PHASE I ARCHAEOLOGICAL SURVEY AT TAYLOR RUN, ALEXANDRIA, VIRGINIA

PREPARED FOR:
CITY OF ALEXANDRIA
TRANSPORTATION AND ENVIRONMENTAL SERVICES, STORMWATER SECTION
200B BUSINESS CENTER DRIVE
ALEXANDRIA, VA 22314

PREPARED BY:
HEATHER CROWL, MA
RALPH KOZIARSKI PhD, RPA

PRINCIPAL INVESTIGATOR:
SCOTT SEIBEL, MSC, RPA

AECOM
12420 MILESTONE CENTER DRIVE, SUITE 150
GERMANTOWN, MD 20876
301.820.3000

NOVEMBER 2019
ABSTRACT

The City of Alexandria (City) is undertaking a stream restoration project along Taylor Run, located on King Street on the property of Chinquapin and Forest Parks and the First Baptist Church. Chinquapin park on the north end of the project is located at 3210 King Street, and the First Baptist Church on the south end is at 2932 King Street. AECOM completed a Phase I archaeological survey to assist the City in meeting regulatory obligations for the undertaking. The project’s area of potential effect (APE) encompassed approximately 5.3 acres. The investigation included the excavation of shovel test pits (STPs) at 30-ft intervals and radials at 15-ft intervals. In total, 157 STPs were excavated within the APE, resulting in identification of one prehistoric site (44AX0242) and four isolated prehistoric artifacts. In addition, 36 historic/modern artifacts were recovered that do not constitute a site due to their recovery from fill or slopewash contexts. Site 44AX0242 measures 30 by 40 ft in size and yielded seven lithic artifacts. The site appears to be a short-term resource procurement site, potentially for collection of lithic materials and/or use of adjacent wetland resources. No features or diagnostic artifacts were found, and the site is not likely to yield important information about area prehistory. Site 44AX0242 is recommended not eligible for inclusion in the National Register of Historic Places. No additional archaeological investigations are recommended prior to implementation of the stream restoration project.
TABLE OF CONTENTS

Abstract ... i

1.0 Introduction .. 1-1

2.0 Project Location and Description ... 2-1

2.1 Project Area Description .. 2-1

2.2 Geology and Topography .. 2-1

2.3 Hydrology ... 2-1

2.4 Soils ... 2-1

2.5 Current Conditions and Land Use ... 2-4

3.0 Cultural Context ... 3-1

3.1 Prehistoric Context ... 3-1

3.1.1 Paleoindian Period (10,000–8,000 B.C.) ... 3-1

3.1.2 Archaic Period (8,000–1,000 B.C.) ... 3-1

3.1.2.1 Early Archaic (8,000-6,000 B.C.) ... 3-1

3.1.2.2 Middle Archaic (6000-4000 B.C.) ... 3-2

3.1.2.3 Late Archaic (4,000-1,000 B.C.) ... 3-3

3.1.3 Woodland Period (1,000 B.C.—A.D. 1600) .. 3-4

3.1.3.1 Early Woodland (1,000-500 B.C.) .. 3-4

3.1.3.2 Middle Woodland (500 B.C.-A.D. 900) ... 3-5

3.1.3.3 Late Woodland (A.D. 900-1600) ... 3-6

3.2 Historic Context .. 3-7

3.2.1 Settlement to Society (A.D. 1607–1750) ... 3-7

3.2.2 Colony to Nation (A.D. 1750–1789) ... 3-8

3.2.3 Early National and Antebellum Periods (A.D. 1789–1860) .. 3-9

3.2.4 The Civil War (A.D. 1861–1865) .. 3-9

3.2.5 Reconstruction and Growth (A.D. 1865–1914) .. 3-10

3.2.6 WWI to Present (A.D. 1915–Present) .. 3-10

3.3 Project area history ... 3-11

3.4 Previous Investigations ... 3-16

3.4.1 Previous Cultural Resource Surveys ... 3-16

3.4.2 Previously Recorded Archaeological Resources .. 3-16

3.4.3 Previously Recorded Above-Ground Resources .. 3-17

4.0 Research Design ... 4-1

4.1 Objectives .. 4-1

4.2 Methods .. 4-1

4.2.1 Background Research ... 4-1

4.2.2 Field Methods .. 4-1

4.2.3 Laboratory Processing .. 4-1

4.2.3.1 Historic Artifacts .. 4-1

4.2.3.2 Prehistoric Artifacts ... 4-2

4.2.4 Expected Results .. 4-4

5.0 Results .. 5-1

5.1 Area 1 .. 5-1

5.2 Area 2 .. 5-8

5.3 Area 3 .. 5-10

5.4 Area 4 ... 5-10

AECOM
Table of Contents

5.5 Area 5 ...5-12
5.6 Area 6 ...5-12
5.7 Area 7 ...5-12
5.8 Area 8 ...5-14
5.9 Area 9 ...5-14
6.0 Conclusions and Recommendations ..6-1
7.0 References Cited ..7-1

APPENDICES

Appendix A: Qualifications of the Investigators
Appendix B: Artifact Catalog
Appendix C: Site Forms

LIST OF TABLES

Table 2-1. Sassafras Soils Typical Pedon ...2-3
Table 2-2. Kingstowne Soils Typical Pedon ...2-3
Table 2-3. Marumscio Soils Typical Pedon ..2-3
Table 3-1. Previous Cultural Resources Surveys within 0.5 Mile of the APE3-16
Table 3-2. Previously Recorded Archaeological Sites within 0.5 Mile of the APE ..3-16
Table 3-3. Above-Ground Resources within 0.5 mile of the APE3-17
Table 4-1. Functional Typology (Modified from Orser 1988)4-2
Table 5-1. Phase I Survey Summary ..5-1
Table 5-2. Historic Artifacts from Area 2 ..5-8
Table 5-3. Prehistoric Artifacts from 44AX0242, Area 45-10

LIST OF FIGURES

Figure 1-1. Project Location ...1-2
Figure 1-2. Project APE ..1-3
Figure 2-1. Soils Map ...2-2
Figure 3-1. Project Vicinity on 1777 Fry and Jefferson Map of Virginia and Maryland 3-12
Figure 3-2. Project Vicinity on 1864 Michler Map ..3-13
Figure 3-3. Project Vicinity on 1878 Hopkins Map ...3-14
Figure 3-4. Project Area on 1900 Topographic Map ..3-15
Figure 5-1. Testing Areas ...5-2
Figure 5-2. Recreation Center Yard in Area 1, View West5-3
Figure 5-3. Area 1, STP JJ1, View South ..5-3
Figure 5-4. Phase I Testing Results ...5-4
Figure 5-5. Phase I Testing Results ...5-5
Figure 5-6. Phase I Testing Results ...5-6
Figure 5-7. Representative Profiles from Areas 1 and 25-7
Figure 5-8. Area 2 Overview, View South ..5-9
Figure 5-9. Area 3, STP A1, View Northeast ..5-9
Figure 5-10. Representative Soil Profiles from Areas 4, 6, and 75-11
Figure 5-11. Testing in Area 7, View North ...5-13
Figure 5-12. Slope Failure in Area 8, View Northwest ...5-13
1.0 INTRODUCTION

The City of Alexandria (City) is undertaking a stream restoration project along Taylor Run, located on King Street within Chinquapin and Forest Parks and a portion of the First Baptist Church of Alexandria property on the west side of the City of Alexandria, Virginia (Figure 1-1). AECOM completed a Phase I archaeological survey to assist the City in meeting regulatory obligations under Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, and the City of Alexandria’s Archaeological Protection Code (1989) and in accordance with the City of Alexandria Archaeology Standards (Alexandria Archaeology 2007). The survey’s principal objective was to identify significant archaeological resources within the project’s defined Area of Potential Effect (APE). The project APE is an irregular-shaped area encompassing 5.3 acres along Taylor Run largely within Chinquapin and Forest Parks.

The investigations were conducted in accordance with Section 106 of the National Historic Preservation Act of 1966, as amended, and the Advisory Council on Historic Preservation’s “Protection of Historic and Cultural Properties” (36 CFR 800; U.S. Department of the Interior USDI 2004). The study also conformed to the Virginia Department of Historic Resources’ (DHR) Guidelines for Conducting Historic Resources Survey in Virginia (DHR 2011) and the City of Alexandria Archaeology Standards (Alexandria Archaeology 2007). All work was conducted under an Archaeological Preservation Certification approved by the City Archaeologist.

Phase I investigations were completed in September 2019. Scott Seibel served as the Principal Investigator for the project, Heather Crowl served as Field Director, Kayla Marciniszyn was the Laboratory Director, and field technicians included Alison Cramer and Kayla Marciniszyn.

Following this Introduction, the report is divided into six sections: Project Location and Description; Cultural Context; Research Design; Results; Conclusions and Recommendations; and References Cited. Appendices follow the main body: Appendix A contains the qualifications of investigators and Appendix B contains the artifact catalog. The VDHR site form for 44AX0242 is in Appendix C.
2.0 PROJECT LOCATION AND DESCRIPTION

2.1 PROJECT AREA DESCRIPTION

The project APE is an irregular-shaped area encompassing 5.3 acres along Taylor Run primarily within Chinquapin and Forest Parks in Alexandria, Virginia. A small section is on the property of the First Baptist Church of Alexandria. The northern end of the APE begins approximately 200 feet (ft) north of where Taylor Run exits a culvert running under the yard of Chinquapin Recreation Center and along King Street to the north. The APE continues south to a point where the landform slopes up steeply from the stream on both sides, behind the First Baptist Church of Alexandria. King Street and the parking lot for the church form the eastern APE boundary, and the western boundary is within the woods of Forest and Chinquapin Parks.

2.2 GEOLOGY AND TOPOGRAPHY

The project area is located within the Upland Subprovince of the Atlantic Coastal Plain physiographic province (Roberts and Baily 2000). The landscape consists of broad uplands with low-relief and gentle drainage divides and steeper slopes in areas dissected by stream erosion. The terraced landscapes rise west from the Atlantic Ocean to a maximum elevation of around 76250 ft above mean sea level near the Fall Line (Roberts and Baily 2000). The landscape is the product of geologically recent oceanic advances and retreats that have sculpted it over the last few million years. The Coastal Plain consists of unconsolidated sediment layers including sand, sandstone, silt, clay, and gravels that gradually thicken from the Fall Line to the Atlantic Ocean (Virginia Department of Conservation and Recreation 2016).

The topography within the APE includes a terrace on both sides of the stream, with steep slopes both down to the stream from the terrace and up to developed uplands from the terrace. The terrace varies in width from just a few feet to more than 150 feet. Wetland areas are present on the terrace on the west bank of Taylor Run, along with narrow tributaries that emerge from the bluffs. The lawn on the northern end of the APE is fairly flat, the stream having been culverted and buried. Elevations range from 130 to 170 ft above mean sea level.

2.3 HYDROLOGY

The project area is bisected by Taylor Run, a tributary of Hunting Creek. The stream has been modified and currently emerges from a culvert under the Chinquapin Recreation Center lawn and King Street. Taylor Run flows southeast where it is again channeled underground before reaching Hunting Creek. The part of the stream within the APE is shallow with a gravelly bed. Large pieces of concrete debris are common in the streambed and modify its flow. Portions of the stream bank have been stabilized with concrete, retaining walls, and/or fabric.

2.4 SOILS

The United States Department of Agriculture’s Natural Resources Conservation Service (USDA NRCS 2019a) has mapped four soil types within the project area (Figure 2-1). Sassafras-Neabsco complex soils represent nearly 90 percent of the APE. Sassafras soils are well-drained fluviomarine deposits that are typically found on the slopes, shoulders, or summits of marine terraces. Neabsco soils are moderately well drained soils formed in stratified marine and fluvial sediments. The official series description notes that common variations to the typical Sassafras pedon may include E horizon soils with loamy sand textures (USDA NRCS 2019b). Variations to the Neabsco soils include up to 35 percent rounded quartz gravels in the lower B horizon.
<table>
<thead>
<tr>
<th>Map Symbol</th>
<th>Soil Unit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Kingstowne sandy clay loam, 0-45% slopes</td>
</tr>
<tr>
<td>71C</td>
<td>Kingstowne-Sassafras-Marumsco complex, 7-15% slopes</td>
</tr>
<tr>
<td>92B</td>
<td>Sassafras-Neabsco complex, 2-7% slopes</td>
</tr>
<tr>
<td>95</td>
<td>Urban land</td>
</tr>
</tbody>
</table>

APE Soil Unit Boundary

Soil Unit Name
- 66: Kingstowne sandy clay loam, 0-45% slopes
- 71C: Kingstowne-Sassafras-Marumsco complex, 7-15% slopes
- 92B: Sassafras-Neabsco complex, 2-7% slopes
- 95: Urban land
Kingstown sandy clay loam is found within the yard area at the north end of the APE, and Kingstowne-Sassafras-Marumsco soils are present on a small sloped area at the southern end of the APE. Urban Land soils are present adjacent to the recreation center and King Street; these soils represent areas of cut or fill. Tables 2-1 through 2-4 provide a summary of the typical natural pedons (USDA NRCS 2019b).

Table 2-1. Sassafras Soils Typical Pedon

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (in)</th>
<th>Color</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap or A</td>
<td>0–9</td>
<td>Brown (10YR 4/3)</td>
<td>Sandy Loam</td>
</tr>
<tr>
<td>BA</td>
<td>6–21</td>
<td>Yellowish Brown (10YR 5/4)</td>
<td>Loam</td>
</tr>
<tr>
<td>Bt1</td>
<td>21–32</td>
<td>Brown (7.5YR 5/4)</td>
<td>Sandy Clay Loam</td>
</tr>
<tr>
<td>Bt2</td>
<td>32–40</td>
<td>Strong Brown (7.5YR 5/6)</td>
<td>Sandy Loam</td>
</tr>
<tr>
<td>C1</td>
<td>40–52</td>
<td>Strong Brown (7.5YR 5/6)</td>
<td>Gravelly Sandy Loam</td>
</tr>
<tr>
<td>C2</td>
<td>52–70</td>
<td>Brownish Yellow (10YR 6/8)</td>
<td>Loamy Sand</td>
</tr>
</tbody>
</table>

Table 2-2. Neabsco Soils Typical Pedon

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (in)</th>
<th>Color</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>+1–0</td>
<td>Organic cover</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0–2</td>
<td>Brown (10YR 4/3)</td>
<td>Loam</td>
</tr>
<tr>
<td>E</td>
<td>2–8</td>
<td>Light Yellowish Brown (10YR 6/4)</td>
<td>Loam</td>
</tr>
<tr>
<td>Bt</td>
<td>8–17</td>
<td>Yellowish Brown (10YR 5/8)</td>
<td>Clay Loam</td>
</tr>
<tr>
<td>Bx</td>
<td>17–36</td>
<td>Yellowish Brown (10YR 5/8)</td>
<td>Loam</td>
</tr>
<tr>
<td>2Bt</td>
<td>36–52</td>
<td>Brownish Yellow (10YR 6/8)</td>
<td>Clay Loam</td>
</tr>
<tr>
<td>3C</td>
<td>52–72</td>
<td>Mottled brown, gray, and yellow</td>
<td>Very gravelly sandy loam</td>
</tr>
</tbody>
</table>

Table 2-2. Kingstowne Soils Typical Pedon

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (in)</th>
<th>Color</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0–4</td>
<td>Brown (10YR 4/3)</td>
<td>Sandy Clay Loam</td>
</tr>
<tr>
<td>C1</td>
<td>4–13</td>
<td>Yellowish Brown (10YR 5/4)</td>
<td>Gravelly Clay Loam</td>
</tr>
<tr>
<td>C2</td>
<td>13–32</td>
<td>Yellowish Brown (10YR 5/6)</td>
<td>Gravelly Clay Loam</td>
</tr>
<tr>
<td>Cg3</td>
<td>44–56</td>
<td>Gray (10YR 6/1)</td>
<td>Clay Loam</td>
</tr>
<tr>
<td>C4</td>
<td>56–60</td>
<td>Yellowish Brown (10YR 5/8)</td>
<td>Clay Loam</td>
</tr>
</tbody>
</table>

Table 2-3. Marumsco Soils Typical Pedon

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (in)</th>
<th>Color</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>+2–0</td>
<td>Organic cover</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0–1</td>
<td>Very Dark Grayish Brown (10YR 3/2)</td>
<td>Loam</td>
</tr>
<tr>
<td>E</td>
<td>1–7</td>
<td>Pale Brown (10YR 6/3)</td>
<td>Loam</td>
</tr>
<tr>
<td>Bt1</td>
<td>7–10</td>
<td>Brownish Yellow (10YR 6/6)</td>
<td>Clay Loam</td>
</tr>
<tr>
<td>Bt2</td>
<td>10–29</td>
<td>Brownish Yellow (10YR 6/6)</td>
<td>Sandy Clay Loam</td>
</tr>
<tr>
<td>Btg</td>
<td>29–47</td>
<td>Gray (10YR 5/1)</td>
<td>Sandy Clay Loam</td>
</tr>
<tr>
<td>Cg</td>
<td>47–75</td>
<td>Gray (10YR 6/1)</td>
<td>Sandy Clay Loam</td>
</tr>
</tbody>
</table>
2.5 CURRENT CONDITIONS AND LAND USE
Most of the APE is within a public park with a footpath on the west bank of Taylor Run, including interpretive signs related to area history and the environment. A portion of the APE is within property owned by the First Baptist Church of Alexandria. The northern end of the APE is a mown lawn for the recreation center, while the rest of the APE is wooded with young mixed deciduous forest. Sewer and water lines run through the APE, particularly along the west bank of the stream. Significant amounts of dumped or intentionally deposited concrete and asphalt pieces are present on the surface throughout the APE. Portions of the steep slope above a terrace have failed, resulting in deposits of soil and concrete. The APE includes steps from Chinquapin Village community garden to the path along Taylor Run.
3.0 CULTURAL CONTEXT

The DHR has developed historic contexts that provide a framework for the description and analysis of known or expected cultural resources and the basis for evaluating the significance of those resources. These contexts are organized by geographic region, time/developmental period, and theme.

3.1 PREHISTORIC CONTEXT

Mid-Atlantic prehistory is traditionally divided into three major periods: the Paleoindian (10,000–8,000 B.C.), Archaic (8,000–1,000 B.C.), and Woodland (1,000 B.C.–A.D. 1600) periods. Taken together, the major eras of Mid-Atlantic prehistory represent a timescale beginning with the earliest regional occupations and concluding with the watershed period of contact with European and African cultures. Major alterations to Native American lifeways help characterize each period, as trends in settlement patterns, subsistence strategies, exchange networks, and material culture experienced diachronic change.

3.1.1 Paleoindian Period (10,000–8,000 B.C.)

The earliest documented prehistoric occupations within the Mid-Atlantic region are those of the Paleoindian period. While Paleoindian sites are rare in the region, there have been sufficient excavations to adequately identify some of this period’s character-defining attributes. Lithic technology is particularly distinctive for this era, with end scrapers and fluted projectile points of jasper, chert, chalcedony, quartz, and quartzite comprising the diagnostic Paleoindian tool kit (Dent 1995).

Settlement patterns and subsistence strategies are somewhat difficult to define, but Binford’s (1980) forager-through-collector spectrum has traditionally been applied. In this model, settlement and subsistence are tied closely together and fall within a spectrum that ranges from highly mobile foraging strategies to a more sedentary, resource collection lifestyle. In the Mid-Atlantic, inhabitants seem to have been idealized foragers rather than sedentary collectors at this time; people may have moved in small bands to procure resources, but probably returned to valuable sites such as lithic outcrops at certain times of the year (Dent 1995). Sites associated with these restricted resources are termed temporary resource procurement camps and would have likely been repeatedly visited during forays from larger base camps (Gardner 1980).

3.1.2 Archaic Period (8,000–1,000 B.C.)

The Archaic period represents a regional lifestyle shift driven in part by changes in climatic, biotic, and environmental conditions that occurred at the end of the Pleistocene. While the Paleoindian foraging system continued through the Early and Middle Archaic subperiods, settlement strategies eventually shifted in focus to macro-group base camps with outlying resource procurement sites. Newly emerging ecosystems enabled Mid-Atlantic populations to expand into regions with productive freshwater environments, shifting early base camp sites from lithic to biotic resources (Custer 1990).

3.1.2.1 Early Archaic (8,000–6,000 B.C.)

During the Early Archaic Period, environmental conditions were not drastically different from Paleoindian times. Glacial recession continued and deciduous forests expanded, possibly leading to a greater proliferation of temperate fauna. The most distinctive cultural characteristic of the
Early Archaic was the appearance of notched projectile points, most notably the Palmer and Kirk varieties. There was a continuation in the Paleoindian tradition of using high quality cryptocrystalline lithic materials until the end of the Early Archaic Period when lower quality quartz and quartzite materials were more frequently used.

During the Early Archaic Period, and into the Middle Archaic Period, there was significant innovation in stone tool kits. Stemmed and side-notched serrated projectile points replaced the fluted projectile point varieties. The variety of projectile points associated with these periods indicates possible changes in subsistence strategies and exchange networks, and a possible regionalization of cultural traditions. Projectile point styles characteristic of the period include: corner-notched, serrated point styles such as Kirk, Palmer, Charleston, Lost Lake, Decatur, Amos, Kessel, and Fort Nottoway/Thebes; and stemmed points such as the Kirk stemmed and Pequea types (Custer 1984, 1989, 1996; Dent 1995). Other tool types characteristic of Early Archaic Period assemblages include grinding slabs, milling stones, nutting stones, chipped stone adzes, wedges, perforators, knives, scrapers, as well as unifacial and bifacial tools (Dent 1995).

Both Gardner (1974) and Custer (1980) have hypothesized that during the Early Archaic Period, people banded together into macro-base camps, or groups of families, in the spring and summer, and dispersed into smaller micro-base camps in the fall and winter months. The larger base camps were located in the valley floodplains while the smaller autumn and winter encampments were located in upland regions.

There is little faunal or floral evidence from archeological sites dating to the Early Archaic period, though “it is assumed that this environment supported bear, deer, elk, and a variety of small game adapted to a northern climate” (Kavanagh 1982:9). Floral evidence from sites such as the Crane Point site on the Maryland Western Shore, includes hickory nut, butternut, acorn, amaranth, and chenopodium (Lowery and Custer 1990; Lowery 2001, 2003). Changes in tool types have been interpreted as a shift in subsistence strategies towards a broad-spectrum adaptation, utilizing a variety of species of animals and plants, rather than focusing primarily on large animals.

3.1.2.2 Middle Archaic (6000-4000 B.C.)

The beginning of the Middle Archaic Period coincides with the on-set of the Atlantic climatic episode, a warm, humid period with a gradual rise in sea level that led to the development of inland swamps (Barse and Beauregard 1994:9). It was a period marked by an increase in summer drought, sea level rise, grassland expansion into the Eastern Woodlands, and the appearance of new plant species (Carbone 1976:106; Hantman 1990:138). Human settlements consisted of small base camps located in or near inland swamps that were convenient to access seasonally available subsistence resources as well as small, temporary upland hunting sites. Supplementing hunting, and the use of a greater variety of plant resources allowed for an increase in general foraging (Kavanagh 1982:50).

Tools such as projectile points exhibit increasing diversity in morphology and raw material usage. Projectile point styles dating to this period include St. Albans, LeCroy, and Kanawaha bifurcated types, as well as other varieties including Stanly Stemmed/Neville, Morrow Mountain I and II, and Guilford. Groundstone tools (e.g., axes and gouges), such as those used in plant processing, appear for the first time during this period. A tendency towards greater reliance on local lithic sources led to a marked increase in numbers of expedient or informal flake tools for short-term use.
3.1.2.3 Late Archaic (4,000-1,000 B.C.)

By approximately 3000 B.C., modern vegetation had become established in the region and the climate was punctuated by alternating periods of dry and moist conditions (Brush 1986:150). In general, the Late Archaic Period is characterized by a warmer and drier climate than today, with the development of xeric forests (e.g., oak and hickory) and open grasslands (Carbone 1976; Custer 1984b; Custer and Mellin 1989; Kellogg and Custer 1994). Sea level continued to rise, but was relatively stable by the end of the Late Archaic Period (Colman et al. 1993; Dent 1995; Lowery 2003). The warmer and drier climate appears to have stabilized stream valleys and estuaries in the region making such localities more attractive for settlement. These settings developed into rich habitats with a great diversity of exploitable resources, particularly shellfish and anadromous fish (Dent 1995). This is reflected in the changes manifested in Late Archaic tool kits as well as in the number of site types and site locations utilized.

The Late Archaic Period is characterized by a large variety of projectile point styles, including Otter Creek, Vosburg, and Brewerton, Lackawaxen, Bare Island, Halifax Side-Notched, Vernon, Clagett, Piscataway (a type that persists into the Woodland Period), and Holmes (Dent 1995). Projectile point styles characteristic of the end of the Late Archaic (sometimes referred to as the Terminal Archaic Period) include “broadspears” such as the Savannah River, Susquehanna Broadspear, Koens-Crispin, Lehigh, and Perkiomen types (Dent 1995). Other projectile point types found during the Terminal Archaic that persist into the Early Woodland Period include the Orient Fishtail and Dry Brook types. The Fishtail phase marks the end of the Archaic Period and the beginning of the Early Woodland. Other artifacts characteristic of the period include steatite (soapstone) bowls, groundstone tools (axes, adzes, celts, and gouges), perforators and drills made on broken projectile points, and scrapers (Dent 1995).

Rhyolite was established during this period as a preferred lithic raw material for tool manufacturing. It was during the Terminal Archaic as well as the succeeding Early Woodland Period that large amounts of rhyolite were transported from sources in the Blue Ridge to the Piedmont and Coastal Plain. In spite of the prevalence of rhyolite on Piedmont and Coastal Plain sites, the network that facilitated the rhyolite trade is not well understood (Kavanagh 1982:99). Locally available materials, such as quartz, also continued to be used for tool manufacture.

The Late Archaic was characterized in the eastern United States by evidence of population growth, patterns of regional differentiation, and increased technological specialization. Trade networks appear to have been established for the exchange of raw materials and finished goods. The first large, semi-sedentary (i.e., occupied for several months or seasons) base camps were established along rivers and streams. Surface site data show increases in site size, which may simply represent multiple, repeated occupations rather than single, large group manifestations. Site types postulated for the area include base camps, temporary camps, and resource procurement stations (Dent 1995).

Subsistence was still largely based upon gathering and hunting, although there was an increased reliance on riverine resources toward the end of the period (Steponaitis 1980). The earlier trend toward a broad spectrum adaptation in which a variety of resources were exploited in many different environmental settings continued. This broad spectrum adaptation is another way of characterizing what Caldwell (1958) called primary forest efficiency in the Archaic of the Eastern Woodlands.
A number of indicators point to an intensification of certain subsistence strategies ca. 2000 B.C., representing a major change in lifeways. This intensification has been explained both as a consequence of gradual change (Caldwell 1958), and as episodic change relating to a shifts in the composition of the environment (Carbone 1976). Structures such as fish weirs, used to exploit anadromous fish runs, were constructed during this period and reflect the intensive riverine focus of the latter part of this period. While riverine resources were certainly important, interior and upland areas continued to be utilized by Late Archaic peoples. Late Archaic subsistence economies may be described as diffuse, considering the use of upland areas for a broad range of resource procurement activities gathering foods such as acorns, hickory nuts, and butternuts as well as large and small game (Cleland 1976). By 1500 B.C., subterranean storage pits and steatite containers appear in the archeological record, both of which are direct evidence of technological development that reflects the production of food surpluses and the need to preserve them over an extended period. The appearance of large numbers of implements, useful in processing seed and fiber products, is further evidence of this emerging economic pattern.

3.1.3 Woodland Period (1,000 B.C.–A.D. 1600)

Innovations in technology, economy, and settlement blossomed during the Woodland period in the Mid-Atlantic. Ceramic technology was developed, replete with regional stylistic and construction variations. Projectile point technology also underwent further development and was eventually adapted to the bow and arrow (Dent 1995). Local and regional exchange systems were also important components to some Woodland period societies, with the movement of exotic materials from the Piedmont to sites on the Coastal Plain (Dent 1995; Sperling 2008).

Throughout the Woodland period, there is a greater regional move toward sedentary lifeways, transitioning from a system of mobile collection strategies to one of established village sedentism (Dent 1995; Sperling 2008). During this shift, there is evidence for greater emphasis placed on horticultural, and eventually, agricultural practices throughout the Mid-Atlantic region, although the extent to which this subsistence strategy contributed to local diets is debated (Smith and Wilson 1992; Dent 1995). Toward the close of the Woodland period, indications of sedentism can also be found in permanent cooking and food storage features, village palisades, middens, and the ossuary burial method. Together with stabilizing agricultural practices, the final centuries of the Woodland period witnessed the greatest degree of sedentism in the Mid-Atlantic until the arrival of Europeans (Dent 1995).

3.1.3.1 Early Woodland (1,000–500 B.C.)

The introduction of pottery around 1000 B.C. marks the beginning of the Woodland Period. Potters’ innovations, as reflected in ceramic types, have become a significant basis for dating Woodland Period archeological site components. The earliest ceramic types from the area are the steatite-tempered Marcey Creek ware and Selden Island varieties, which were replaced by the sand or crushed quartz-tempered Accokeek wares. These ceramics are associated with fishtail and corner-notched projectile point types. In particular, Accokeek ceramics are often associated with Calvert and Rossville points (Wesler et al. 1981:183).

Stone artifacts characteristic of the Early Woodland Period include Calvert, Rossville, Potts, and Piscataway types, some of which are also found in Late Archaic contexts (Dent 1995; Hranicky 1994; Hranicky and Painter 1989). Other artifact types include drills, perforators, flake tools, scrapers, bifaces, anvil stones, net sinkers, mortars, pestles, manos, metates, groundstone tools.
SECTION THREE

Cultural Context

(e.g., axes, adzes, celts), ground slate, gorgets, and tools made from animal bone and teeth (Dent 1995).

The Early Woodland Period is marked by an intensification of burial ceremonialism. Influences from the Ohio River Valley include the Adena culture, which is represented on a few key sites in the Middle Atlantic region during the Early Woodland Period. Artifacts associated with the Adena culture include Cresap stemmed points, large bifaces, blocked-end tubular pipes, effigy pipes, copper beads and other copper artifacts, gorgets, pendants, bird stones, bar stones, ground slate objects, and red ochre (Dent 1995). Many of the known Adena sites in the region are found on the Western Shore and Delmarva Peninsula, but are unknown in the Maryland Piedmont.

Early Woodland sites are generally larger than sites of previous times, and there seems to have been an increasing reliance on riverine and estuarine resource areas. The smaller camps were established seasonally in areas where ripening resources or concentrations of game could be found. The settlement-subsistence system of this period was focused primarily on a series of base camps where people gathered together to exploit seasonally available resources (Gardner 1982:60). These base camps were used to harvest anadromous fish in the spring and early summer and to exploit estuarine resources in the fall and early winter. An increase in sedentism was in part a result of a stabilized sea level that facilitated the establishment of resource-rich environments. Other than a trend toward sedentism and more focused hunting and gathering, subsistence patterns were similar to the preceding Late Archaic period with increasing reliance on marine resources (e.g., shellfish) and cultivated plants (Dent 1995). There is presently little evidence of the use of cultigens in the Middle Atlantic region at this time.

3.1.3.2 Middle Woodland (500 B.C.-A.D. 900)

The Middle Woodland Period (500 B.C.-A.D. 900) generally is not well-defined, and researchers disagree about the exact boundaries of the period. Dent (1995:235) has referred to this period of “technological homogenization” where “ceramic and projectile point variability becomes limited to fewer types.” Despite the presence of fewer ceramic and projectile point styles, the Middle Woodland Period represents a continuation and further development of cultural complexity that culminates in the Late Woodland Period. In addition, intensification in trade networks over a large region is one of the notable trends evident by the onset of the Middle Woodland Period. It is thought that warmer and drier conditions may have prevailed during this period (Kellogg and Custer 1994).

The major ceramic type for the area is Popes Creek ware (Barse and Beauregard 1994; Dent 1995). Popes Creek ceramics were first manufactured in the Early Woodland Period, and the style persisted through the early Middle Woodland Period in the region (Jefferson Patterson Park Museum [JPPM] 2018). Stone tool kits utilized by Middle Woodland peoples are basically the same as those used during the succeeding Late Woodland but more exotic lithic materials are evident in Middle Woodland assemblages. The technology evident in many of the Middle Woodland sites seems to favor bifacial tool production rather than the prepared core and blade flake technology that typifies Ohio Valley cultures at this time. Projectile points characteristic of the Middle Woodland Period include Selby Bay/Fox Creek and the Jack’s Reef types (Custer 1989; Dent 1995; Potter 1993). Other tool types found during the Middle Woodland Period include drills, perforators, flake tools, scrapers, bifaces, anvil stones, net sinkers, mortars, pestles, manos, metates, groundstone tools (e.g., axes, adzes, celts), ground slate, gorgets, and tools made from animal bone and teeth (Dent 1995). Dent (1995) also notes that bone tools, such
SECTION THREE

Cultural Context

as awls and needles, appear to be more ubiquitous during the Middle Woodland than the preceding Early Woodland Period. The presence of non-local rhyolite, argillite, and jasper at a few sites suggests that exchange networks may have been in place (Barse and Beauregard 1994:15).

Settlement patterns were largely similar to those of the Early Woodland Period, although base-camp settlements located at freshwater/brackish water junctions appear to have been abandoned in favor of broader floodplain sites where maximum resource exploitation of both non-tidal and tidal aquatic resources was possible (Dent 1995). The large number of sites for this time period and the extensive size of some of the sites support the argument for possible seasonal aggregation and dispersal. Hunting and gathering continued as the primary food sources, with increased reliance on riverine and domesticated plant resources. The presence of large shell midden sites during the Middle Woodland Period indicate the increased reliance on shellfish.

3.1.3.3 Late Woodland (A.D. 900-1600)

By the Late Woodland Period (A.D. 900-1600) cultivated crops came to play an important role in subsistence for much of the region (Dent 1995). It is during this time that maize horticulture is adopted, although hunting, gathering, and fishing remained an important part of the subsistence economy. The Holocene was thought to have been climatically stable; however, recent research has demonstrated the Holocene was punctuated by abrupt periods of cooling and/or drought lasting decades or centuries (Mayewski et al. 2004; Osborn and Briffa 2006; Stahle et al. 1998; Willard et al. 2005). One of these cooling cycles, The Little Ice Age, occurred between ca. A.D. 1300 and 1850. Wall (2001:28) notes that the archeological evidence in the region suggests less agriculturally productive areas were occupied after A.D. 1400, and this is perhaps a reflection of deteriorating environmental conditions caused by the Little Ice Age.

Late Woodland ceramics found in the region include Page, Shepard, Townsend, Potomac Creek, and Shenks Ferry wares (JPPM 2018). Ceramic decoration and embellishment appear to be very important at this time. Small triangular projectile points, such as Madison and Levanna types, are evidence of a change in hunting technology from the atlatl-launched spear to the bow and arrow. There is an apparent preference for locally available stone material for making points. Other stone artifacts associated with Late Woodland Period sites include scrapers, perforators, bifaces, hoes, choppers, net sinkers, groundstone axes, celts, adzes, mauls, grinding slabs, metates, manos, mortars, pestles, pendants, boatstones, bannerstones, and abraders (Dent 1995; Stephenson and Ferguson 1963). Artifacts made from shell and bone also are recovered from Late Woodland Period sites, including fish hooks, scraping implements, pendants, beads, awls, bodkins, beamers, needles, pins, and beads (Dent 1995). Clay tobacco pipes were manufactured during this period. Copper beads and pendants are also, but rarely, found (Dent 1995).

Unlike the Early and Middle Woodland Periods that exhibited a rich mortuary tradition, Late Woodland mortuary sites consist of large ossuaries containing human remains and few grave goods. Exotic items, such as are found in Early and Middle Woodland Period mortuary contexts, are absent from Late Woodland ossuaries (Dent 1995). Smaller, single interments are found throughout the Chesapeake region. Late Woodland Period dog burials have also been recorded in Virginia (Dent 1995).

The establishment of stable agriculture during the Late Woodland Period led to the development of sedentary floodplain village communities. Villages were often located within palisades near agricultural fields (Wall 2001). The reliance on agriculture, as well as the presence of the
remains of village palisades, hearths, storage pits, middens, and burials indicates the greatest degree of sedentism seen until this time. Settlements were generally located on broad floodplains, often near the junction of a tributary stream and river (Wall 2001). Small transient camps have been found in upland settings (Gardner et al. 1984:18-20). Hunting and gathering was conducted from larger estuarine camps surrounded by micro-band camps. Other trends include shifts in lithic raw material preferences, perhaps related to the development of more sedentary lifestyles. As a result, smaller foraging and hunting ranges would have resulted in more limited exploration for lithic raw materials and greater dependence on resources found near the camps as well as those regularly obtained through exchange with other groups.

Increased population density and competition for choice land and resources led to the rise of chiefdoms and a hierarchical type of political organization. Hunting, gathering, and fishing were still practiced, but to a lesser extent than earlier. After A.D. 1500, there was an increase in social and political interaction among native tribes in the region, and Potter (1993:151) has suggested that an alliance of coastal plain Algonquian groups was formed prior to European contact.

3.2 HISTORIC CONTEXT

The time periods listed in the following history are those identified by DHR as important historic contexts for the state.

3.2.1 Settlement to Society (A.D. 1607–1750)

In 1607, the first permanent English colony was established at Jamestown, Virginia, and European exploration and settlement of the Chesapeake area continued from that time onward. Captain John Smith’s explorations of the Chesapeake Bay area during the years 1608 to 1610 marked the first documented contact between European explorers and Native Americans in the region. Captain Smith’s journal describes his travels and maps Indian village sites along the extensive estuaries of the Potomac River. Captain Smith noted six tribes living on the northern side of the Potomac River, with the largest population of Native Americans found at the community of Moyaone (Clark 1980; Toogood 1969). By the 1650s, European settlers were taking an aggressive role in claiming lands and driving out Native Americans. Disease and warfare virtually exterminated the chiefdoms of Maryland and Virginia, and those that survived were eventually forced out of their homelands or lived among the Europeans.

The location of the City of Alexandria was originally part of a 700-acre patent that was issued to Margaret Brent (1601–1671) of Maryland on September 6, 1654, by Virginia Royal Governor Richard Bennett. Although Brent had re-patented her 700 acres “in the Freshes of Potomac River beginning at the Mouth of Hunting Creek” in 1662, Governor Berkeley had also issued an overlapping patent of 6,000 ac to Robert Howson, a Welsh sea captain in October 1669 (Moxham 1974:6-7; 262). Howson quickly resold his real estate to John Alexander, a Stafford County planter, on November 13, 1669, for 6,000 pounds of crop tobacco. Alexander, who did not realize that Brent’s 700 ac were encompassed in his grant, had to pay for the parcel twice. He paid the heirs of Margaret Brent 10,500 pounds of tobacco in 1674 for a clear title to the same. John Alexander leased the land to tenant farmers (Barse and Harbison 2000). Upon John Alexander’s death, his holdings were devised to his two sons, Robert and Philip, and a portion became the site of Hugh West’s Hunting Creek Warehouse, thence Alexandria.

Virginia quickly became an important tobacco-producing colony, and the Tidewater Potomac River area was intrinsic in the development of the Chesapeake tobacco culture (Kulikoff 1986).
In 1730, the Virginia Legislature passed a tobacco inspection act that called for the construction of tobacco warehouses along the major tributaries to allow for the regulated inspection, packaging, and shipping of tobacco to Great Britain. The first tobacco station in Alexandria, then known as West’s Point, was established in 1732. The station consisted of a tobacco warehouse to be used as a public inspection facility. The construction of this facility occurred after a protracted battle over the proposed location. Charles Broadwater petitioned for the tobacco station to be built on his land south of Hunting Creek. This location was found to be insufficient as it lacked deep water for ocean going vessels. Instead, the tobacco warehouse was built on 220 acres of Hugh West’s land approximately 1 mile up the Potomac (Alexandria Archaeology Museum 2010).

In 1748, a dispute arose when the residents of Fairfax County petitioned the Virginia House of Burgesses for a charter to build a town near the tobacco inspection site. The location of the town was debated, and a decision was finally reached in May of 1749 (Alexandria Archaeology Museum 2010b). John West, Jr., assistant surveyor for Fairfax County, laid out the town on 60 acres formerly owned by Philip and John Alexander and Hugh West; the town was divided into 84 one-half-acre lots.

3.2.2 Colony to Nation (A.D. 1750–1789)

The eighteenth century saw a significant increase in population and wealth in Fairfax County, including the formation of port towns like Colchester and Alexandria. The population of the county increased by 85 percent between the 1742 formation of Fairfax County and 1754 (Netherton et al. 1992). The population of Fairfax County increased by an additional 95 percent between 1757, when Loudon County was formed from western Fairfax County, to 1773 (Netherton et al. 1992).

As a port city, Alexandria took a central place in the commerce, trade, and economy of Fairfax County. The Fairfax County courthouse was moved to Alexandria in 1753, encouraging new business and settlement in the town. Alexandria boasted a courthouse, jail, six ordinaries, warehouses, a kiln, and both small, rustic houses and more substantial brick, Georgian style houses owned by wealthy men, like John Carlyle in the 1750s. By the 1760s, the town included carpenters, merchants, doctors, wig makers, and a school. Shipbuilding also became a thriving industry along the Potomac, and shipyards were first established in Alexandria at West’s Point and Point Lumley in the 1760s. By the end of the eighteenth century, Alexandria ranked third in traffic among port cities in the new United States (Miller 1987).

Tobacco was the chief export of the Alexandria region prior to the Revolution, but grain production increased throughout the second half of the century (Barse et al. 2006; Netherton et al. 1992). Grain, most notably wheat, soon surpassed tobacco as the primary export. Exported grains frequently made their way to the British West Indies, although new markets in Europe opened once independence was declared (Barse et al. 2006). In order to process this grain, grist mills sprang up along the Fall Line across the region. These mills continued to be prevalent in the region well into the nineteenth century. The water-powered mills often spawned new communities as other merchants began to locate near the mills. The landscape underwent change as cultivated fields replaced forests and new infrastructure led to the development of burgeoning communities (Netherton et al. 1992).

On July 18, 1774, several townsmen including George Washington met at the courthouse in Alexandria to approve the Fairfax Resolves. Penned by George Mason, these resolutions were a
firm statement of the Colonists’ position regarding their constitutional rights under British law. With the outbreak of hostilities at Lexington, Massachusetts on April 19, 1775, many Alexandrians enlisted in the Continental Army. The town soon became a logistical supply center for the American forces, including supplying grain and foodstuffs to the army. The advent of the Revolutionary War altered the landscape, including construction of a gun battery on Jones Point for the protection of Alexandria (Barse and Harbison 2000; Miller 1984:19). Generals Washington and Rochambeau and their troops traveled along the King’s Highway en route to and from the battle of Yorktown. They camped at Alexandria and Colchester in Fairfax County (Rochambeau 1782).

3.2.3 Early National and Antebellum Periods (A.D. 1789–1860)

In 1789, Alexandria and a portion of Fairfax County were ceded by the State of Virginia to become a component of the newly created 10-square-mi District of Columbia. The first cornerstone of the District was laid at Jones Point in Alexandria on April 15, 1791 (Barse et al. 2006; Brockett and Rock 1883). One of the boundary stones is present within the First Baptist Church of Alexandria parking lot adjacent to the Taylor Run APE, Boundary Stone Southwest 3.

Formally accepted by the U.S. Congress in 1801, Alexandria remained under the aegis of the new federal government until it was retroceded back to Virginia in 1847 (Barse and Rock 1883). It then became the seat of government for the newly formed Alexandria County (Hurd 1989). Alexandria became a chartered city in the 1850s, and the city limits were expanded (Barse et al. 2006).

Alexandria’s position as a major Virginia seaport made it vulnerable to epidemics during the late eighteenth and early nineteenth centuries. Residents of Alexandria were stricken with malaria, typhoid, yellow fever, and smallpox, some of which were brought on arriving merchant vessels (Miller 1984). The strong economy was gone by the late 1820s and 1830s, and a depression extended to 1843. As grain and flour exports waned, the export of shad and herring became a major industry.

Alexandria was retroceded to Virginia in 1847. This action corresponded with a period of economic prosperity and the rise of industries. The completion of a number of railroads, including the Orange and Alexandria, the Manassas Gap, the Alexandria, Loudoun and Hampshire, and the Alexandria and Washington, further spurred economic development (Hurst 1991). The railroads transported the agricultural riches of the Virginia hinterland to the docks and wharves at Alexandria. From 1850 to 1860, Alexandria experienced another period of growth. The City’s population increased from 8,795 to 12,652, and more than 500 houses were constructed in the five year period from 1850 to 1860 (Hurst 1991). Among the many internal improvements during this time were a new gas and waterworks. The Alexandria Water Company was incorporated in March 1850, and by summer 1852, water flowed from the reservoir on Shuter’s Hill to downtown through 7 mi of pipelines (Hurst 1991). Gas lighting soon followed.

3.2.4 The Civil War (A.D. 1861–1865)

On May 24, 1861, one day after Alexandrians voted to withdraw from the Union, federal forces occupied the City. Because of its strategic importance, Alexandria became a major logistical supply center for the federal Armies fighting in Virginia. Private homes, land, churches, and local public buildings were commandeered for military barracks, hospitals, and prisons. Fortifications were established along the approaches to Washington D.C. including Fort Ward established near 4 Mile Run (Barber 1988). The African-American population grew during the
war as people came to the City for protection; this resulted in establishment of several new African-American communities on the edges of the City (Miller 1987). By the war’s end, Alexandria’s economy and commerce were ruined, its harbor damaged, and many of its buildings destroyed.

3.2.5 Reconstruction and Growth (A.D. 1865–1914)

The post-Civil War period was a difficult time for Virginia. Although efforts were made to repair the damage caused by the war, the devastation was too extensive to make that task either easy or short. Farmers resumed production, but the cash needed to rebuild the buildings and for necessary improvements was not always available. The labor force had also been severely stressed by losses during the war and by the loss of slave labor. Plantation agriculture was replaced with tenant farming. For the first post-war years, farm produce brought good prices. Prices fell to pre-war levels within a few years. As time passed, improvements were made in agricultural techniques and machinery, and new animal breeds were introduced. The state began to improve its economic situation by the last decades of the nineteenth century.

Although Alexandria was slow to recover from the Civil War, once the Alexandria Canal and the railroads began operation again, the City once again saw significant merchant and manufacturing activity (Miller 1987). By 1882, Alexandria industries included tanneries, iron foundries, shoe factories, machine shops, paper mills, breweries, railroad car works, cement mills, textile mills, bakeries, brickmaking, and other industries employing up to 2,480 people (Brockett and Rock 1883). During the 1880s Alexandria began to acquire modern conveniences with the introduction of the telephone in 1881, rural free mail delivery in 1887, and electricity by 1889. As Alexandria prospered and became more populous, housing developments and suburban communities sprang up in the environs surrounding the City.

3.2.6 WWI to Present (A.D. 1915–Present)

The Alexandria of the early twentieth century was a town of many manufacturing industries and commercial enterprises, including glass works and the Potomac Yards, the nation’s largest railroad classification facility at that time (Miller 1987). World War I resulted in an influx of workers to the City to support new industries, such as the U.S. Naval Torpedo Factory and the Virginia Shipbuilding Company (Barse et al. 2006).

In 1915, a segment of what had been Alexandria County was annexed into the City of Alexandria. After World War I, Alexandria’s restoration was facilitated during the “New Deal” era, resulting in the flow of money into the City’s economy. World War II provided economic opportunities for Alexandria through the placement of government military installations and industries of defense in the City. Cameron Station, built between 1941 and 1945, was a large war-period addition to the western Alexandria landscape. The station functioned as a quartermaster depot during the war and upgraded and enhanced Alexandria’s rail transportation.

The growth of the federal government in the twentieth century resulted in an increase in suburban development. To protect its historic resources, Alexandria created an old and historic district in 1946. Modeled after Charleston, South Carolina’s preservation ordinance, Alexandria’s law created the third such historic district in the country. Today, Alexandria is a vibrant community which boasts boutiques and shops, historical museums, art galleries, and restaurants. Each year thousands of tourists crowd Alexandria’s cobblestone streets and alleys to enjoy the City’s living history.
3.3 PROJECT AREA HISTORY

The western end of Alexandria was farmland up until the start of the twentieth century. While western farmers used what became King Street in the early eighteenth century to access the Hunting Creek tobacco warehouse and later the City of Alexandria, little development took place along the route initially. Fry and Jefferson’s 1777 map shows the early roads leading to Alexandria (Figure 3-1).

In 1789, Alexandria and a portion of Fairfax County were ceded by the State of Virginia to become a component of the newly created 10-square-mi District of Columbia. The first cornerstone of the District was laid at Jones Point in Alexandria on April 15, 1791 (Barse et al. 2006; Brockett and Rock 1883). Boundary Stone Southwest 3 is present within the First Baptist Church of Alexandria parking lot adjacent to the Taylor Run APE.

Roads continued to be built through the region in the early to mid-nineteenth century. In 1828, the Eastern Ridge Road was incorporated as the Middle Turnpike, which would become Leesburg Turnpike and later King Street (Netherton et al. 1992). Taverns and small villages developed near some of the cross-roads. Nevertheless, the region remained farmland. By the nineteenth century, tobacco farms had exhausted the local soils, and land was allowed to grow fallow. A mid-nineteenth century traveler described the region between the Little River and Middle Turnpikes as a pine wilderness, with only a scattering of cabins along a 12-mile-long track between Alexandria and Fairfax (in Wrenn 1972:12).

Early during the Civil War, a series of fortifications were raised around the Capitol in Washington, D.C. One of these was Fort Ward, which was built near Four Mile Run. Period maps (e.g., Milcher 1864) illustrate the fort and roads around the project area, but no buildings are illustrated within its immediate vicinity (Figure 3-2). Following the Civil War, the pace of development in the region increased. Maps from the 1870s and 1880s illustrate buildings along King Street. An 1878 Hopkins map shows buildings nearby on King Street and the upland to the west, but none within the APE (Figure 3-3). A USGS topographic map from 1900 shows a building on King Street at the corner of the present-day church parking lot; this building was still present on aerial photographs from the 1980s. Remains of this building were observed in the field at the top of the slope and outside of the APE. Mid-twentieth century to present aerial photographs suggest the slopes and terraces along Taylor Run that make up the APE remained wooded.
Approximate Project Location

City of Alexandria

Taylor Run

1:250,000

Fry and Jefferson 1777

Project Vicinity on 1777 Fry and Jefferson Map of Virginia and Maryland

AECOM

12420 Milestone Center Dr.
Germantown, MD 20876

0 1 2 3 4 5
Miles
Approximate Project Location

Client: City of Alexandria
Project: Taylor Run
Scale: 1:12,000
Source: Michler 1864

Title: Project Vicinity on 1864 Michler Map

12420 Milestone Center Dr.
Germantown, MD 20876
Approximate Project Location

CLIENT: City of Alexandria

PROJ: Taylor Run

SCALE: 1:12,000

SOURCE: Hopkins 1878

TITLE: Project Vicinity on 1878 Hopkins Map

Notes:
- Project Vicinity on 1878 Hopkins Map
- Approximate Project Location
- City of Alexandria
- Taylor Run
- Scale: 1:12,000
- Source: Hopkins 1878
Approximate Project Location

Project Area on 1900 Topographic Map

CLIENT: City of Alexandria

PROJ: Taylor Run

SCALE: 1:12,000

SOURCE: USGS 1900
3.4 PREVIOUS INVESTIGATIONS

Background research was conducted using the archaeological and architectural resources files available from the Virginia Cultural Resource Information System (VCRIS) electronic database and a review of reports of investigations from projects in the area. The primary goal of this research was to identify archaeological sites and above-ground resources recorded within a 0.5-mi radius of the project area in order to inform the types of resources that may be present within the APE.

3.4.1 Previous Cultural Resource Surveys

Two cultural resource surveys registered with DHR had been completed within 0.5 miles of the project area as of October 2019 (Table 3-1). A Phase I survey for the First Baptist Church parking lot adjacent to the southwest corner of the current APE resulted in the determination that most of the area had been filled to create a level area (Gardner and Schmidt 1997). The survey identified historic artifacts in fill and one prehistoric isolated flake from the plowzone. The second survey conducted within a 0.5-mile radius of the APE included STPs within an approximately 6-acre parcel, resulting in identification of historic site 44AX191 (Jirikowic et al. 2004). This site included a military and domestic artifact scatter dating to the Civil War period. Artifacts were recovered from the plowzone, and the site was recommended not eligible.

Table 3-1. Previous Cultural Resources Surveys within 0.5 Mile of the APE

<table>
<thead>
<tr>
<th>Report No.</th>
<th>DHR Report Title</th>
<th>Year</th>
<th>Report Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX-081</td>
<td>Phase I Archeological Investigations at the Proposed 7 Acre Parking Lot, First</td>
<td>1997</td>
<td>William Gardner and Jennifer Schmidt;</td>
</tr>
<tr>
<td></td>
<td>Baptist Church, Alexandria, Virginia</td>
<td></td>
<td>Thunderbird</td>
</tr>
<tr>
<td>AX-089</td>
<td>Phase I Archeological Investigation at 1400 Janneys Lane, Alexandria, Virginia</td>
<td>2004</td>
<td>Christine Jirikowic, Gwen Hurst,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and Tammy Bryant; Thunderbird</td>
</tr>
</tbody>
</table>

3.4.2 Previously Recorded Archaeological Resources

Seven archaeological sites have been recorded within 0.5 mile of the project area, all of them historic (Table 3-2). The historic site components primarily consist of late nineteenth through late twentieth century sites, including scatters, domestic sites, schools, and a church (44AX0122, 44AX0150, 44AX0173, 44AX0200, and 44AX0228). Site 44AX0173 also includes an early nineteenth century component, and sites 44AX0173, 44AX0191, and 44AX0200 include Civil War components. Site 44AX0138 is a historic cemetery of unknown date. While no prehistoric sites have been found within 0.5 mile of the APE, two prehistoric and three multicomponent sites have been recorded between 0.5 and 1 mile from the APE (along with an additional eight historic sites). Prehistoric site components include four lithic scatters and a Middle Archaic camp.

Table 3-2. Previously Recorded Archaeological Sites within 0.5 Mile of the APE

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Temporal Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>44AX0122</td>
<td>Unspecified</td>
<td>Dwelling</td>
<td>Mid-19th to late 20th century</td>
</tr>
<tr>
<td>44AX0138</td>
<td>Unspecified</td>
<td>Cemetery</td>
<td>Historic/Unknown</td>
</tr>
<tr>
<td>44AX0150</td>
<td>Unspecified</td>
<td>Church</td>
<td>Late 19th to late 20th century</td>
</tr>
</tbody>
</table>
Cultural Context

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Temporal Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>44AX0173</td>
<td>Protestant Episcopal Theological Seminary in Virginia; 100-0123</td>
<td>Civil War camp and hospital, Early 19th c. Farmstead, 19th to 20th c. School</td>
<td>Early 19th to late 20th century</td>
</tr>
<tr>
<td>44AX0191</td>
<td>Unspecified</td>
<td>Single dwelling, Civil War camp</td>
<td>Mid-19th century</td>
</tr>
<tr>
<td>44AX0200</td>
<td>Episcopal High School Housing</td>
<td>Civil War camp, 19th c. school</td>
<td>Mid-19th to early 20th century</td>
</tr>
<tr>
<td>44AX0228</td>
<td>Unspecified</td>
<td>Artifact scatter</td>
<td>Late 19th to late 20th century</td>
</tr>
</tbody>
</table>

3.4.3 Previously Recorded Above-Ground Resources

Eighteen above-ground resources are registered with DHR within 0.5 mile of the APE (Table 3-3). Five resources are listed in the National Register of Historic Places (NRHP): 000-022, the Boundary Markers of the Original District of Columbia Historic District; 000-0022-0004, the Southwest No. 3 Boundary Marker; 000-5772, the Fairlington Historic District; 100-0123, the Protestant Episcopal Theological Seminary in Virginia; and 100-0165, the President Gerald R. Ford, Jr. House, which is also a National Historic Landmark. The closest resource to the APE is the Southwest Number 3 Boundary Marker located in the parking lot of the First Baptist Church. Resources along King Street reflect the historic nature of this road. Most of the documented houses within a 0.5-mile have not been evaluated for NRHP status.

Table 3-3. Above-Ground Resources within 0.5 mile of the APE

<table>
<thead>
<tr>
<th>Resource ID</th>
<th>Name</th>
<th>Type</th>
<th>Date</th>
<th>Historic District</th>
<th>NRHP Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>000-0022</td>
<td>Boundary Markers of the Original District of Columbia</td>
<td>Historic District</td>
<td>1791</td>
<td>Boundary Markers</td>
<td>NRHP Listing, VLR Listing</td>
</tr>
<tr>
<td>000-0022-0004</td>
<td>Southwest No. 3 Boundary Marker</td>
<td>Boundary Marker</td>
<td>1791</td>
<td>NRHP Listing</td>
<td></td>
</tr>
<tr>
<td>000-5772</td>
<td>Fairlington Historic District</td>
<td>Historic District</td>
<td>1944</td>
<td>Fairlington Historic District</td>
<td>NRHP Listing, VLR Listing</td>
</tr>
<tr>
<td>100-0123</td>
<td>Protestant Episcopal Theological Seminary in Virginia</td>
<td>Historic District</td>
<td>1855</td>
<td>Protestant Episcopal Theological Seminary in Virginia</td>
<td>NRHP Listing, VLR Listing</td>
</tr>
<tr>
<td>100-0165</td>
<td>President Gerald R. Ford, Jr., House</td>
<td>House</td>
<td>1955</td>
<td></td>
<td>NHL Listing, NRHP Listing, VLR Listing</td>
</tr>
<tr>
<td>100-0192</td>
<td>House, 1001 A Janney's Lane</td>
<td>House</td>
<td>1840</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0194</td>
<td>House, 604 A Janney's Lane</td>
<td>House</td>
<td>1820</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0203</td>
<td>House, 2823 King Street; Ivy Hill Cemetery</td>
<td>House</td>
<td>1870</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0204</td>
<td>House, 2826 King Street</td>
<td>House</td>
<td>1820</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0205</td>
<td>House, 2905 King Street</td>
<td>House</td>
<td>1890</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Resource ID</td>
<td>Name</td>
<td>Type</td>
<td>Date</td>
<td>Historic District</td>
<td>NRHP Status</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>100-0206</td>
<td>House, 2916 King Street</td>
<td>House</td>
<td>1900</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0207</td>
<td>House, 2924 King Street</td>
<td>House</td>
<td>1920</td>
<td></td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0208</td>
<td>House, 2929 King Street</td>
<td>House</td>
<td>1888</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0209</td>
<td>House, 2935 King Street</td>
<td>House</td>
<td>1920</td>
<td></td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0210</td>
<td>House, 3215 King Street</td>
<td>House</td>
<td>1920</td>
<td></td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0211</td>
<td>Oakland Baptist Church</td>
<td>Church</td>
<td>1931</td>
<td></td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>100-0267</td>
<td>House, 2203 Scroggins Road</td>
<td>House</td>
<td>1901</td>
<td>100 Year Old Building List</td>
<td>Not Evaluated</td>
</tr>
</tbody>
</table>
4.0 RESEARCH DESIGN

4.1 OBJECTIVES

The objective of the archaeological investigations was to determine if significant archaeological resources (i.e., listed in or eligible for listing in the NRHP) are present within the APE that may be affected by the proposed stream restoration.

4.2 METHODS

4.2.1 Background Research

Background research was conducted to provide a context for project area and to aid in the evaluation of the significance of any archaeological sites. This research consisted of the examination of previous documentary studies, cultural resource files registered with DHR within 0.5 mile of the project area, and a review of historic maps and photographs.

4.2.2 Field Methods

The field investigation consisted of the excavation of STPs at 30-ft intervals within areas of moderate to high archaeological potential. STPs were not excavated within marked wetlands, marked utility lines, slopes in excess of 15 percent, areas buried under thick slopewash deposits or mulch, or the creek bed. Each STP measured 1.4 ft in diameter and was stratigraphically excavated up to 3 ft below ground surface or 0.3 ft into culturally sterile subsoil, where possible. When artifacts were found, radial STPs were placed 15 ft from positive STPs in all unobstructed grid directions. The APE was divided into nine areas to organize the field effort; areas were defined by natural and man-made features, such as slope, drainages, bridges, and wetlands.

Soils were screened through 0.25-inch hardware mesh to ensure uniform artifact recovery. Field data were recorded on standard field forms and in general field notes. The forms included Munsell soil color, soil texture, profiles, features present, artifacts recovered, excavator’s initials and the date of excavation. The locations of STPs were noted on field maps. Artifacts were placed in resealable plastic bags labeled with all relevant provenience information and transported to the AECOM archaeology laboratory in Gaithersburg, Maryland.

4.2.3 Laboratory Processing

Artifacts were cleaned, cataloged, and analyzed according to the Secretary of the Interior’s Standards and Guidelines Curation of Federally-Owned and Administered Archeological Collections (United States Department of the Interior 1991) and in accordance with the guidelines set forth in the City of Alexandria Archaeology Standards (Alexandria Archaeology 2007). The objectives of laboratory analysis and cataloging were to determine the date, function, cultural affiliation, and significance of the artifacts to the extent possible, as well as to prepare the artifacts for curation with Alexandria Archaeology. Artifact data were entered into a Microsoft Access 2010 database.

4.2.3.1 Historic Artifacts

Historic artifacts were classified using Orser’s (1988) functional typology (Table 4-1), which provides a means for interpreting the function of specific historic artifact classes. Within Orser’s system, historic artifacts were analyzed according to material type and function, when possible. The same attributes were recorded for all artifacts, including bag number (corresponding to
provenience); artifact number (sequential numbers arbitrarily assigned within a bag); count; material (i.e., the main material composition of the artifact); and form (i.e., the object name reflecting intended use). The original form was often difficult to determine given the fragmentary nature of the artifacts, resulting in the form designation of “fragment.” Identical, or nearly identical, artifacts within a provenience were grouped together under the same catalog number. (Note: catalog number = bag number plus artifact number.) Whenever possible, mendable artifacts were grouped together. Dates of manufacture for diagnostic artifacts were determined using Miller (2000), South (1977), Sprague (1983), and Visser (2018).

Table 4-1. Functional Typology (Modified from Orser 1988)

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Foodways</td>
<td>a. Procurement</td>
<td>Ammunition, fishhooks, fishing weights</td>
</tr>
<tr>
<td></td>
<td>b. Preparation</td>
<td>Baking pans, cooking vessels, large knives</td>
</tr>
<tr>
<td></td>
<td>c. Service</td>
<td>Fine earthenware, flatware, tableware</td>
</tr>
<tr>
<td></td>
<td>d. Storage</td>
<td>Coarse earthenware, stoneware, glass bottles, canning jars, bottle stoppers</td>
</tr>
<tr>
<td></td>
<td>e. General Foodways</td>
<td>Unidentified glass and ceramic containers</td>
</tr>
<tr>
<td></td>
<td>f. Floral</td>
<td>Nut shells, seeds, fruit pits, phytoliths, pollen</td>
</tr>
<tr>
<td></td>
<td>g. Faunal</td>
<td>Animal bones, antlers, horns, shells and other remains</td>
</tr>
<tr>
<td>2. Clothing</td>
<td>a. Fasteners</td>
<td>Buttons, eyelets, snaps, hooks, eyes</td>
</tr>
<tr>
<td></td>
<td>b. Manufacture</td>
<td>Needles, pins, scissors, thimbles</td>
</tr>
<tr>
<td></td>
<td>c. Other</td>
<td>Shoe leather, metal shoe shanks, clothes hangers</td>
</tr>
<tr>
<td>3. Household/Structural</td>
<td>a. Architectural/ Construction</td>
<td>Nails, flat glass, spikes, mortar, bricks, slate</td>
</tr>
<tr>
<td></td>
<td>b. Hardware</td>
<td>Hinges, tacks, nuts, bolts, staples, hooks, brackets</td>
</tr>
<tr>
<td></td>
<td>c. Furnishings/Accessories</td>
<td>Stove parts, furniture pieces, lamp parts, fasteners</td>
</tr>
<tr>
<td>4. Personal</td>
<td>a. Medicinal</td>
<td>Medicine bottles, droppers</td>
</tr>
<tr>
<td></td>
<td>b. Cosmetic</td>
<td>Hairbrushes, hair combs, jars</td>
</tr>
<tr>
<td></td>
<td>c. Recreational</td>
<td>Smoking pipes, toys, musical instruments, souvenirs</td>
</tr>
<tr>
<td></td>
<td>d. Monetary</td>
<td>Coins</td>
</tr>
<tr>
<td></td>
<td>e. Decorative</td>
<td>Jewelry, hairpins, hatpins, spectacles</td>
</tr>
<tr>
<td></td>
<td>f. Other</td>
<td>Pocketknives, fountain pens, pencils, ink wells</td>
</tr>
<tr>
<td>5. Labor</td>
<td>a. Agricultural</td>
<td>Barbed wire, horse shoes, harness buckles, hoes, plow blades, scythe blades</td>
</tr>
<tr>
<td></td>
<td>b. Industrial</td>
<td>Tools</td>
</tr>
<tr>
<td></td>
<td>c. Household</td>
<td>Household cleaning products, iron</td>
</tr>
<tr>
<td></td>
<td>d. General</td>
<td>Coal, slag, clinker</td>
</tr>
</tbody>
</table>

4.2.3.2 Prehistoric Artifacts

The following basic information was recorded for lithics: count, weight, material type, group, class, and, as applicable, subclass. Weight was recorded to the nearest hundredth of a gram (g) using a digital Sartorius scale calibrated to 800.00 g. A four-tiered system of classification (group, material, class, and subclass) was used for any artifacts recovered.
The broadest level of classification is the group. Potential prehistoric lithic groups include core/tested material, debitage, flaked stone tool, fire-cracked rock, ground/battered stone, and unmodified cultural. Lithics were initially classified based on group and material type, followed by sorting into applicable class and subclass.

Raw Material Identification

Previous studies at the nearby sites identified a variety of materials both locally procured from riverine cobbles and exotic materials imported from unknown sources. The most commonly encountered locally procured materials are quartzite and quartz (Adams et al 1993; Adams 1994; Gardener 1995a), though there were other presumably local materials utilized, including sandstone, hornfels, and metarhyolite. Imported materials may include chert, jasper, hornfels, and metarhyolite. Macroscopic observation was the primary method for material identification, with the use of a magnifying hand lens (10 x) or stereomicroscope (10 to 40 x) providing magnification as needed.

Debitage Analysis

Debitage were sorted into classes based on percent body cortex on the dorsal surface. Classes include: primary cortex (retain ≥50 percent dorsal cortex), secondary cortex (retain <50 percent dorsal cortex), and non-cortex (0 percent cortex). Debitage subclasses were based on general morphology and/or completeness. Subclasses include complete/mostly complete flake, flake fragment, debris/shatter, blade/microblade, bipolar flake, and too small/indeterminate. Complete/mostly complete flakes possess striking platforms and have no more than lateral or distal portions absent. Flake fragments are the distal or lateral portions of flakes with either a missing or partially missing striking platform. Debris/shatters are those fragments that cannot be positively identified as a flake fragment.

Debitage were grouped into one of three subclasses: complete/mostly complete flake, which has at least a partial striking platform present and most or all of the distal flake is present; flake fragments, which are missing the striking platform and/or much of the body of the flake; and debris/shatter, which has no identifiable flake morphology, yet is identifiable as resulting waste from flint knapping. Flakes were then divided into categories indicative of the stage of biface production that produced the flake (primary, secondary, and tertiary) based on size and percent cortex. A greater amount of cortex is perceived as being indicative of an earlier stage of reduction, and a lack of cortex is indicative of later stages of reduction. Although percent cortex can be misleading as a sole source of proxy data (Sullivan and Rozen 1985), studies have demonstrated its usefulness for differentiating general reduction stages (e.g., Ahler 1989; Bradbury and Carr 1995).

Cores and Tested Material

Tested material and cores are produced during reductive freehand or bipolar processes in which smaller pieces of lithic material are detached from a larger source for the purpose of producing useable flakes. Flake detachment is evidenced by negative flake scars and, sometimes, remnant striking platforms. Cores exhibit a pattern of flake removal and typically a minimum of three or four negative flake scars. Pieces of material with no flaking pattern and fewer flake scars are considered tested material, not cores, the implication being the material was rejected for further reduction.
Flaked Stone Tools

Artifacts classified as flaked stone tools are the result of reductive bipolar, knapping, or pressure flaking processes; flaked stone tools exhibit edge modification and/or use-wear. Flaked stone tools are organized into classes and subclasses based on overall design and shape. Only one tool, a uniface, was recovered. Unifaces have been flaked across one face to form an edge.

4.2.4 Expected Results

Prehistoric and historic sites had been recorded in the vicinity of the APE. It was expected that small prehistoric sites representing procurement forays may be found on the terraces above Taylor Run. Large habitation sites were not expected given the constrained area. No documented historic use of the APE was found based on a review of maps and aerials. However, it was expected that historic artifacts may be found associated with nearby occupations and use of King Street.
5.0 RESULTS

The APE was divided into nine testing areas based on natural and man-made divisions, such as drainages, wetlands, slope, paths, and bridges (Figure 5-1). In total, 157 STPs were excavated, resulting in recovery of 11 prehistoric artifacts, 36 historic/modern artifacts, and identification of one small prehistoric lithic scatter: 44AX0242 (Table 5-1). In addition to the recovered artifacts, modern refuse was noted in the field and discarded. This material appears to have been washed or dumped into the ravine or discarded along the path, including modern glass, asphalt, concrete, wire nails, batteries, bricks, Styrofoam, and pieces of items like bicycles.

<table>
<thead>
<tr>
<th>Area</th>
<th>STPs</th>
<th>Pre. Count</th>
<th>Historic Count</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>1</td>
<td>0</td>
<td>Isolated Find 1</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>2</td>
<td>13</td>
<td>Isolated Find 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Isolated Find 3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>7</td>
<td>15</td>
<td>44AX0242</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>Isolated Find 4</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>11</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

5.1 AREA 1

Area 1 began in the recreation center yard on the north end of the APE and continued along the narrow terrace on the east bank of Taylor Run (Figures 5-2 and 5-3). The yard area was level and planted in mown grass; the culverted stream ran under the yard, with sewer and water lines paralleling the stream on the west side. STPs were excavated on lettered transects A through G in the yard. The wooded terrace, where present, varied in width from a few feet to approximately 30 ft. A single line of STPs was excavated on the terrace following the contour of the stream and called H1 through ZZ1. The northern end of the terrace was nearly level with the sidewalk along King Street and elevated above the stream. The terrace sloped down so that at the southern end it was only approximately 4 ft above the stream and at the base of a steep slope up to King Street and the church parking lot. Figures 5-4 through 5-6 show the Phase I testing results.

Soil profiles within Area 1 varied as a result of past disturbances. Most STPs were capped with a layer of rocky, clayey fill. Where the base of fill was reached or absent, natural truncated soils somewhat resembling Sassafras series soils were encountered (Figure 5-7). All strata contained between 30 and 60 percent rounded quartz cobbles and gravels, which was unexpected for the area based on the soil survey. The cobbles may reflect channel deposits or erosion.

In total, 53 STPs were excavated in Area 1, including 50 on grid and three radials. STP JJ1 contained a quartz flake fragment (Isolated Find 1). Three radial STPs did not yield additional artifacts; no radial was placed to the west due to limited space. Eleven STP locations could not be excavated due to slope or the presence of buried utilities/stream. Large concrete pieces, asphalt pieces, metal, and modern refuse was scattered on the surface and encountered within Stratum I of STPs throughout the wooded sections of Area 1.
Figure 5-2. Recreation Center Yard in Area 1, View West

Figure 5-3. Area 1, STP JJ1, View South
Representative Soil Profiles from Areas 1 and 2

Area 1, STP EE1

I = Grayish brown (10YR 4/2) sandy loam
II = Yellowish brown (10YR 5/6), mixed with a variety of other colors, sandy clay loam with rounded gravels
III = Yellowish brown (10YR 5/4) sandy loam with rounded cobbles and pebbles
IV = Brownish yellow (10YR 6/6) sandy clay loam

Area 1, STP JJ1 North

I = Brown (10YR 4/3) sandy loam with cobbles
II = Yellowish brown (10YR 5/4) sandy loam
III = Dark yellowish brown (10YR 4/6) sand with cobbles and rounded pebbles

Area 2, STP C2 East

I = Brown (10YR 4/3) sandy loam
II = Dark yellowish brown (10YR 4/4) sandy loam with cobbles
III = Strong brown (10YR 4/6) sandy clay loam with cobbles
IV = Yellowish brown (10YR 5/6) sandy clay loam with cobbles

Area 2, STP O3

I = Brown (10YR 4/3) sandy loam
II = Yellowish brown (10YR 5/4) sandy clay loam with cobbles
III = Light yellowish brown (10YR 6/4) sandy loam with cobbles
IV = Yellowish brown (10YR 5/6) sandy clay loam with cobbles
5.2 AREA 2

Area 2 began on the east bank of Taylor Run at the south end of Area 1 where the landform broadened out into an approximately 90-ft wide terrace above the stream (Figure 5-8). Area 2 was at the base of a steep slope up to the church parking lot. The lettered baseline was laid in along the base of the slope, with numbered STPs extending towards Taylor Run (Figure 5-6).

Debris appears to have been pushed or slid down the slope, including bricks, asphalt, and concrete, which litter the surface of the slope. Historic artifacts dating to the late nineteenth to late twentieth century were found in STPs in Area 2 (Table 5-2). Additional modern materials such as stippled bottle glass and plastic were not collected. The historic artifacts appear to be out of context and likely relate to twentieth century use of the upland outside of the APE.

<table>
<thead>
<tr>
<th>STP</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 East</td>
<td>1 ironstone</td>
</tr>
<tr>
<td></td>
<td>1 window glass</td>
</tr>
<tr>
<td></td>
<td>1 colorless bottle glass</td>
</tr>
<tr>
<td>D1</td>
<td>1 milk glass</td>
</tr>
<tr>
<td></td>
<td>1 iron fragment</td>
</tr>
<tr>
<td></td>
<td>1 brass fragment</td>
</tr>
<tr>
<td>E1</td>
<td>1 milk glass</td>
</tr>
<tr>
<td>I2</td>
<td>1 iron fragment</td>
</tr>
<tr>
<td></td>
<td>1 window glass</td>
</tr>
<tr>
<td></td>
<td>1 ironstone</td>
</tr>
<tr>
<td>I2 West</td>
<td>1 bottle glass</td>
</tr>
<tr>
<td>I2 North</td>
<td>2 porcelain</td>
</tr>
</tbody>
</table>

Two quartz flakes were recovered from Area 2. STP C2 contained a quartz primary flake (Isolated Find 2). Four radial STPs were excavated around C2, but no additional prehistoric artifacts were found. Radial C2 East contained out of context historic artifacts as noted above. STP E1 contained a tertiary quartz flake (Isolated Find 3) recovered in association with milk glass fragments. No additional prehistoric artifacts were found in the radial STPs.

STPs A2 and B4 were not dug because they fell within an area of made land covered with erosion control fabric and placed behind a retaining wall. STPs C1 and L1 were not dug due to slope and areas of slope failure resulting in thick fill deposits. In total 42 STPs were excavated within Area 2, including 32 on grid and 10 radials.

Soil profiles in Area 2 varied, reflecting past disturbances and differential deposition on the floodplain along the stream. STP F3 exhibited no change in stratigraphy below the modern A horizon, with Stratum II consisting of pale brown (10YR 6/3) sandy loam mottled with 20 percent light gray (10YR 7/2) sandy clay to the base of excavation 3 ft below the ground surface. Several STPs included a layer of dark yellowish brown (10YR 4/4) dense clay at an average depth of 0.4 ft (e.g., C2, C4, I2, I2 West and South). STPs C2 North, K2, and M2 terminated on buried concrete and/or asphalt approximately 1 foot below the surface. STPs I3 and I2 North terminated on degrading sandstone at an average depth of 1.5 ft. The most common profile included two strata overlaying subsoil. Stratum I was brown (10YR 4/3) sandy loam, Stratum II ranged from dark yellowish brown (10YR 4/4) to yellowish brown (10YR 5/8) sandy loam, and subsoil consisted of dark yellowish brown (10YR 4/6) to strong brown (7.5YR 4/6) sandy clay loam. Representative soil profiles are illustrated in Figure 5-7.
Figure 5-8. Area 2 Overview, View South

Figure 5-9. Area 3, STP A1, View Northeast
5.3 AREA 3

Area 3 consists of a spur off of the main APE leading from the path along Taylor Run to the Chinquapin Village community garden. Most of this area contains steps built into the steep slope. At the top of the steps, one STP was placed in the narrow area between the paved drive for the garden and the slope down to Taylor Run (Figures 5-6 and 5-9). Soils within this STP exhibited disturbance, consisting of mixed fill and asphalt. Modern refuse was observed, including plastic, fabric, and car window glass; no artifacts were recovered.

5.4 AREA 4

Area 4 is a moderately sloped wooded area raised slightly above a large wetland on the west bank of Taylor Run. The area is at the base of a steep slope up to the community gardens. STPs were placed on transects parallel to the base of steep slope with numbered STPs extending towards the wetland (Figure 5-6). In total, 17 STPs were excavated in Area 4, including 11 on grid and six radials.

Soils within Area 4 were consistent and appeared natural, somewhat resembling Neabsco series soils. Profiles included two strata over subsoil (Figure 5-10). All strata contained between 30 and 60 percent rounded quartz cobbles and pebbles. Stratum I was a 0.3-ft thick modern A horizon consisting of brown (10YR 4/3) sandy loam with cobbles. Stratum II appeared to be an E horizon consisting of brown (10YR 5/3) to light olive brown (2.5Y 5/4) rocky sandy loam that ranged in thickness from 0.5 to 1.3 ft. Stratum III was yellowish brown (2.5Y 5/6) or brownish yellow (10YR 6/6) sandy clay loam B horizon with cobbles.

Mid- to late twentieth century materials were observed in Stratum I of STPs C1, C1 North, C2 North and West, and F2. Artifacts consisted primarily of modern bottle glass, but also included a battery and a wire fragment. Twentieth century artifacts from Stratum I of STP C1 North were retained to allow further analysis of a sample of the materials. STP C1 North contained 14 fragments of machine-made amber and colorless bottle glass and a piece of iron wire. These materials represent refuse washed or thrown into the ravine.

Prehistoric site 44AX0242 was identified on the basis of seven lithic artifacts recovered from Stratum II of four STPs in Area 4 (Table 5-3). Artifacts were found within the 0.6-ft thick rocky E horizon, which extended to 1.1 ft below the surface. Site 44AX0242 measures 30 by 40 feet in size. Artifacts include a tested quartzite cobbles, a quartzite flake fragment, four quartz shatter, and a quartz uniface. These artifacts likely represent short-term use for resource procurement, possibly for procurement of stone tool materials found in abundance in the area.

<table>
<thead>
<tr>
<th>STP</th>
<th>Stratum, Depth</th>
<th>Pre. Artifact</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>II, 0.2-1.1 ft</td>
<td>Quartz uniface</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>II, 0.9-1.1 ft</td>
<td>Quartzite flake fragment</td>
<td>1</td>
</tr>
<tr>
<td>C1 South</td>
<td>II, 0.4-1.1 ft</td>
<td>Quartz shatter</td>
<td>4</td>
</tr>
<tr>
<td>C1 North</td>
<td>II, 0.3-0.9 ft</td>
<td>Quartzite core/tested material</td>
<td>1</td>
</tr>
</tbody>
</table>
Representative Soil Profiles from Areas 4, 6, 7, and 9

Area 4, STP C1

- **I** = Brown (10YR 4/3) sandy loam with cobbles
- **II** = Brown (10YR 5/3) sandy loam with cobbles
- **III** = Brownish yellow (10YR 6/6) sandy clay loam with cobbles

Area 6, STP C1

- **I** = Brown (10YR 4/3) sandy loam
- **II** = Dark yellowish brown (10YR 4/4) sandy loam
- **III** = Strong brown (7.5YR 5/6) sandy loam with cobbles and rounded pebbles

Area 7, STP I1

- **I** = Brown (10YR 5/3) sandy loam
- **II** = Yellowish brown (10YR 5/8) sandy clay loam with cobbles

Area 9, STP B1

- **I** = Dark yellowish brown (10YR 4/4) sandy loam with cobbles
- **II** = Light yellowish brown (10YR 6/4) sandy loam with cobbles
- **III** = Yellowish brown (10YR 5/6) sandy clay loam with cobbles and rounded pebbles
5.5 AREA 5

Area 5 was a narrow strip of land between the pedestrian path and Taylor Run on the west bank of the stream and at the base of the steps up to the community garden. Three STP locations were examined, and two STPs were excavated. STP A3 could not be dug because it landed on a sewer/water main manhole (Figure 5-6). STPs A1 and A2 were disturbed, consisting of fill to the base of excavation, likely related to the utility line.

5.6 AREA 6

Area 6 is a low-lying area located on the north end of the wetland adjacent to Area 4. Area 6 straddles the pedestrian path. A sewer line and raised manhole mark the southern end, and a footbridge over a channelized drainage marks the north end of the Area. The drainage channel is contained within an above-ground concrete pipe running along the west side of Area 6 (separating Areas 4 and 6) before turning east and running in a ditch and emptying into Taylor Run. STPs were laid out parallel to the stream with transects running towards the wetland, channel, and slope to the west. In total, 10 STPs were excavated in Area 6, including seven on grid and three radials (Figure 5-5).

Soil profiles within Area 6 were fairly consistent, somewhat resembling eroded Sassafras series soils. Profiles included two strata over subsoil (Figure 5-10). Stratum I was a 0.4-ft deep, brown (10YR 4/3) sandy loam A horizon. Stratum II averaged 0.5 ft in thickness and consisted of dark yellowish brown (10YR 4/4) sandy loam BA horizon. Stratum III was yellowish brown (10YR 5/8) to strong brown (7.5YR 5/6) sandy loam with rounded cobbles and pebbles. STPs on the southern end (e.g., A1 and its north radial) were compact and lacked Stratum II, reaching subsoil 0.5 ft below the surface.

Stratum I of STP A1 contained one quartzite flake (Isolate Find 4) and two pieces of wire. Radial STPs did not produce additional prehistoric artifacts, although six fragments of bottle and jar glass were found in Stratum I of A1 North. The historic artifacts included a jar fragment, two shards of machine-made amber-colored bottle glass, and three shards of colorless bottle glass. The prehistoric flake appears to be isolated, and the twentieth century materials represent refuse associated with the sewer or casual discard along the path. The artifacts do not constitute a site.

5.7 AREA 7

Area 7 is a narrow, gently sloped terrace on the west bank of Taylor Run situated between the two footbridges on the path (Figure 5-11). The southern footbridge crosses a drainage channel separating Areas 6 and 7. The northern footbridge crosses a broad wetland that separates Areas 7 and 8. A second drainage channel is located near the middle of Area 7 that carries water draining from the northern wetland to a culvert under the trail and into Taylor Run.

Fifteen STPs were placed in Area 7 (Figure 5-5). Lettered transects ran along the base of the steep slope up to uplands to the west. The second STP on each transect fell within the center of the path; half of the STPs were offset to the west of the path and half to the east. STP B2 could not be dug due to the presence of a disturbed yellow jacket nest. Most STPs in Area 7 exhibited disturbance, likely due to a sewer/water line buried parallel to the stream. Four STPs terminated on top of solid asphalt or concrete (STPs B1, E1, E2, and F2), and an additional two STPs included fill (C2 and K1). Isolated areas contained natural eroded soils, with one stratum over subsoil (Figure 5-10). Stratum I was a 0.6-ft thick, brown (10YR 5/3) sandy loam, and Stratum II was yellowish brown (10YR 5/8) sandy clay loam with rounded cobbles and pebbles.
Figure 5-11. Testing in Area 7, View North

Figure 5-12. Slope Failure in Area 8, View Northwest
Five STPs in Area 7 contained modern machine-made bottle glass and asphalt pieces in Stratum I, and STP K1 also had wire nails. These artifacts were not retained due to their modern nature and presence in disturbed soils. No artifacts were recovered from the STPs in Area 7.

5.8 AREA 8

Area 8 is a small area situated between a footbridge and wetland to the south and a second wetlands to the north. The footpath runs through the area, and a raised concrete manhole is located east of the path near the center of the area. A portion of Area 8 west of the path was covered by significant amounts of colluvium due to slope failure (Figure 5-12).

Four STPs were excavated in Area 8 (Figure 5-4). STP A2 was placed just outside of the marked wetland where the modern colluvium was not deep. Despite being outside of the jurisdictional wetland, soils appeared hydric, consisting of gray (2.5Y 5/1) rocky sandy clay loam below the dark yellowish brown (10YR 4/6) sandy clay colluvium. STPs B1 and C1, placed east of the path and on either side of a raised concrete manhole, terminated on concrete 0.9 ft below the surface. The profile of STP C2 consisted of 0.3 ft of dark yellowish brown (10YR 4/4) sandy loam over dark yellowish brown (10YR 3/6) sandy loam with cobbles to the base of excavation. No artifacts were recovered from the STPs; modern glass, oyster shell, wire nails, and plastic was observed in the fill layers above the concrete in STPs B1 and C1. Twentieth century artifacts, such as bottle glass, whiteware, and oyster shell, were observed on the surface within the modern colluvium matrix; these artifacts are associated with past use of the upland outside the APE.

5.9 AREA 9

Area 9 is on a narrow, slightly elevated terrace above Taylor Run and the wetland north of Area 8. The area slopes up gently towards the north, with steep slopes to the west up to tennis courts and to the east down to Taylor Run. The north end of Area 9 is covered with large piles of mulch adjacent to the recreation center lawn at the end of the footpath.

Thirteen STPs were excavated within Area 9 (Figure 5-4). STPs A2, B2, and C2 terminated on concrete, likely related to the buried sewer/water line paralleling the stream. STPs H1 and F1 consisted of rocky, clayey fill with modern glass and pieces of concrete and asphalt below the modern A horizon. The remaining STPs were shallow, reaching subsoil an average of 1 ft below the surface (Figure 5-10). Soils varied, but a common profile included a 0.4 ft A horizon of dark yellowish brown (10YR 4/4) sandy loam. Stratum II averaged 0.5 ft in thickness and was a light yellowish brown (10YR 6/4) loam E horizon. The B horizon was yellowish brown (10YR 5/6) sandy clay loam. All soils included between 30 and 60 percent rounded cobbles and pebbles. Modern machine-made bottle glass related to casual discard along the path and/or slopewash was present in Stratum I of several STPs and observed on the surface. No artifacts were recovered from Area 9.
6.0 CONCLUSIONS AND RECOMMENDATIONS

The City contracted AECOM to complete a Phase I archaeological survey in support of a stream restoration project along Taylor Run. The APE is an 5.3-acre area located primarily within Chinquapin and Forest Parks in Alexandria, Virginia; a small section is on the property of the First Baptist Church of Alexandria. The APE includes steep slopes down from King Street on the east and developed areas on the west, a terrace paralleling Taylor Run, and steep slopes down to the stream bed. Disturbances include sewer and water lines, fill for the culverted stream, and areas where the slope up to uplands failed. In total, 157 STPs were excavated within the APE, resulting in identification of one prehistoric site (44AX0242) and four isolated prehistoric artifacts. In addition, 36 historic/modern artifacts were recovered that do not constitute a site due to their recovery from fill or modern colluvium contexts. Numerous additional modern materials (e.g., modern machine-made glass, asphalt, concrete) were observed.

Site 44AX0242 consists of seven lithic artifacts recovered from an area approximately 30 by 40 ft in size. The site is situated on a gently sloped area above a wetland on a terrace above Taylor Run. Artifacts include a tested quartzite cobble, a quartzite flake fragment, four quartz shatter, and a quartz uniface. These artifacts likely represent short-term use for resource procurement, possibly for procurement of stone tool materials found in abundance in the area. The presence of a uniface suggests expedient tool production, possibly indicating use of wetland resources as well. Soils within the small site appeared eroded. No features or diagnostic artifacts were found, and the site is not likely to yield important information about area prehistory. Site 44AX0242 is recommended not eligible for inclusion in the NRHP, and no further archaeological investigations are recommended.
7.0 REFERENCES CITED

Adams, Robert M.
1994 *The Archaeological Investigation of the Undeveloped Upland Terraces in Mark Center, City of Alexandria, Virginia.* Submitted to the City of Alexandria by International Archaeology Consultants, Rawlings, Wyoming. Document on file at Virginia DHR.

Adams, Robert M., et al

Ahler, Stanley A.

Alexandria Archaeology

Alexandria Archaeology Museum

Barber, James G.
1988 *Alexandria in the Civil War.* H.E. Howard, Inc., Lynchburg, VA.

Barse, William P. and A.D. Beauregard
1994 *Phase III Data Recovery at the Clifton Site (18CH358), Maryland Route 228 Wetland Mitigation, Charles County, Maryland.* Maryland State Highway Administration Archeological Report Number 86. Prepared by KCI Technologies, Inc., Mechanicsburg, Pennsylvania.

Barse, William P., and J. Harbison
2000 *Phase II Archaeological Testing on the Prehistoric and Historic Components of Site 44AX185, Jones Point Park, Alexandria, Virginia.* Submitted to the Federal Highway Administration, Virginia Department of Transportation, and the National Park Service by the Potomac Crossing Consultants, Florence, New Jersey.

Barse, William P., J. Harbison, I. Wuebber, and M. Janowitz
2006 *Phase III Archaeological Mitigation of the Prehistoric and Historic Components of Site 44AX185, Jones Point Park, Alexandria, Virginia.* Submitted to the Federal Highway Administration, Virginia Department of Transportation, and the National Park Service by the Potomac Crossing Consultants, Burlington, New Jersey.
Binford, Lewis R.

Bradburry, A.P., and P. J. Carr

Brockett, F.L., and Geo. W. Rock

Brush, G.

Caldwell, Joseph R.

Carbone, Victor A.

Clark, Wayne E.

Cleland, Charles E.

Colman, S. M., J. P. Halka, and C. H. Hobbs, III

Custer, Jay F.

Custer, Jay F. and Glen R. Mellin

Dent, Richard J., Jr.

Gardner, William M.

Gardner, William M., Kimberly A. Snyder, and Tammy Bryant
1995a Phase III Data Recovery Excavations of the Prehistoric Component of 44AX177 and 44AX176, Stonegate Development, Parcel C, City of Alexander, Virginia

Gardner, William and Jennifer Schmidt
Gardner, William M., Kimberly A. Snyder, Tammy Bryant, and Gwen Hurst
1995b Phase II Archaeological Investigations of an Historic Area Within 44AX177, City of Alexandria, Virginia

Hantman, Jeffrey L.

Hopkins, Griffith Morgan

Hranicky, William J.

Hranicky, William J. and Floyd Painter

Hurd, William

Hurst, Harold W.

Hutson, Jarod and John Mullen

Jefferson Patterson Park Museum (JPPM)
2018 *Diagnostic Artifacts in Maryland.* Electronic document http://www.jefpat.org/diagnostic/PrehistoricCeramics/PrehistoricWareDescriptions/Accokeek.htm, accessed October 15, 2018

Jirikowic, Christine, Gwen Hurst, and Tammy Bryant
Kavanagh, Maureen

Kellogg, Douglas C., and Jay F. Custer
1994 *Paleoenvironmental Studies of the State Route 1 Corridor: Contexts for Prehistoric Settlement, New Castle and Kent Counties, Delaware.* Delaware Department of Transportation Archeology Series No. 114, Dover, Delaware.

Kulikoff, Allan

Fry, Joshua and Peter Jefferson

Lowery, Darrin L.

Lowry, Sarah

Lowery, Darrin L., and Jay F. Custer
1990 Crane Point: An Early Archaic Site in Maryland. *Journal of Middle Atlantic Archaeology* 6:75-120.

Mayewski, Paul Andrew et al.

Michler, Nathaniel
Miller, George L.

Miller, T. Michael

Moxham, Robert M.

Netherton, Nan, Donald Sweig, Janice Artemel, Patricia Hickin, and Patrick Reed
1992 *Fairfax County, Virginia: A History*. Fairfax County Board of Supervisors, Fairfax, Virginia.

Orser, Charles. E., Jr.
1988 *The Material Basis of the Post-Bellum Tenant Plantation: Historical Archaeology in the South Carolina Piedmont*. The University of Georgia Press,

Osborn, T.J. and K.R. Briffa

Potter, Stephen R.

Roberts, C. and C.M. Bailey

Rochambeau, Mr. le Comte de

Smith, P.R. and M.T. Wilson

South, Stanley.

Steponaitis, Laurie C. 1980 *A Survey of Artifact Collections from the Patuxent River Drainage, Maryland*. Maryland Historical Trust Monograph Series 1. Maryland Historical Trust and Maryland Department of Natural Resources, Annapolis, MD.

Virginia Department of Conservation and Recreation

Virginia Department of Historic Resources (DHR)

Visser, Thomas D.

Wall, Robert D.
2001 Late Woodland Ceramics and Native Populations of the Upper Potomac Valley. Journal of Middle Atlantic Archaeology 17:15-37.

Wesler, Kit W., Gordon J. Fine, Dennis J. Pogue, Patricia A. Sternheimer, Aileen F. Button, E. Glyn Furgurson, and Alvin H. Luckenbach

Willard, Debra A., Christopher E. Bernhardt, David A. Korejwo, and Stephen R. Meyers

Wrenn, Tony P
1972 Falls Church: History of a Virginia Village. Historical Commission of the City of Falls Church, Falls Church.
Appendix A:

Qualifications of Investigators
Heather Crowl, MA, is a Registered Professional Archaeologist (RPA) with 25 years of professional experience in prehistoric and historic archaeology, particularly in the Mid-Atlantic and East Coast regions of the United States. A majority of this experience is in cultural resources management for private, state, and federal compliance projects. She meets the Secretary of the Interior’s Professional Qualification Standards for Archaeology (48FR44738-44739) and is a registered professional archaeologist. Ms. Crowl manages projects, directs archaeological field survey, evaluation, and excavation, and conducts cemetery delineations, artifact analysis, report writing, graphic preparation, and archival research. Ms. Crowl holds a MA in Anthropology from American University.

Kayla Marciniszyn, MA, has 8 years of experience in the field of cultural resource management archaeology, archaeological research, and archaeological collections management. She served as an archaeological field and lab technician, assistant archaeology lab director, and assistant archaeology collections manager for the Fairfax County Park Authority’s Archaeology and Collections Branch for a period of seven years. She is an Archaeologist for AECOM Germantown’s Cultural Resource Management Group. During her career, she has worked on a variety of historic and prehistoric sites at all phases in the Mid-Atlantic region. She received her Bachelor’s Degree in Archaeological Studies from Penn State and her Master’s Degree in Museum Studies from the University of Oklahoma.

Scott Seibel, MSc, is a Registered Professional Archaeologist (RPA) with over 21 years of experience in cultural resources management who exceeds the Secretary of Interior Standards for archaeology and history. Mr. Seibel has extensive experience in the design, management, and technical execution of historical and archaeological investigations. He has managed reconnaissance and intensive investigations on prehistoric and historic sites throughout the southeastern United States, Mid-Atlantic, South, West, and Midwest. He has experience in complying with federal, state, and local regulations and has successfully worked with State Historic Preservation Offices (SHPOs) to develop work plans and create Memoranda of Agreement (MOA) for cultural resources management. Mr. Seibel holds a M.Sc. in Archaeomaterials from the University of Sheffield.
Appendix B:

Artifact Catalog
<table>
<thead>
<tr>
<th>CatalogID</th>
<th>Area</th>
<th>Site</th>
<th>Transect</th>
<th>STP</th>
<th>Strat</th>
<th>Count</th>
<th>Group</th>
<th>SubGroup</th>
<th>Class</th>
<th>Material</th>
<th>Object</th>
<th>ObjectColor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001.0001</td>
<td>1 (E)</td>
<td>JJ</td>
<td>2</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Prehistoric</td>
<td>Debitage</td>
<td>Lithic</td>
<td>Quartz</td>
<td>Flake, Fragment, Type Unid.</td>
<td></td>
</tr>
<tr>
<td>0002.0001</td>
<td>2 (E)</td>
<td>C</td>
<td>2</td>
<td>IV</td>
<td>1</td>
<td>1</td>
<td>Prehistoric</td>
<td>Debitage</td>
<td>Lithic</td>
<td>Quartz</td>
<td>Flake, Primary</td>
<td></td>
</tr>
<tr>
<td>0003.0001</td>
<td>2 (E)</td>
<td>C</td>
<td>2-E</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Foodways</td>
<td>Service</td>
<td>Ceramic</td>
<td>Ironstone/ Stone China/ White Granite</td>
<td>Tableware/ Toiletware, Unid.</td>
<td></td>
</tr>
<tr>
<td>0003.0002</td>
<td>2 (E)</td>
<td>C</td>
<td>2-E</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Foodways</td>
<td>General Foodways</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle</td>
<td>Colorless</td>
</tr>
<tr>
<td>0003.0003</td>
<td>2 (E)</td>
<td>C</td>
<td>2-E</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Household/ Structural</td>
<td>Architectural/ Construction</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Window Glass</td>
<td>Colorless</td>
</tr>
<tr>
<td>0004.0001</td>
<td>2 (E)</td>
<td>D</td>
<td>1</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Foodways</td>
<td>General Foodways</td>
<td>Glass</td>
<td>Milk Glass</td>
<td>Indeterminate Hollow</td>
<td>White</td>
</tr>
<tr>
<td>0004.0002</td>
<td>2 (E)</td>
<td>D</td>
<td>1</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Miscellaneous</td>
<td>Unknown</td>
<td>Metal</td>
<td>Brass</td>
<td>Possible furniture</td>
<td></td>
</tr>
<tr>
<td>0004.0003</td>
<td>2 (E)</td>
<td>D</td>
<td>1</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Miscellaneous</td>
<td>Unknown</td>
<td>Metal</td>
<td>Iron</td>
<td>Possible bracket</td>
<td></td>
</tr>
<tr>
<td>0005.0001</td>
<td>2 (E)</td>
<td>E</td>
<td>1</td>
<td>I/ II</td>
<td>1</td>
<td>1</td>
<td>Household/ Structural</td>
<td>Furnishings/ Accessories</td>
<td>Glass</td>
<td>Milk Glass</td>
<td>Lamp, Shade</td>
<td>White</td>
</tr>
<tr>
<td>0005.0002</td>
<td>2 (E)</td>
<td>E</td>
<td>1</td>
<td>I/ II</td>
<td>1</td>
<td>1</td>
<td>Prehistoric</td>
<td>Debitage</td>
<td>Lithic</td>
<td>Quartz</td>
<td>Flake, Tertiary</td>
<td></td>
</tr>
<tr>
<td>0006.0001</td>
<td>2 (E)</td>
<td>I</td>
<td>2</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Foodways</td>
<td>Service</td>
<td>Ceramic</td>
<td>Ironstone/ Stone China/</td>
<td>Tableware/ Toiletware, Unid.</td>
<td></td>
</tr>
<tr>
<td>0006.0002</td>
<td>2 (E)</td>
<td>I</td>
<td>2</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Household/ Structural</td>
<td>Architectural/ Construction</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Window Glass</td>
<td>Aqua</td>
</tr>
<tr>
<td>0006.0003</td>
<td>2 (E)</td>
<td>I</td>
<td>2</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Miscellaneous</td>
<td>Unknown</td>
<td>Metal</td>
<td>Iron</td>
<td>Indeterminate</td>
<td></td>
</tr>
<tr>
<td>0007.0001</td>
<td>2 (E)</td>
<td>I</td>
<td>2-W</td>
<td>II</td>
<td>1</td>
<td>1</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle</td>
<td>Colorless</td>
</tr>
<tr>
<td>0008.0001</td>
<td>2 (E)</td>
<td>I</td>
<td>2-N</td>
<td>II</td>
<td>2</td>
<td>2</td>
<td>Foodways</td>
<td>Service</td>
<td>Ceramic</td>
<td>Porcelain</td>
<td>Indeterminate</td>
<td></td>
</tr>
<tr>
<td>0009.0001</td>
<td>4 (W)</td>
<td>44AX242</td>
<td>C</td>
<td>2</td>
<td>II</td>
<td>1</td>
<td>Prehistoric</td>
<td>Debitage</td>
<td>Lithic</td>
<td>Quartzite</td>
<td>Flake, Fragment, Type Unid.</td>
<td></td>
</tr>
<tr>
<td>0010.0001</td>
<td>4 (W)</td>
<td>44AX242</td>
<td>C</td>
<td>1</td>
<td>II</td>
<td>1</td>
<td>Prehistoric</td>
<td>Tools</td>
<td>Lithic</td>
<td>Quartz</td>
<td>Uniface</td>
<td></td>
</tr>
</tbody>
</table>
Taylor Run Phase I Survey

<table>
<thead>
<tr>
<th>CatalogID</th>
<th>Area</th>
<th>Site</th>
<th>Transect</th>
<th>STP</th>
<th>Strat</th>
<th>Count</th>
<th>Group</th>
<th>SubGroup</th>
<th>Class</th>
<th>Material</th>
<th>Object</th>
<th>ObjectColor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011.0001</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>2</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Soda</td>
<td>Colorless</td>
<td></td>
</tr>
<tr>
<td>0011.0002</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Unid.</td>
<td>Colorless</td>
<td></td>
</tr>
<tr>
<td>0011.0003</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>2</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle</td>
<td>Colorless</td>
<td></td>
</tr>
<tr>
<td>0011.0004</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>2</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle</td>
<td>Colorless</td>
<td></td>
</tr>
<tr>
<td>0011.0005</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>4</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle</td>
<td>Colorless</td>
<td></td>
</tr>
<tr>
<td>0011.0006</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Amber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011.0007</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>2</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Amber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011.0008</td>
<td>4 (W)</td>
<td>C</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Miscellaneous</td>
<td>Unknown</td>
<td>Metal</td>
<td>Iron</td>
<td>Wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0012.0001</td>
<td>4 (W)</td>
<td>44AX242</td>
<td>1-N</td>
<td>II</td>
<td>1</td>
<td>Prehistoric</td>
<td>Core/ Tested Material</td>
<td>Lithic</td>
<td>Quartzite</td>
<td>See Comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0013.0001</td>
<td>4 (W)</td>
<td>44AX242</td>
<td>1-S</td>
<td>II</td>
<td>4</td>
<td>Prehistoric</td>
<td>Debitage</td>
<td>Lithic</td>
<td>Quartz</td>
<td>Shatter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0014.0001</td>
<td>6 (W)</td>
<td>A</td>
<td>1</td>
<td>I</td>
<td>1</td>
<td>Prehistoric</td>
<td>Debitage</td>
<td>Lithic</td>
<td>Quartzite</td>
<td>Flake, Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0014.0002</td>
<td>6 (W)</td>
<td>A</td>
<td>1</td>
<td>I</td>
<td>2</td>
<td>Miscellaneous</td>
<td>Unknown</td>
<td>Metal</td>
<td>Iron</td>
<td>Wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015.0001</td>
<td>6 (W)</td>
<td>A</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Jar,</td>
<td>Colorless</td>
<td></td>
</tr>
<tr>
<td>0015.0002</td>
<td>6 (W)</td>
<td>A</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Colorless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015.0003</td>
<td>6 (W)</td>
<td>A</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Colorless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015.0004</td>
<td>6 (W)</td>
<td>A</td>
<td>1-N</td>
<td>I</td>
<td>1</td>
<td>Foodways</td>
<td>General Foodways</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Indeterminate Hollow, Colorless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015.0005</td>
<td>6 (W)</td>
<td>A</td>
<td>1-N</td>
<td>I</td>
<td>2</td>
<td>Foodways</td>
<td>Storage</td>
<td>Glass</td>
<td>Common Glass</td>
<td>Bottle, Amber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C:

VDHR Site Forms
Archaeological Site Record

Snapshot

<table>
<thead>
<tr>
<th>Field</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name:</td>
<td>No Data</td>
</tr>
<tr>
<td>Site Classification:</td>
<td>Terrestrial, open air</td>
</tr>
<tr>
<td>Year(s):</td>
<td>No Data</td>
</tr>
<tr>
<td>Site Type(s):</td>
<td>Lithic procurement site</td>
</tr>
<tr>
<td>Other DHR ID:</td>
<td>No Data</td>
</tr>
<tr>
<td>Temporary Designation:</td>
<td>44AXArea4</td>
</tr>
<tr>
<td>Site Evaluation Status:</td>
<td>Not Evaluated</td>
</tr>
</tbody>
</table>

Locational Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS Quad:</td>
<td>ALEXANDRIA</td>
</tr>
<tr>
<td>County/Independent City:</td>
<td>Alexandria (Ind. City)</td>
</tr>
<tr>
<td>Physiographic Province:</td>
<td>Coastal Plain</td>
</tr>
<tr>
<td>Elevation:</td>
<td>140</td>
</tr>
<tr>
<td>Aspect:</td>
<td>Facing East</td>
</tr>
<tr>
<td>Drainage:</td>
<td>Potomac</td>
</tr>
<tr>
<td>Slope:</td>
<td>2 - 6</td>
</tr>
<tr>
<td>Acreage:</td>
<td>0.020</td>
</tr>
<tr>
<td>Landform:</td>
<td>Terrace, Interior Stream</td>
</tr>
<tr>
<td>Ownership Status:</td>
<td>Local Govt</td>
</tr>
<tr>
<td>Government Entity Name:</td>
<td>No Data</td>
</tr>
</tbody>
</table>

Site Components

Component 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category:</td>
<td>Industry/Processing/Extraction</td>
</tr>
<tr>
<td>Site Type:</td>
<td>Lithic procurement site</td>
</tr>
<tr>
<td>Cultural Affiliation:</td>
<td>Native American</td>
</tr>
<tr>
<td>DHR Time Period:</td>
<td>Pre-Contact</td>
</tr>
<tr>
<td>Start Year:</td>
<td>No Data</td>
</tr>
<tr>
<td>End Year:</td>
<td>No Data</td>
</tr>
<tr>
<td>Comments:</td>
<td>Prehistoric lithic procurement site lacking diagnostic artifacts</td>
</tr>
</tbody>
</table>

Bibliographic Information

Bibliography:

Informant Data:
No Data
CRM Events

Event Type: Survey:Phase I

<table>
<thead>
<tr>
<th>Project Staff/Notes:</th>
<th>No Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Review File Number:</td>
<td>No Data</td>
</tr>
<tr>
<td>Sponsoring Organization:</td>
<td>No Data</td>
</tr>
<tr>
<td>Organization/Company:</td>
<td>AECOM Germantown</td>
</tr>
<tr>
<td>Investigator:</td>
<td>Heather Crowl</td>
</tr>
<tr>
<td>Survey Date:</td>
<td>9/16/2019</td>
</tr>
</tbody>
</table>

Survey Description:
Phase I Survey for the City of Alexandria prior to stream restoration.

<table>
<thead>
<tr>
<th>Current Land Use</th>
<th>Date of Use</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park</td>
<td>9/16/2019 12:00:00 AM</td>
<td>Wooded public park</td>
</tr>
</tbody>
</table>

Threats to Resource:
Erosion, Other

Site Conditions:
0-24% of Site Destroyed

Survey Strategies:
Subsurface Testing

Specimens Collected:
Yes

Specimens Observed, Not Collected:
No

Artifacts Summary and Diagnostics:
- 1 quartz uniface
- 1 quartzite flake fragment
- 4 quartz shatter
- 1 quartzite tested cobble

Summary of Specimens Observed, Not Collected:
No Data

<table>
<thead>
<tr>
<th>Current Curation Repository:</th>
<th>AECOM Lab Germantown MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Curation Repository:</td>
<td>City of Alexandria</td>
</tr>
<tr>
<td>Field Notes:</td>
<td>Yes</td>
</tr>
<tr>
<td>Field Notes Repository:</td>
<td>City of Alexandria</td>
</tr>
<tr>
<td>Photographic Media:</td>
<td>Digital</td>
</tr>
<tr>
<td>Survey Reports:</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Survey Report Information:

<table>
<thead>
<tr>
<th>Survey Report Repository:</th>
<th>City of Alexandria</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHR Library Reference Number:</td>
<td>No Data</td>
</tr>
<tr>
<td>Significance Statement:</td>
<td>The low-density scatter was found in shallow, eroded soils. No features or diagnostic artifacts were found. The site is not likely to yield significant information.</td>
</tr>
<tr>
<td>Surveyor's Eligibility Recommendations:</td>
<td>Recommended Not Eligible</td>
</tr>
<tr>
<td>Surveyor's NR Criteria Recommendations, :</td>
<td>No Data</td>
</tr>
<tr>
<td>Surveyor's NR Criteria Considerations:</td>
<td>No Data</td>
</tr>
</tbody>
</table>
DISCLAIMER: Records of the Virginia Department of Historic Resources (DHR) have been gathered over many years from a variety of sources and the representation depicted is a cumulative view of field observations over time and may not reflect current ground conditions. The map is for general information purposes and is not intended for engineering, legal or other site-specific uses. Map may contain errors and is provided “as-is”. More information is available in the DHR Archives located at DHR’s Richmond office.

Notice if AE sites: Locations of archaeological sites may be sensitive the National Historic Preservation Act (NHPA), the Archaeological Resources Protection Act (ARPA) and Code of Virginia §2.2-3705.7 (10). Release of precise locations may threaten archaeological sites and historic resources.