06	Total:	2.32E-05	Total:	0.00E+00	
	% Contributio	n to Media Risk	0.02%		0.01%		0.00%	

#### Analyte: Trimethylbenzene, 1,2,4-

#### CAS: 95-63-6

Concentration mg/kg:	1.47E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ancer
RfCi (mg/m3):	6.00E-02	Ingestion:	1.21E-05	Ingestion:	1.29E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.69E-05	Inhalation:	1.69E-05	Inhalation:	
Mutagen:		Total:	2.90E-05	Total:	1.46E-04	Total:	0.00E+00
	% Contributio	n to Media Risk	0.18%		0.09%		0.00%

## Program: Voluntary Remediation Program (VRP)

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

# Analyte: Trimethylbenzene, 1,3,5-

CAS: 108-67-8

Concentration mg/kg:	4.37E-01			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	1.00E-02	Non-Can	cer Adult	Non-Ca	ncer Child	Ca	incer
RfCi (mg/m3):	6.00E-02	Ingestion:	3.59E-06	Ingestion:	3.83E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	6.04E-06	Inhalation:	6.04E-06	Inhalation:	
Mutagen:		Total:	9.63E-06	Total:	4.43E-05	Total:	0.00E+00
	% Contributio	n to Media Risk	0.06%		0.03%		0.00%

## Analyte: Vanadium and Compounds CAS: 7440-62-2

Concentration mg/kg:	4.04E+01	Ţ		Coloulates	Literand /Diale		
				Calculated	Hazard/Risk		
RfDo (mg/kg-day):	5.00E-03	Non-Can	cer Adult	Non-Ca	ncer Child	C	ancer
RfCi (mg/m3):	1.00E-04	Ingestion:	6.63E-04	Ingestion:	7.08E-03	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:	1.63E-06	Inhalation:	1.63E-06	Inhalation:	
Mutagen:		Total:	6.65E-04	Total:	7.08E-03	Total:	0.00E+00
	% Contributio	n to Media Risk	4.07%		4.21%		0.00%

Analyte:	Xylenes
CAS:	1330-20-7

Concentration mg/kg:	6.50E+00			Calculated	Hazard/Risk		
RfDo (mg/kg-day):	2.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):	1.00E-01	Ingestion:	2.67E-06	Ingestion:	2.85E-05	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (μg/m3)-1:		Inhalation:	6.20E-05	Inhalation:	6.20E-05	Inhalation:	
Mutagen:		Total:	6.47E-05	Total:	9.05E-05	Total:	0.00E+00
	% Contributio	n to Media Risk	0.40%		0.05%		0.00%

Site	Name:	Alexandria

# Program: Voluntary Remediation Program (VRP)

-

	Risk Based Performance Criteria	
Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
1	1.00E-06	1.00E-04

# Soil

Г

Analyte:	Zinc and Compounds
CAS:	7440-66-6

Concentration mg/kg:	4.97E+01			Calculated	l Hazard/Risk		
RfDo (mg/kg-day):	3.00E-01	Non-Can	cer Adult	Non-Ca	ncer Child	С	ancer
RfCi (mg/m3):		Ingestion:	1.36E-05	Ingestion:	1.45E-04	Ingestion:	
SFO (mg/kg-day)-1:		Dermal:		Dermal:		Dermal:	
IUR (µg/m3)-1:		Inhalation:		Inhalation:		Inhalation:	
Mutagen:		Total:	1.36E-05	Total:	1.45E-04	Total:	0.00E+00
	% Contributio	n to Media Risk	0.08%		0.09%		0.00%

# Total Calculated Hazard/Risk for Soil

Non-Cancer Adult		Non-Canc	er Child	Cancer	
Ingestion:	1.55E-02	Ingestion:	1.65E-01	Ingestion:	1.12E-06
Dermal:	4.55E-04	Dermal:	2.72E-03	Dermal:	2.23E-07
Inhalation:	3.92E-04	Inhalation:	3.92E-04	Inhalation:	5.89E-09
Total:	1.63E-02	Total:	1.68E-01	Total:	1.35E-06

Voluntary Remediation Program (VRP) **Program:** 

**Risk Based Performance Criteria** 

**Default Hazard Index** 1

Default Risk Individual Chemical 1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

# **Report Summary**

Hazard/risk values of zero (0.00+00) are reflective of non-calculated values. Hazard/risk for zero value analytes must be evaluated outside of quantitative risk assessment.

# Hazard/Risk Summary for Soil

Analyte	CAS	Hazard Adult	Hazard Child	Risk
Acenaphthene	83-32-9	4.37E-07	3.94E-06	0.00E+00
Acenaphthylene	208-96-8	5.94E-07	5.35E-06	0.00E+00
Acetone	67-64-1	1.57E-07	1.68E-06	0.00E+00
Acetophenone	98-86-2	1.24E-07	1.32E-06	0.00E+00
Aluminum	7429-90-5	7.66E-04	8.10E-03	0.00E+00
Anthracene	120-12-7	1.07E-07	9.67E-07	0.00E+00
Antimony (metallic)	7440-36-0	2.76E-04	2.94E-03	0.00E+00
Arsenic, Inorganic	7440-38-2	1.75E-03	1.73E-02	8.91E-07
Barium	7440-39-3	3.05E-05	3.19E-04	0.00E+00
Benz[a]anthracene	56-55-3	0.00E+00	0.00E+00	2.88E-08
Benzene	71-43-2	3.61E-05	1.35E-04	4.95E-09
Benzo(g,h,i)perylene	191-24-2	1.05E-06	9.45E-06	0.00E+00
Benzo[a]pyrene	50-32-8	1.43E-04	1.29E-03	2.01E-07
Benzo[b]fluoranthene	205-99-2	0.00E+00	0.00E+00	3.97E-08
Benzo[k]fluoranthene	207-08-9	0.00E+00	0.00E+00	2.16E-09
Benzoic Acid	65-85-0	3.51E-08	3.25E-07	0.00E+00
Beryllium and compounds	7440-41-7	3.72E-05	3.95E-04	3.23E-12
Bis(2-ethylhexyl)phthalate	117-81-7	1.35E-06	1.25E-05	4.09E-10
Butylbenzene, n-	104-51-8	2.30E-07	2.45E-06	0.00E+00
Cadmium (Diet)	7440-43-9-Diet	3.20E-04	3.20E-03	8.97E-13
Carbazole	86-74-8	0.00E+00	0.00E+00	0.00E+00
Chromium(III), Insoluble Salts	16065-83-1	1.13E-05	1.20E-04	0.00E+00
Chrysene	218-01-9	0.00E+00	0.00E+00	4.13E-10
Cobalt	7440-48-4	2.85E-03	3.03E-02	1.40E-10
Copper	7440-50-8	3.18E-04	3.40E-03	0.00E+00
Cresol, o-	95-48-7	3.04E-07	2.82E-06	0.00E+00
Cresol, p-chloro-m-	59-50-7	1.39E-07	1.29E-06	0.00E+00
Cumene	98-82-8	5.09E-07	1.84E-06	0.00E+00
Cyanide (CN-)	57-12-5	2.19E-04	1.31E-03	0.00E+00
Dibenz[a,h]anthracene	53-70-3	0.00E+00	0.00E+00	1.18E-07
Dimethylphenol, 2,4-	105-67-9	1.17E-06	1.08E-05	0.00E+00
Ethylbenzene	100-41-4	8.93E-07	6.33E-06	6.78E-10

#### Trespasser

#### Program: Voluntary Remediation Program (VRP)

## Risk Based Performance Criteria

Default Hazard Index 1

Default Risk Individual Chemical 1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

# Hazard/Risk Summary for Soil

Analyte	CAS	Hazard Adult	Hazard Child	Risk
Fluoranthene	206-44-0	2.85E-06	2.57E-05	0.00E+00
Fluorene	86-73-7	7.32E-07	6.60E-06	0.00E+00
Indeno[1,2,3-cd]pyrene	193-39-5	0.00E+00	0.00E+00	1.68E-08
Iron	7439-89-6	7.71E-03	8.23E-02	0.00E+00
isopropyltoluene	99-87-6	2.23E-07	1.01E-06	0.00E+00
Lead and Compounds	7439-92-1	0.00E+00	0.00E+00	0.00E+00
Manganese (Diet)	7439-96-5-Diet	3.45E-04	3.27E-03	0.00E+00
Mercury (elemental)	7439-97-6	2.67E-05	2.67E-05	0.00E+00
Methyl Ethyl Ketone (2-Butanone)	78-93-3	1.30E-07	8.89E-07	0.00E+00
Methylcyclohexane	108-87-2	0.00E+00	0.00E+00	0.00E+00
Methylene Chloride	75-09-2	1.23E-08	1.04E-07	6.36E-13
Methylnaphthalene, 1-	90-12-0	3.96E-06	3.57E-05	8.51E-09
Methylnaphthalene, 2-	91-57-6	1.12E-04	1.01E-03	0.00E+00
Naphthalene	91-20-3	9.37E-05	1.98E-04	3.61E-08
Nickel Soluble Salts	7440-02-0	4.61E-04	4.87E-03	4.31E-11
Phenanthrene	85-01-8	7.20E-06	6.49E-05	0.00E+00
Pyrene	129-00-0	3.73E-06	3.36E-05	0.00E+00
Toluene	108-88-3	2.66E-06	2.32E-05	0.00E+00
Trimethylbenzene, 1,2,4-	95-63-6	2.90E-05	1.46E-04	0.00E+00
Trimethylbenzene, 1,3,5-	108-67-8	9.63E-06	4.43E-05	0.00E+00
Vanadium and Compounds	7440-62-2	6.65E-04	7.08E-03	0.00E+00
Xylenes	1330-20-7	6.47E-05	9.05E-05	0.00E+00
Zinc and Compounds	7440-66-6	1.36E-05	1.45E-04	0.00E+00

# Total Hazard/Risk for All Media

Non-Car	ncer Adult	Non-Ca	ncer Child	Са	ncer
Ingestion:	1.55E-02	Ingestion:	1.65E-01	Ingestion:	1.12E-06
Dermal:	4.55E-04	Dermal:	2.72E-03	Dermal:	2.23E-07
Inhalation:	3.92E-04	Inhalation:	3.92E-04	Inhalation:	5.89E-09
Total:	1.63E-02	Total:	1.68E-01	Total:	1.35E-06
does not exc	eed hazard index	does not exc	eed hazard index	does not exce	ed cumulative risk

### Trespasser

#### Voluntary Remediation Program (VRP) Program:

### **Risk Based Performance Criteria**

Default Hazard Index 1

Default Risk Individual Chemical 1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

# **Trespasser Exposure Default Values**

Symbol	Description	Value	Units
AF0-02	Soil Adherence Factor - age segment 0-2	0.2	(mg/cm2)
AF02-06	Soil Adherence Factor - age segment 2-6	0.2	(mg/cm2)
AF06-16	Soil Adherence Factor - age segment 6-16	0.07	(mg/cm2)
AF16-26	Soil Adherence Factor - age segment 16-26	0.07	(mg/cm2)
AFsed0-02	Recreator/Trepasser Sediment Adherence Factor - age segment 0-2 - Exposure Factors Handbook	0.3	(mg/cm2)
AFsed02-06	Recreator/Trepasser Sediment Adherence Factor - age segment 2-6 - Exposure Factors Handbook	0.3	(mg/cm2)
AFsed06-16	Recreator/Trepasser Sediment Adherence Factor - age segment 6-16 - Exposure Factors Handbook	0.2	(mg/cm2)
AFsed16-26	Recreator/Trepasser Sediment Adherence Factor - age segment 16-26 - Exposure Factors Handbook	0.2	(mg/cm2)
AFtrs-a	Trespasser Soil Adherence Factor- adult	0.07	(mg/cm2)
AFtrs-c	Trespasser Soil Adherence Factor - child	0.2	(mg/cm2)
AFtrs-sed-a	Trespasser Sediment Adherence Factor - adult - Exposure Factors Handbook	0.2	(mg/cm2)
AFtrs-sed-c	Trespasser Sediment Adherence Factor - child - Exposure Factors Handbook	0.3	(mg/cm2)
ATtrs	Trespasser Averaging Time	365	(days/yr)
ATtrs	Trespasser Averaging Time: 365 x LT	25550	(days)
ATtrs-a	Trespasser Averaging Time - adult: 365 x EDtrs-a	7300	(days)
ATtrs-c	Trespasser Averaging Time - child: 365 x EDtrs-c	2190	(days)
BW0-02	Body Weight - age segment 0-2	15	(kg)
BW02-06	Body Weight - age segment 2-6	15	(kg)
BW06-16	Body Weight - age segment 6-16	80	(kg)
BW16-26	Body Weight - age segment 16-26	80	(kg)
BWtrs-a	Trespasser Body Weight - adult	80	(kg)
BWtrs-c	Trespasser Body Weight - child	15	(kg)
DFSMtrs-adj	Trespasser Soil Mutagenic Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	29366.4	(mg/kg)
DFSMtrs-sed-adj	Trespasser Sediment Mutagenic Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	50926.08	(mg/kg)
DFStrs-adj	Trespasser Soil Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	7089.6	(mg/kg)

# Program: Voluntary Remediation Program (VRP)

### Risk Based Performance Criteria

Default Risk Individual Chemical Default Cumulative Risk-All Chemicals

Delaul	t Hazard Index Default Risk Individual Chemical Defaul	t cumulative Risk-All Chemica
	1 1.00E-06	1.00E-04
DFStrs-sed-adj	Trespasser Sediment Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	14072.64 (mg/kg)
DFWMtrs-adj	Trespasser Surface Water Mutagenic Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	561712 (cm2-event/kg
DFWtrs-adj	Trespasser Surface Water Dermal Contact Factor - age adjusted - Virginia DEQ calculated using age-segment values	179016 (cm2-event/kg)
D0-02	Exposure Duration - age segment 0-2	2 (yrs)
D02-06	Exposure Duration - age segment 2-6	4 (yrs)
D06-16	Exposure Duration -age segment 6-16	10 (yrs)
D16-26	Exposure Duration -age segment 16-26	10 (yrs)
Dtrs	Trespasser Soil/Sediment Exposure Duration	26 (yrs)
Dtrs-a	Trespasser Soil/Sediment Exposure Duration - adult	20 (yrs)
EDtrs-c	Trespasser Soil/Sediment Exposure Duration - child	6 (yrs)
Ftrs	Trespasser Exposure Frequency - Virginia DEQ	24 (days/yr)
Ftrs0-02	Trespasser Exposure Frequency - age segment 0-2 - Virginia DEQ	24 (days/yr)
Ftrs02-06	Trespasser Exposure Frequency - age segment 2-6 - Virginia DEQ	24 (days/yr)
Ftrs06-16	Trespasser Exposure Frequency - age segment 6-16 - Virginia DEQ	24 (days/yr)
Ftrs16-26	Trespasser Exposure Frequency - age segment 16-26 - Virginia DEQ	24 (days/yr)
Ftrs-a	Trespasser Exposure Frequency - adult - Virginia DEQ	24 (days/yr)
Ftrs-c	Trespasser Exposure Frequency - child - Virginia DEQ	24 (days/yr)
Tevent-rec/trs(0- )2)	Recreator/Trespasser Exposure Time - age segment 0-2 - Virginia DEQ	2 (hrs/event)
Tevent-rec/trs(02- 06)	Recreator/Trespasser Exposure Time - age segment 2-6 - Virginia DEQ	2 (hrs/event)
Tevent-rec/trs(06-	Recreator/Trespasser Exposure Time - age segment 6-16 - Virginia DEQ	2 (hrs/event)
Tevent-rec/trs(16- 26)	Recreator/Trespasser Exposure Time - age segment 16-26 - Virginia DEQ	2 (hrs/event)
Tevent-trs-a	Trespasser Surface Water Exposure Time - adult - Virginia DEQ	2 (hrs/event)
Tevent-trs-adj	Trespasser Exposure Time - age adjusted - Virginia DEQ calculated using age- segment values	2 (hrs/event)
Tevent-trs-c	Trespasser Surface Water Exposure Time - child - Virginia DEQ	2 (hrs/event)
Tevent-trs-madj	Trespasser Exposure Time - mutagen age adjusted - Virginia DEQ calculated using age-segment values	2 (hrs/event)
Trec/trs0-02	Recreator/Trespasser Exposure Time - age segment 0-2 - Virginia DEQ	2 (hrs/day)

# Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

	Misk based Ferrormance Citteria		
Defau	It Hazard Index Default Risk Individual Chemical Default Cu	mulative Ris	<-All Chemic
	1 1.00E-06	1.00E-04	
Trec/trs02-06	Recreator/Trespasser Exposure Time - age segment 2-6 - Virginia DEQ	2	(hrs/day)
Trec/trs06-16	Recreator/Trespasser Exposure Time - age segment 6-16 - Virginia DEQ	2	(hrs/day)
Trec/trs16-26	Recreator/Trespasser Exposure Time - age segment 16-26 - Virginia DEQ	2	(hrs/day)
Ttrs	Trespasser Soil Exposure Time - Virginia DEQ	2	(hrs/day)
ETtrs-a	Trespasser Exposure Time - adult - Virginia DEQ	2	(hrs/day)
ETtrs-c	Trespasser Exposure Time - child - Virginia DEQ	2	(hrs/day)
Ttrs-sed	Trespasser Sediment Exposure Time - Virginia DEQ	2	(hrs)
EV0-02	Events - age segment 0-2	1	(events/day)
EV02-06	Events - age segment 2-6	1	(events/day)
EV06-16	Events - age segment 6-16	1	(events/day)
V16-26	Events - age segment 16-26	1	(events/day)
EVtrs-a	Trespasser Events - adult - Virginia DEQ	1	(events/day)
EVtrs-c	Trespasser Surface Water Events - child - Virginia DEQ	1	(events/day)
FMtrs-sed-adj	Trespasser Mutagenic Sediment Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	11440	(mg/kg)
FSMtrs-adj	Trespasser Mutagenic Soil Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	11440	(mg/kg)
FStrs-adj	Trespasser Soil Ingestion Rate - age adjusted - Virginia DEQ calculated using age- segment values	2520	(mg/kg)
FStrs-sed-adj	Trespasser Sediment Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	2520	(mg/kg)
FWMtrs-adj	Trespasser Mutagenic Surface Water Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	15.111	(L/kg)
FWtrs-adj	Trespasser Surface Water Ingestion Rate - age adjusted - Virginia DEQ calculated using age-segment values	3.624	(L/kg)
NHMtrs-sed-adj	Trespasser Sediment Inhalation Exposure Duration Mutagen - age adjusted - Virginia DEQ calculated using age-segment values	144	(days)
NHMtrs-soil-adj	Trespasser Soil Inhalation Exposure Duration Mutagen - age adjusted - Virginia DEQ calculated using age-segment values	144	(days)
RS0-02	Soil/Sediment Ingestion Rate - age segment 0-2	200	(mg/day)
RS02-06	Soil/Sediment Ingestion Rate - age segment 2-6	200	(mg/day)
RS06-16	Soil/Sediment Ingestion Rate - age segment 6-16	100	(mg/day)
RS16-26	Soil/Sediment Ingestion Rate - age segment 16-26	100	(mg/day)
RStrs-a	Trespasser Soil Ingestion Rate - adult	100	(mg/day)

### Trespasser

# Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Def	ault Hazard Index	Default Risk Individual Chemical	Default Cumulative Ris	
	1	1.00E-06	1.00E-04	1
IRStrs-c	Trespasser Soil Ingestion	n Rate - child	200	(mg/day)
IRtrs-sed-a	Trespasser Sediment Ing	gestion Rate - adult	100	(mg/day)
IRtrs-sed-c	Trespasser Sediment Ing	gestion Rate - child	200	(mg/day)
IRW0-02	Surface Water Ingestion	Rate - age segment 0-2	0.12	(L/hr)
IRW02-06	Surface Water Ingestion	Rate - age segment 2-6	0.12	(L/hr)
IRW06-16	Surface Water Ingestion	Rate - age segment 6-16	0.124	(L/hr)
IRW16-26	Surface Water Ingestion	Rate - age segment 16-26	0.0985	(L/hr)
IRWtrs-a	Trespasser Surface Wat	er Ingestion Rate - adult	0.11	(L/hr)
IRWtrs-c	Trespasser Surface Wat	er Ingestion Rate - child	0.12	(L/hr)
SAs0-02	Surface Area Soil/Sedim	ent - age segment 0-2	2373	(cm2/day)
SAs02-06	Surface Area Soil/Sedim	ent - age segment 2-6	2373	(cm2/day)
SAs06-16	Surface Area Soil/Sedim	ent - age segment 6-16	6032	(cm2/day)
SAs16-26	Surface Area Soil/Sedim	ent - age segment 16-26	6032	(cm2/day)
SAtrs-a	Trespasser Soil Surface	Area - adult	6032	(cm2/day)
SAtrs-a	Trespasser Surface Wat	er Surface Area Surface - adult	19652	(cm2)
SAtrs-c	Trespasser Surface Wat	er Surface Area - child	6365	(cm2)
SAtrs-c	Trespasser Soil Surface	Area - child	2373	(cm2/day)
SAtrs-sed-a	Trespasser Sediment Su	rface Area - adult	6032	(cm2/day)
SAtrs-sed-c	Trespasser Sediment Su	rface Area - child	2373	(cm2/day)
SAw0-02	Surface Area Water - ag	e segment 0-2	6365	(cm2)
SAw02-06	Surface Area Water - ag	e segment 2-6	6365	(cm2)
SAw06-16	Surface Area Water - ag	e segment 6- 16	19652	(cm2)
SAw16-26	Surface Area Water - ag	e segment 16- 26	19652	(cm2)

# END OF REPORT