A PHASE I ARCHAEOLOGICAL INVESTIGATION
OF THE QUAKER VILLAGE SITE
Submitted to: MTM Alexandria, Virginia
Engineering Science, Inc.
1133 Fifteenth St. N.W.
Washington, D.C. 20005

August 1989
A PHASE I ARCHAEOLOGICAL INVESTIGATION
OF THE QUAKER VILLAGE SITE

by
Jesse Daugherty
Madeleine Pappas
Justin Patton
Kimberly Prothro

submitted to:
MTM
112 South Alfred Street
Suite 200
Alexandria, Virginia 22314

August 1989

Engineering-Science, Inc.
1133 Fifteenth Street, N.W.
Washington, D.C. 20005
ABSTRACT

In July 1989, archaeologists from Engineering-Science, Inc. surveyed the Quaker Village development property located at the intersection of Duke Street and Quaker Lane in Alexandria, Virginia. A Phase I examination of the project area was conducted to determine the presence or absence and integrity of any archaeological resources prior to the construction activities for immediate development. A total of 65 shovel tests were dug and one test trench was excavated. Testing revealed that grading and natural soil disturbances had occurred and that no significant historic or prehistoric materials remained intact. Based upon the small amount of prehistoric and historic materials present, the amount of disturbance recorded in the artifact-bearing deposits and the absence of features, no further work is recommended in the area surveyed.
ACKNOWLEDGEMENTS

We would like to thank Dean Morehouse and Paul Shelton of Quaker Village, Inc. We also wish to acknowledge Dr. Pamela Cressey, Dr. Stephen Shephard, Mr. Keith Barr and Ms. Barbara Magid of Alexandria Archaeology.

We also wish to thank Ms. Beth Mitchell and Mr. T. Michael Miller for their assistance with archival research. Finally, we wish to extend our appreciation to Mr. Samuel Cooper Dawson, a descendent of General Samuel Cooper who generously provided us with an oral history of his family and the project area.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Plates</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Environmental Setting</td>
<td></td>
</tr>
<tr>
<td>III. Prehistoric Occupation and Land Use</td>
<td></td>
</tr>
<tr>
<td>IV. Historic Occupation and Land Use</td>
<td></td>
</tr>
<tr>
<td>V. Architectural Descriptions</td>
<td></td>
</tr>
<tr>
<td>VI. Methodology</td>
<td></td>
</tr>
<tr>
<td>A. Field</td>
<td></td>
</tr>
<tr>
<td>B. Laboratory</td>
<td></td>
</tr>
<tr>
<td>VII. Summary Analysis and Evaluation of Research</td>
<td></td>
</tr>
<tr>
<td>VIII. Conclusions and Recommendations</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A. List of Personnel</td>
<td></td>
</tr>
<tr>
<td>B. Artifact Inventory</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1 Project Location
2 Carr and Simpson Plat, 1678
3 Map of Environs of Washington, 1865
4 Atlas of Fifteen Miles Around Washington, 1879
5 Site Map
6 Soil Profiles
LIST OF PLATES

1 Building 1
2 Building 2
3 Building 3
4 Building 4
5 Building 5
I. INTRODUCTION

A Phase I archaeological survey was conducted in July 1989 for Quaker Village by Engineering-Science, Inc. The project area occupies approximately five acres of the northwest corner of the intersection of Duke Street and Quaker Lane in Alexandria, Virginia (Figure 1). Plans for the development of the property include the construction of townhouses on the site.

The purpose of the Phase I survey was to locate and describe significant or potentially significant sites by conducting surface examination and subsurface testing of the project area. The goals of the survey were to:

a. determine the presence or absence of archaeological resources in the project area,
b. interpret any known or discovered sites for cultural affiliation, site function and significance as could be determined,
c. assess the project impact on sites (direct and indirect), and
d. determine the need for further work.

The study was conducted by professional archaeologists meeting the qualifications specified by the Secretary of the Interior's Standards and Guidelines, the National Park Service (36 CFR 800; 36 CFR 66) and the Archaeology Preservation Guidelines of the City of Alexandria, as interpreted by the City Archaeologist.
Source: USGS/Alexandria, VA

Quaker Village

Figure 1
Project Location Map
II. ENVIRONMENTAL SETTING

The project area is situated approximately two miles from the Potomac River and encompasses part of a steep hill. Elevations range from 178 feet at the northern boundary to 108 feet at the southern boundary or Duke Street. At the time of the study the majority of the area was lightly wooded with mostly young trees and thick underbrush of briars and ivies. The remaining areas contain twentieth century houses that face Quaker Lane. A small unnamed stream also bisects the property behind the homes and runs north to south.

Geologically, the area is contained within the Atlantic Coastal Plain physiographic province. The geology of the area is typical of the Coastal Plain, which is characterized by a series of unconsolidated deposits of gravel, sand, silt, and clay ranging from the Cretaceous to recent periods.

The Coastal Plain province does not provide any primary lithic sources. However, secondary deposits of cobbles and gravels are commonly exposed in streambeds, river channels, and old marine and river terraces (Wentworth 1930). Quartz is the most abundant lithic material in the region. Quartzite is also common but chert and jasper pebbles are occasionally available.

The climate in the vicinity of the project area is characterized as humid, semi-continental, with meteorological systems generally flowing west to east. Seasonal variations exist, and summer and fall are generally dominated by tropical air masses originating in the Gulf of Mexico and moving northward, while winter is more frequently characterized by intensely cold, dry air streaming out of central Canada (Mack 1966). The average temperature range is from 48.2 degrees Fahrenheit to 66.3 degrees Fahrenheit. Average annual precipitation is 38.7 inches, of which 17.7 inches fall in the form of snow (ibid.).
III. PREHISTORIC OCCUPATION AND LAND USE

The project area is situated in the Middle Atlantic region of the eastern United States. The prehistory of this region is traditionally divided into three major periods: the Paleo-Indian (ca. 10,000 B.C. - 8,000 B.C.), the Archaic (ca. 8,000 B.C. - 1,000 B.C.), and the Woodland (ca. 1,000 B.C. - A.D. 1,600). These cultural periods represent a taxonomic device, whereby changes in material culture and subsistence strategies are emphasized. Shifts in the types of artifacts often reflect technological transformations, which can be seen as adaptive responses to changing environmental conditions (Allan and Stuart 1977). Thus a discussion of the archaeological background of the region must combine aspects of the environment, subsistence base, and artifactual record. The model for prehistoric site distribution which results from such a discussion enables archaeologists to predict the most likely locations for sites of the different time periods (Gardner 1978, 1982; Bromberg 1987). A model of this nature is a useful tool for preservationists for it allows them to judge the likelihood of finding sites in areas threatened by development.

The record of human habitation in the Potomac drainage began some 12,000 years ago, concurrent with the final retreat of the Wisconsin polar ice cap. Pollen profiles from the Virginia Coastal Plain indicate a predominance of spruce and pine elements in the region, and similar environmental conditions probably prevailed in this drainage as well. Thus, the parkland or tundra conditions of glacial times had already been replaced by boreal forests in the Middle Atlantic by the time of Paleo-Indian occupation of the area. The current consensus is that the large Pleistocene herd animals hunted by Paleo-Indians in the western United States were probably no longer present in abundance in the Middle Atlantic by about 10,000 B.C., and it is therefore postulated that smaller game and a variety of plants were most likely the main resources exploited in the region during the Paleo-Indian period (Custer 1989).

The characteristic artifact of the Paleo-Indian times is the fluted stone point, often made of high quality lithic material such as chert or jasper (Gardner 1974, 1979). These points, used as spear tips, are relatively rare throughout the Mid-Atlantic. The region’s most intensively studied Paleo-Indian sites are situated in the Shenandoah Valley of Virginia. Excavation of these sites has indicated a tendency for Paleo-Indian base camps to be situated in areas of maximum habitat overlap near sources of cryptocrystalline stone, such as chert and jasper (Gardner 1974, 1979). Other smaller, less permanent base camps were situated at nearby game-attractive locales, and hunting camps further removed from the base camp completed the picture of the Paleo-Indian settlement pattern (Gardner 1974, 1979). A similar pattern has been noted for areas in northern Delaware where cryptocrystalline stone is available (Custer and DeSantis 1986). In central Delaware where this high quality lithic material is not available, Custer and DeSantis (1986) have suggested that base camps were located on well-drained ridges in areas of maximum habitat overlap, with base camp maintenance stations at game-attractive locales nearby, and hunting sites at game-attractive locales farther removed. In the future, other settlement patterns may be detected for the Paleo-Indian period in the Middle Atlantic region, and it is possible that some sites are located on the now submerged continental shelf (Kraft and Chacko 1978).

The Archaic Period lasted from about 8,000 B.C. to 1,000 B.C. A generalized foraging pattern served to exploit the resources available during this period. As the foragers spread out in search of game and vegetable resources, they
began to use locally available materials such as quartz and quartzite for their tool manufacture. Population rose, fueled by successful adaptations to the environment. Early, Middle and Late Archaic sub-periods have been defined to aid in describing the chronological history of the Middle Atlantic.

The Early Archaic period (ca. 8,000 B.C. - 6,500 B.C.) is marked by the introduction of a number of new projectile point styles. Among the cultural diagnostics of this period are the corner-notched, serrated Palmer and Kirk points; the slightly later Kirk-stemmed types; and the still later bifurcate base points (LeCroy, Kanawha). It has been hypothesized that these new point styles are related to the introduction of the atlatl in the area, but the obvious lack of preservation of this wooden artifact in the archaeological record makes this hypothesis difficult to prove or disprove. Like the Paleo-Indian points, these types probably served as spear tips for hunting purposes. Custer (1989) has recently stressed the fact that the new point types probably represent a stylistic rather than functional change. Despite changes in length, overall shape, and hafting elements, thickness of the points remained constant between the Paleo-Indian and Early Archaic periods; this was a key characteristic for hunting efficiency.

Most archaeologists agree that there is some continuity between the Paleo-Indian and the Early Archaic periods (Gardner 1974; Custer 1989). While there is evidence for an increase in the number of sites, the Early Archaic inhabitants of the area, like their predecessors, probably had high mobility and a varied subsistence base. For the Virginia Coastal Plain, the pollen record indicates an increase in oak and hemlock elements during this time period. According to Custer (1989), these variations in forest components would not have effected great changes in the subsistence system.

By the Middle Archaic period (ca. 6,500 B.C. - 2,500 B.C.), oak and hickory elements have begun to dominate the forests in the Virginia Coastal Plain (Whitehead 1974). Data from the Shenandoah Valley indicates an oak/hemlock association which was replaced by an oak/hickory forest about 5,000 B.C. During this period, marked seasonality between winter and summer temperatures also became apparent in the Shenandoah Valley (Carbone 1976). In addition, variations in sea level were occurring, thereby creating other new environmental zones. With the retreat of the glaciers, the Chesapeake Bay began to form through inundation of the ancient Susquehanna River system. By ca. 6,500 B.C., this inundation would have already begun to cause ponding and the formation of wetland habitats in the major rivers feeding the bay as well as in some of their tributaries. Gardner (1978) believes that the focus of the Middle Archaic subsistence/settlement pattern was at large inland swamp areas, formed as the sea level rose in post-glacial times. In addition to occupation at the inland swamp base camps, seasonal fissioning would have occurred to take advantage of a broad spectrum of resources.

The succeeding Late Archaic period (ca. 2,500 B.C. - 1,000 B.C.) is characterized by the prevalence of the oak/hickory forest environment. The rate of rising sea level slowed, thereby allowing for the creation of riverine and estuarine environments stable enough to support significant populations of shellfish and anadromous fish (Custer 1978; Gardner 1978). The focus of settlement shifted during the Late Archaic period, probably to take advantage of predictable fish and shellfish resources.

During the Late Archaic period, there is a great increase in the number of sites. Some sites in riverine and estuarine locales tend to be larger and more complex than any occupied during previous periods, thereby indicating a trend toward sedentism. In the vicinity of the project area, Gardner (1982) maintains that
large Late Archaic spring/summer base camps occurred near good anadromous fishing zones and that smaller fall/winter base camps were situated in interior freshwater settings. Smaller, more transient camps were present in a variety of environments to offer additional support to the large and small base camp occupations.

Around 1,000 B.C. pottery was introduced. This artifactual innovation defines the beginning of the Woodland period which, like the Archaic, is traditionally divided into early, middle and late sub-periods. The earliest known ceramic in the area, used from about 1,200 B.C. to 800 B.C., is a steatite-tempered variety referred to as Marcey Creek ware after its type site on the Potomac River in Arlington County, Virginia (Manson 1948). A subsequent diagnostic ceramic type of the Early Woodland period is the sand and grit-tempered Accokeek ware in use from about 800 B.C. to 300 B.C.

In general, the Late Archaic lifestyle continued into the Early Woodland period (ca. 1,000 B.C. - 500 B.C.). While the deliberate and intensive foraging strategies of the preceding period appear to have remained unchanged, there is some evidence for an increase in sedentism as the inhabitants of the area became more efficient in exploiting the available resources. Gardner (1982) has postulated that rather than breaking up into small base camps in interior freshwater settings, occupants of the large spring/summer base camps in anadromous fishing zones regrouped in the fall and winter near the freshwater/saltwater transition to take advantage of the abundant shellfish resources there.

The Middle Woodland lifestyle (ca. 500 B.C. - A.D. 900) appears to resemble that of its predecessor with a hunting, gathering, and fishing subsistence base. There is some evidence for a shift in the locations of semi-sedentary base camps from small creek floodplains to large river floodplains (Snyder and Gardner 1979:9). This shift may have helped to set the stage for the local development or acceptance of horticulture. The early Middle Woodland period (ca. 500 B.C. - A.D. 200) in the area is characterized by a thick ware, known locally as Popes Creek, tempered with coarse sand or quartz and usually impressed with nets. By late Middle Woodland times (ca. A.D. 200 - A.D. 900), a shift to the shell-tempered, often cord-marked or net-impressed ware, locally called Mockley, had occurred.

By the Late Woodland Period (A.D. 900 - A.D. 1600), the development of horticulture probably began to achieve a significant role in the total subsistence system. Maize, squash and beans were probably the focus of initial agricultural efforts. The significance of an agriculturally-based subsistence strategy cannot be overestimated; no other factor is as crucial in the establishment and maintenance of permanent, year-round settlements. Sedentary villages were established near the fertile soils of riverine floodplains (Barber 1979). Smaller, less permanent sites in a variety of settings attest to the fact that other resources were still being utilized. Artifacts diagnostic of Late Woodland occupation in the area include triangular points, shell-tempered Rappahannock ceramics of the Townsend series, and Potomac Creek ware (after 1300 A.D.). As the Late Woodland Period progressed, the size and complexity of the villages and settlement systems in the Mid-Atlantic increased, with fortifications, specialized societal roles, development of inter-tribal alliances, growth of inter-tribal governmental authority, and a higher degree of complexity in the observation of religious and ceremonial activities (Barber 1979; Snow 1978).
IV. HISTORIC OCCUPATION AND LAND USE

Once Captain John Smith returned with his glowing accounts of the beauty and abundant resources along the Potomac River and Chesapeake Bay, many more Englishmen would travel these waterways intent on increasing their wealth. A little over two miles from the project area, two key points of trade and settlement developed during the early eighteenth century: to the east, the historic Alexandria waterfront and to the south-east, Hunting Creek, known as Great Hunting Creek during early colonial settlement. As the availability of land had decreased around Jamestown, enterprising traders and tobacco planters speculated in property to the north of the Virginia Tidewater region. Patents for land in these areas were granted during the late seventeenth century. Among those early land patents was one granted to John Carr in 1678 (Figure 2), which includes the current project area (Beth Mitchell 1989: personal communication). The land was probably not occupied until 1694 when John Simpson had the land resurveyed, and sold 313 acres of the plat to John West in 1698. The West family, many of whom were prominent Fairfax County landholders and members of the gentry retained the part of original 627 acres during the eighteenth century, and it was consolidated by Thomas West again in 1790, although the property was the cause for much dispute during this one hundred years (Fairfax County Deeds C/136).

During this period, Alexandria experienced economic growth and development through extensive maritime trade. The project area was approximately one mile west of the town’s boundaries, or the "West End", and remained within Fairfax County. In 1790, the decision was made to locate the national capital on the Potomac River, and Alexandria was to be part of the federal district. Many Alexandrians anticipated that George Washington would push to locate the capital in his home town. This was an important commercial town, as evidenced by the proliferation of manufacturing and retailing operations. Even after the capital site was located across the river in Washington City, future growth was anticipated through the opening of river navigation inland via the Patowmack Canal that was under construction from the Falls of the Potomac to the Ohio River valley.

Almost all internal road improvements prior to 1785 in Virginia had been confined to improving Indian trails, joining settlements to their neighbors, or turning old pack-horse paths into crude wagon roads (Netherton et al. 1978:190). Early travel generally was confined to the waterways since the first settlements had been on the coasts and rivers. The first toll road in the nation was established in 1785 by Virginia between Alexandria and Snicker's Gap in Loudoun County to the north (ibid.). Local residents relied on the importance of roads for better communication with farmlands and the wharves and docks in coastal towns.

In 1795, the "Company of the Fairfax and Loudoun Turnpike Road" was created. This road became known as, and remains, Little River Turnpike, except in Alexandria, where it retains its eighteenth century name, Duke Street. When completed in 1806, the turnpike was thirty four miles long, extending from the waterfront to the Little River in Aldie.

The project area was outside of the original bounds of the town of Alexandria and remained marginal to the early development that occurred closer to the waterfront. Development did occur, however, along Little River Turnpike, as well as close to Great Hunting Creek and its tributaries. Little River Turnpike was a main transportation artery leading to the rich farmlands of Fairfax and Loudoun Counties. This road also connected with the main north-south post road, making it
Source: B. Mitchell, 1977

Quaker Village

Figure 2
Carr and Simpson Plat, 1678
a key to the wharves, warehouses, goods and services of Alexandria. Thus the site was at the hub of an important road network, available for development at an opportune time.

Subdivision of the original Carr and Simpson plat occurred at the same time as construction of Little River Turnpike, probably reflecting the anticipated growth and economic opportunities facilitated by the improved roadway. Alexandrians and Fairfax County residents invested heavily in development projects of this type during the last decade of the eighteenth century and early nineteenth century. Adjacent to the new roads were new industrial developments, including mills and distilleries.

Three hundred acres of land, including the project area, were purchased by Josiah Watson in 1791 from the trustees of Thomas West's land, William Payne and George Minor (Fairfax County Deeds T3/378). This area was known as "Stump Hill" on the accompanying plat drawn by Gilpin (Fairfax County Deeds S2/122). Watson went bankrupt and a case was brought against him by Charles Higby on October 15, 1818. As a result, his land was divided into lots and resold. The lots within the project area changed hands frequently until 1824 when Charles Bennett bought lots 26, 27, 28 and 29 from Edmond J. Lee Jr. and William G. Cranch, trustees for Richard Norton (Fairfax County Deeds V2/228) (Beth Mitchell 1989: personal communication).

On July 8th, 1832, General Samuel Cooper purchased 21 acres of land, which included lots 26, 27, 28, and 29, from Hugh Smith, Robert J. Taylor and Phinneas Janey, executors of Charles Bennett. Originally from New Jersey, General Cooper had served in the Seminole and Mexican Wars where he received the rank of adjutant general of the U.S. Army (Sifakis 1988:142). Cooper built a home near the top of the hill called Cameron.

Approximately twenty years later, the Civil War would disrupt and change life in Virginia. On May 23, 1861, a majority of Virginians voted for secession. By dawn of the 24th, Federal troops had crossed the Potomac into Virginia without resistance. Most Confederate troops had already departed for Manassas because "Virginian and Confederate officials believed Alexandria was undefendable" (Hickin et al. 1978:320-321). The Union troops quickly built a "ring" of forts along the "Alexandria-Fairfax line for the inner defenses of Washington" (ibid.). Samuel Cooper's land was within this line of defense and would be used to build Ft. Williams in 1863 (Figure 3). A few months before the war, March 7, 1861, Cooper resigned his commission and joined the Confederate army in Richmond. Jefferson Davis "appointed him as brigadier general of the regular army," later he was "promoted to general with full rank" (ibid.). The occupying Union soldiers named his land "Traitor's Hill" (Cooling and Owen 1988:64).

The new fort was named in honor of Brigadier General Thomas Williams who died at Baton Rouge, Louisiana in 1862 (ibid.). It was built in 1863 by the 2nd Connecticut Heavy Artillery. Cameron was torn down at this time and the bricks from the house were apparently used to build the powder magazine which stands to this day (ibid.). Cooling and Owen describe the completed fort as a "small, unflanked, enclosed work with a perimeter of 250 yards and emplacements for 13 guns. It commanded a deep ravine which enveloped the rear of Ft. Worth, the heights of South Hunting Creek and Little River Turnpike" (ibid.). In addition, there were two barracks, officers quarters and two mess houses. Two block houses and some trenches provided additional protection from attackers.
Quaker Village

Figure 3
Map of Alexandria, 1865

Source: Barnard, 1865
Two of these trenches appeared to be within the project area. On a sector map of Ft. Williams, one trench was depicted as running parallel to Quaker Lane and the other, shaped like a "W" was off to the west. To determine whether these trenches were located within the project area, the old sector map was brought to scale with an up-to-date real estate assessment map and the Fort and trenches were drawn in. It appears that one of the trenches in now beneath the wider, modern day Quaker Lane.

Following the Civil War, General Cooper was denied the right of U.S. citizenship and the right to own property in the U.S. (Samuel Cooper Dawson 1989: personal communication). In addition, Sifakis, author of Who Was Who in the Civil War, explains that General Cooper had financial problems. "General Lee raised $300 from ex-confederates and added $100 himself for Cooper's relief" (Sifakis 1988:142). The property where his home once stood was purchased in 1864.

According the Fairfax County deed books, the U.S. Marshall of the Eastern District of Virginia, John Underwood, conveyed the property to William Silvery Jr., of Concord, N.H., on July 14, 1864. In December of the following year, William Silvery and his wife Isabella sold the property (20 acres) to Sara Maria Cooper for $165 (Figure 4). The property purchased is described as being "bounded on the north by the Smith property, on the east by a road leading from Little River Turnpike to Fairfax Seminary, on the south and west by the land of D.G. Watkins" (Fairfax County Deeds H4/232).

In 1881, Sara Cooper sold a portion of her property to Samuel Mills. This portion was located at the corner of Little River Turnpike and the westside of Quaker Lane. It was a rectangular 2 acre parcel extending 70 yards west along the Turnpike and 140 yards up Quaker Lane (Fairfax County Deeds B5/450). In 1892, John T. Mason, executor of Mrs. Cooper's will sold another portion of her property to Nicholas Dawson for $1000 (Fairfax County Deeds N5/583).

In the early twentieth century the property within the project area changed hands again and was further subdivided. Samuel Mills' corner property was sold in 1900 by his daughter and widow to Harry Stanton (Fairfax County Deeds F6/497). Virginia Cooper Dawson sold a part of the property given to her by Nicholas Dawson in 1908 to her son Samuel Cooper Dawson for $10 (Fairfax County Deeds Y6/674). In 1936, Samuel Cooper Dawson, his wife, trustee and Philip Dawson sold a portion of the land to Ernst H. Wiekting (Fairfax County Deeds A12/333). The boundaries of these properties are best illustrated by the plats included with the deeds.
V. ARCHITECTURAL DESCRIPTION

Five structures within the project area were surveyed and photographed prior to demolition. A description of these buildings is provided below.

Building #1 (Plate 1)

The clapboard covered house facing Duke Streets consists of a large square central block 2-1/2 stories tall with two one story wings recessed on both the east and west sides. The central block of the house sits on a slightly raised concrete block foundation covered with stucco. This main section has a hipped roof with hipped roof dormers on three of its four sides. The roofs of the side wings are flat, the one to the east serving as a deck and having a wooden balustrade. The Duke Street (front) elevation is the most regular and ornamented elevation of the house. It is divided into three equal bays. At the first floor, a door pierces the central bay and is flanked by a double hung wooden sash window. The second level has a small octagonal observation window at center and double hung wooden sash windows on either side. Above the second level are the overhanging eaves of the hipped roof which are visually supported by four large wooden scrolled brackets with four bays of smaller modillions between them. The dormers, centrally located on this and the two side elevations, similarly have overhanging eaves. Two double hung wooden sash windows pierce the dormers to allow light to penetrate the attic story. The side and rear elevations of the house are similarly fenestrated, but in a less regular manner. The original windows on the west wing have been replaced.

The interior of the house is divided on the first floor into three rooms. The front room, entered on center from the front door, extends the length of the house and has a chimney on center. The north half of the house is divided into two rooms, most likely a kitchen and dining room. The upstairs is divided into a series of bedrooms and baths. All of the rooms have been modified to include dropped ceilings, furred out walls and carpeted floors. The room at the northwest corner of the house on the first floor (the dining room) retains many of the original features, however, including wood panelled crown molding with a dentil arrangement at the ceiling height.

A rectangular wood shed with clapboard siding is located behind the house. It sits on a concrete block foundation and has a gabled roof covered with composition shingles. The east elevation is pierced with double wooden doors, while the north and south walls have sliding windows. Judging from the materials and style of this house, it could date to as early as 1910. Due to the addition of sidewings and the interior and exterior modifications, this house has lost its architectural integrity.

Building #2 (Plate 2)

This house, originally a service building associated with House #1, is located at the corner of Duke Street and Quaker Lane. It is two stories tall, has a gabled roof and is covered with clapboard siding. The first floor is devoted entirely to a two car garage with wooden overhead doors piercing the Quaker Lane elevation, while the upstairs functions as the living quarters. Two 8/8 light double hung wooden sash windows are located above the garage doors on the upper level. A one story porch with an upper level deck and balcony extends to the south front of the house and faces Duke Street. Three 6/6 light double hung wooden sash windows are located on the second floor of this elevation. The house sits upon a concrete block
Plate 1
Building 1

Plate 2
Building 2

Source: Engineering-Science
Quaker Village
foundation, while the porch sits on a raised stone base which continues as a stone retaining wall and delineates the driveway located to the east. This house, built of similar materials to House #1, was probably an early utility shed before being converted into a house. The substantial alterations to this building, which make its original function difficult to determine, constitute a loss of integrity.

Building #3 (Plate 3)

This house is a 1-1/2 story tall brick house with an asymmetrical plan in the shape of a T and covered by a series of intersecting gable roofs. The house sits on a concrete block foundation which supports brick walls laid in American Bond (6 rows of stretchers/1 row of headers) on the first floor and vinyl siding at the front projecting entry way, back wing and end gables. A dormer window facing Quaker Lane projects from the gable roof towards the north, while a partially engaged brick chimney terminates the house to the south. Windows fenestrating the house are all 8/8 light double-hung wooden sash with shutters except for those at the basement level which are fixed steel sash. The intersecting gable roofs are all covered with composition shingles.

A one car garage covered with vinyl siding is located behind the house and is preceded by an asphalt driveway. The front elevation is pierced by a wooden overhead door and the roof is covered with composition shingles. This house dates no earlier than the 1950s and possibly later. Due to its recent construction, this house is not architecturally significant.

Building #4 (Plate 4)

Located one lot north on Quaker Lane from house #3, is House #4. This house is a two-story brick house laid in American bond with a gable roof covered with composition shingles. The house is square in plan with a screened side porch wing recessed 56" from the front facade. The Quaker Lane (front) elevation of the house is divided into three regular bays, while the other elevations are more randomly fenestrated. A door is located in the northernmost bay of the front elevation on the first floor with two 6/6 light double hung wooden sash windows with brick sills and wooden shutters located to its south. Three of these same type windows are located at corresponding openings on the second level. The other elevations are similarly fenestrated with 6/6 light double hung wooden sash windows with brick sills. Only the shutters are missing from the windows on the other elevations. The entrance is the most ornate aspect of the house. The door is preceded by three brick steps with an iron railing and has a wooden engaged portico framing it. The portico consists of a semi-circular pediment supported by fluted Doric columns sitting on slight bases. The door itself is wooden with divided lights on the upper portion and wooden decorative cross bracing below. On either side of the door knocker are metal medallions of a colonial man and woman.

A partially engaged chimney is located at the center of the southern elevation of the house with the screened porch enveloping it on the first floor. A wood shed addition can be found attached to the rear elevation of the house.

A concrete block and brick garage is located behind the house. It has a gable roof and is covered with asphalt shingles. The date of this house probably ranges from just before WWII to the early 1950s. This house is not architecturally significant because of its recent date of construction.
Plate 3
Building 3

Plate 4
Building 4

Source: Engineering-Science
Quaker Village
Building #5 (Plate 5)

Located the farthest north on Quaker Lane is a bungalow-style house, 1-1/2 stories tall with a full length porch extending along the front facade. The house sits on a concrete block foundation and supports a gable roof with overhanging eaves. The eaves extend over the front porch and are supported at either end by a group of three columns on battered brick piers. The columns are made of wood and have geometric capitals which carry a raking entablature. A central keystone decorates the entablature and marks the stair entrance to the porch and house. A wooden balustrade forms the edge of the porch with an opening at the central entry stair. A large dormer window facing Quaker Lane projects from the gable roof at the front elevation. Three narrow wooden casement windows pierce the dormer, while wooden double hung sash windows fenestrate the rest of the house.

The interior of the house is divided into large connecting rooms on the first floor with smaller bedrooms above. The most formal room of the house is the living room off the porch which, like the porch, extends the length of the house. Towards the south of this room is a wide opening leading into the dining room. The opening is flanked by slender Doric columns set upon a raised pedestal and is framed with a wooden door surround.

A concrete block garage with a large opening and no doors is located behind the house as is a wooden shed with clapboard siding. The shed sits upon a brick foundation, is rectangular in plan and has a gable roof. The bungalow house dates approximately from 1925. It is not a fine example of the bungalow style, prevalent in the 1920s, and thus lacks architectural significance.
Plate 5
Building 5

Source: Engineering-Science

Quaker Village
VI. METHODOLOGY

A. Field

The purpose of the Phase I survey was to locate and describe significant or potentially significant sites by conducting a surface and subsurface examination of the study area. If archaeological resources were present it was important to determine their cultural affiliation and their integrity, that is, the amount of disturbance, and horizontal and vertical boundaries.

Preliminary historic and prehistoric background research was conducted to determine site potential for the property. Primary and secondary resources were consulted and pertinent maps and land records were reviewed to indicate both present and past topographic conditions and both present and past location of structures and outbuildings.

Archaeological fieldwork was divided into four stages: 1) a preliminary surface collection of artifacts with locations plotted on the site map; 2) excavation of shovel test on a stratified systematic grid; 3) close interval shovel tests in areas shown to contain archaeological material; and 4) excavation of a backhoe test trench to determine vertical extent and stratigraphic integrity and to test for a Civil War entrenchment line recorded parallel to Quaker Lane as part of Fort Williams immediately to the north.

In order to most effectively investigate the site, a 75-foot by 75-foot grid was established across the entire western and wooded section of the project area. Higher archaeological potential at the southern boundary paralleling Duke Street required that 25-foot intervals for shovel tests be implemented. Inside the existing fenced-in lots, shovel tests were placed at 50-foot intervals.

In total, 65 shovel test locations were excavated (Figure 5). Shovel tests (referred to as STPs) averaged 45-50 cm in width, and were excavated to sterile subsoil. Excavation was by natural stratigraphic deposit. Tests were numbered consecutively across the site in order of excavation. All soils from shovel tests were passed through quarter-inch mesh hardware cloth. Each test was drawn to scale in profile with full soil descriptions recorded.

The location of the backhoe trench was placed in an area that would best intersect the Civil War entrenchment and contain the lowest amount of disturbance from recent and past construction. The trench was carefully monitored by an archaeologist at all times and all artifacts recovered placed in the proper stratum. Trench excavation was by natural stratigraphic deposit into sterile subsoils where possible, and a representative column profile every 25 feet was drawn to scale and photographed.

Archaeological materials recovered from each test was placed in resealable polyethylene bags along with a label containing complete provenience information written in indelible marker. Bags were numbered consecutively and all information recorded on a Bag Inventory Sheet.
Key:
- Shovel Test Pit with Artifact(s)
- Shovel Test Pit without Artifact(s)
- Clearing and Grading Limits
- Tree Line-Clearing and Grading Limits
- Site Boundary

Source: Engineering-Science
Quaker Village

Figure 5
Site Map Showing Test Trench and Shovel Tests in the Project Area
B. Laboratory

Upon their arrival in the laboratory, all artifacts were cleaned. Prehistoric lithics were only lightly rinsed, in order not to disturb any adhering organic residues. Non-organic historic artifacts such as glass ceramic, and iron, were washed. Organic materials, such as shell and bone, were lightly dry-brushed if they were removed from a dry soil environment; otherwise they were gently rinsed to remove wet clay.

Artifacts were dried on mesh screens and catalogued according to material and functional type. All processed artifacts were stored in resealable polyethylene bags and numbered according to the Bag Inventory produced in the field. An acid-free tag with complete provenience information was placed in each provenience bag. Bags were stored by bag number in acid-free Hollinger boxes with the site name and bag number written on the outside of each bag.
VI. SUMMARY ANALYSIS AND EVALUATION OF RESEARCH

Phase I testing at Quaker Village, involving surface collection, systematic shovel testing and the excavation of a backhoe trench, determined that archaeological resources indicative of past cultural activity are present within the area of proposed development. A total of 65 shovel test pits (STPs) were excavated in the project area. Both historic and prehistoric materials were found to be thinly scattered across the project area. Artifacts were recovered within shallow deposits of mixed cultural affiliation. The majority of the artifacts were removed from disturbed contexts.

Shovel testing revealed a generalized stratigraphic sequence across the project area (Figure 6). In certain areas there were exceptions, but they were related to present topographic conditions and present land use. The small size of the project area allowed for testing in different areas to determine site integrity and archaeological potential.

In the wooded area in the western section of the project area a preliminary walkover survey determined that a great deal of recent construction activity and natural disturbances had occurred. An unnamed stream that divides the property has eroded a large portion of the site and has left historic and prehistoric artifacts scattered on the surface.

Stratigraphy in this area, as revealed by shovel tests, can best be described as a thin 10-12 cm topsoil of dark brown loam composite (Stratum A). Below this stratum is a mixture of orange to red silty clays that range from 12 to 30 cm in thickness (Stratum B). Subsoils in the project area are generally mottled orange and grey compact clays with varying amounts of iron staining. Subsoil was found at an average depth of 55 centimeters and called Stratum C. Soil changes were slight and depended upon their location within the wooded area and placement on the slope or hill.

Shovel tests on the eastern section, within 300 feet of Quaker Lane, showed evidence of grading. These tests were situated close to houses presently on the property. The stratigraphy in this area showed shallow deposits of mixed historic fill on top of hard-pack clay subsoils.

Test Trench 1 was located perpendicular to Quaker Lane between Buildings 4 and 5. The main purpose of the trench was to try to bisect a Civil War entrenchment that was located parallel to Quaker Lane. Another reason for the placement of the trench in this location was to determine stratigraphic integrity. The trench revealed that extensive grading had occurred prior to the construction of the present structures. The backhoe trench extended 227 feet in length with an average depth of 90 centimeters below ground surface.

Stratigraphy of the test trench conforms for the most part to the general stratigraphy of the project area (Figure 6). Below the Stratum A topsoil was found various sections of mottled historic fill at various depths. Below the fill, subsoil was encountered and found to be very had-packed silty clays with no cultural materials. Artifacts were found in mixed contexts, suggesting that this area had been disturbed by earlier construction activities.

Artifacts were recovered from shovel tests all across the site; however, the densities were very low. In many cases, artifacts from different cultural periods
Shovel Test 38

Key:

A. Medium Brown Silty Loam
B. Yellow Brown Silty Clay
C. Strong Yellow Brown Silty Clay

Test Trench 1, Section 1

Key:

A. Dark Gray Silty Clay
B. Medium Brownish-Grey Silty Clay
C. Tan-Orange Silty Clay

Source: Engineering-Science

Quaker Village

Figure 6
Soil Profiles
were found in a mixed context. Modern trash debris, nineteenth century and prehistoric artifacts were represented from shovel tests as well as surface collections. There were no high densities of finds that would suggest the presence of a possible outbuilding or feature, either historic or prehistoric. In one instance, where a prehistoric artifact was found in a shovel test, additional shovel tests were placed at close intervals around the original find. No additional prehistoric artifacts were found at this location, suggesting that the flake first discovered was an isolated find.

Artifactual evidence from Test Trench 1 confirmed that there are no remains from the Civil War entrenchment. It is probable that it was destroyed during the construction of present-day Quaker Lane.
VII. CONCLUSIONS AND RECOMMENDATIONS

The goal of the Phase I archaeological survey was to locate and describe any significant or potentially significant archaeological resources within the area of development. Both historic and prehistoric components are in evidence at Quaker Village. All artifacts were thinly scattered across the project area and in no one area were artifacts found in any concentration. Most of the prehistoric artifacts were recovered from the surface which had been disturbed by natural and cultural agents leaving the materials without depositional integrity. The historic materials that were recovered from the project area came from many different cultural periods and were found mixed together within the same stratigraphic deposit. Test Trench 1 revealed that most of the land where there are presently buildings had been graded leaving mixed cultural artifacts on top of sterile subsoils. In many cases prehistoric and modern trash debris were found together.

In the area surveyed no significant historic or prehistoric sites were encountered. The project area will be affected by the proposed construction, but no further testing of the area is recommended. This is based on the small spatial distribution of artifacts, the low density and mixture of cultural remains, and the lack of any surface and subsurface features.
BIBLIOGRAPHY

Allan, William C., and David E. Stuart

Barber, Russell

Bromberg, Francine
1987 Site Distribution in the Coastal Plain and Fall Zone of the Potomac Valley From Ca. 6500 B.C. to A.D. 1400, M.A. Thesis, Catholic University.

Cooling III, Benjamin F. and Walton H. Owens II

Custer, Jay
1978 "Broadspears and Netsinkers: Late Archaic Adaptation indicated by Depositional Sequences from Four Middle Atlantic Archeological Sites of the Ridge and Valley Province." Paper presented at the Middle Atlantic Archeological Conference, Rehoboth Beach, Delaware.

Custer, Jay F. and Colleen DeSantis

Fairfax County Deed Books, Fairfax County Courthouse, 1790-1936

Gardner, William

1982 "Early and Middle Woodland in the Middle Atlantic: An Overview." Paper presented at the Middle Atlantic Archaeological Conference, Rehoboth Beach, Delaware.

Kraft, John C. and John J. Chacko

Mack, Frederick, K.

Manson, Carl

Mitchell, Beth
1977 Beginning at a white Oak... Patents and Northern Neck Grants of Fairfax County, Virginia. Fairfax County, Virginia.

Netherton, Nan, Donald Sweig, Janice Artemel, Patricia Hickin and Patrick Reid
1978 Fairfax County, Virginia, A History. Fairfax County Board of Supervisors, Fairfax, Virginia.

Sifakis, Stewart

Snow, Dean

Snyder, Kimberly A. and William M. Gardner
1979 A Preliminary Archeological Resource Reconnaissance of Proposed Sewer Lines in the Rock Run Area, Montgomery County, Maryland. Submitted to NDS Corporation, Rockville, Maryland.

Stephenson, Richard W.

Wentworth, Chester K.

Whitehead, D.R.
APPENDIX A
List of Personnel

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>Jesse Daugherty</td>
</tr>
<tr>
<td>Historian</td>
<td>Madeleine Pappas</td>
</tr>
<tr>
<td>Architectural Historian</td>
<td>Kimberly Prothro</td>
</tr>
<tr>
<td>Field Supervisor</td>
<td>Justin S. Patton</td>
</tr>
<tr>
<td>Field Crew</td>
<td>Jonathan Cramer</td>
</tr>
<tr>
<td></td>
<td>Elizabeth Eubanks</td>
</tr>
<tr>
<td></td>
<td>Kathy Garrigan</td>
</tr>
<tr>
<td></td>
<td>John Maniha</td>
</tr>
<tr>
<td></td>
<td>Terry Middleton</td>
</tr>
<tr>
<td></td>
<td>Alex Shahan</td>
</tr>
<tr>
<td></td>
<td>Carter Shields</td>
</tr>
<tr>
<td></td>
<td>Margaret Waddell</td>
</tr>
<tr>
<td>Laboratory Director</td>
<td>K. Anne Turner</td>
</tr>
<tr>
<td>Laboratory Archaeologists</td>
<td>Edith Baird</td>
</tr>
<tr>
<td></td>
<td>Forest Crosley</td>
</tr>
<tr>
<td></td>
<td>Theresa Reimer</td>
</tr>
<tr>
<td>Photography</td>
<td>Patrice Gilbert</td>
</tr>
<tr>
<td>Graphics</td>
<td>Robert Chase</td>
</tr>
<tr>
<td>Word Processing</td>
<td>Mark White</td>
</tr>
</tbody>
</table>
APPENDIX B
Artifact Inventory

STP 1

STRATUM A
(Bag 1)
- 1 Amber bottle glass
- 2 Clear bottle glass
- 2 Window glass
- 2 Brick
- 1 Coal
- 1 Clinker
- 1 Aluminum can
- 1 Paper

STRATUM B
(Bag 2)
- 2 Olive green wine bottle glass
- 2 Amber bottle glass
- 1 Green bottle glass
- 1 Blue bottle glass
- 12 Clear bottle glass
- 3 Window glass
- 5 Wire nails
- 1 Brick
- 1 Asphalt tile
- 2 Coal
- 3 Clinker

STP 2

STRATUM A
(Bag 3)
- 1 Molded semi-porcelain rim
- 7 White glass canning jar lid liner, embossed "GENUINE ZINC CAP FOR BALL MASON JARS"
- 3 Zinc mason jar lid, embossed "BALL"
- 6 Brick
- 3 Wood
- 11 Coal
- 4 Clinker
- 1 Quartz flake

STRATUM B
(Bag 4)
- 1 Brick
- 1 Unrecognizable nail
- 4 Iron fragments
- 1 Coal
STRATUM C
(Bag 5)
 1 Unrecognizable nail
 1 Coal

STP 3
STRATUM A
(Bag 6)
 10 Thick greyish glass
 7 Gray glass, painted black
 3 Window glass
 2 Asphalt tile
 1 Iron spring
 5 Assorted plastic
 4 Mica electrical insulators
 8 Assorted iron/plastic electrical parts
 4 Flat fragments of composite material
 (electrical)
 9 Yellow rubber and wire bars (electrical)

STRATUM B
(Bag 7)
 3 Thick greyish glass
 2 Gray glass, painted black
 3 Clear glass fragments
 1 Window glass
 1 Electrical fixture, glass and iron
 1 Iron spring
 1 Piece of plastic

STRATUM C
(Bag 8)
 5 Thick aqua glass fragments, nearly flat
 1 Oyster shell

STP 4
STRATUM A
(Bag 9)
 1 Ceramic tile
 1 Clinker
 1 Almost whole quartz flake with cortex
 1 Distal quartz flake
 1 Quartz flake fragment with cortex
STRATUM B
(Bag 10)
1 Blue transfer printed whiteware rim
1 Window glass

STP 5
STRATUM A
(Bag 11)
3 Olive green wine bottle glass
1 Brick

STRATUM B
(Bag 12)
1 Quartz uniface

STP 6
STRATUM A
(Bag 13)
1 Amber bottle glass fragment
1 Window glass

STP 7
STRATUM A
(Bag 14)
1 Blue hand painted whiteware sherd
3 Amber bottle glass
6 Clear bottle glass
3 Ceramic tile or pipe fragments
12 Modern mortar
3 Shell plaster
7 Oyster shell
3 Clinker
1 Aluminum fragment
1 Synthetic sheet
15 Wire nails
1 Cut nail
1 Screw
1 Piece of plastic

STP 8
STRATUM A
(Bag 15)
1 Clear bottle glass
1 Unglazed flower pot rim sherd
1 Unrecognizable nail
1 Brick
5 Coal
1 Clinker
1 Jasper chip
STRATUM B
(Bag 16)
1 Burned bone
1 Clinker

STP 9
STRATUM A
(Bag 17)
2 Undecorated creamware
1 Undecorated pearlware
1 Clear bottle glass
1 Window glass
1 Brick
4 Coal
2 Clinker
1 Jasper chip

STP 10
STRATUM A
(Bag 49)
2 Window glass
2 Brick

STP 11
STRATUM A
(Bag 18)
1 Machine made clear bottle glass, embossed "..Mc./CONTEN.../WASHIN..."

STP 14
STRATUM A
(Bag 19)
1 Clear bottle glass base, embossed "..a gull..
1 Brick
1 Large cut spike
4 Unrecognizable nails
1 Concrete

STRATUM B
(Bag 20)
1 Window Glass
1 Wire nail
2 Unrecognizable nails
STP 15
STRATUM A
(Bag 21)
 3 Brick

STRATUM B
(Bag 22)
 1 Burned bone
 1 Oyster shell
 1 Coal
 2 Clinker
 3 Brick

STP 24
STRATUM A
(Bag 23)
 1 Clear tumbler base
 1 Aqua bottle glass base, embossed "...INGT...

STP 25
STRATUM A
(Bag 24)
 8 Machine made clear bottle glass fragments
 2 Wire nails

STRATUM B
(Bag 25)
 1 Mammal bone

STP 26
STRATUM A
(Bag 26)
 2 Green bottle glass fragments
 1 Unrecognizable nail

STRATUM B
(Bag 27)
 1 Whole quartz flake

STP 28
STRATUM A
(Bag 28)
 1 Brick
STP 29
STRATUM A
(Bag 29)
1 Undecorated ironstone base sherd

STRATUM B
(Bag 30)
1 Undecorated whiteware sherd
5 Clear vessel glass
1 Unrecognizable nail

STP 33
STRATUM B
(Bag 31)
1 Possible Rockingham refined earthenware sherd

STP 36
STRATUM A
(Bag 32)
1 Brick
1 Almost whole quartz flake

STP 37
STRATUM A
(Bag 34)
1 Blue hand painted American grey stoneware

STP 38
STRATUM B
(Bag 33)
1 Quartz flake with cortex

STP 40
STRATUM B
(Bag 35)
1 Olive wine bottle glass fragment

STP 42
STRATUM B
(BAG 36)
1 Window glass
STP 44
STRATUM A
(Bag 37)
 2 Olive wine bottle glass fragments
 2 Coal
 1 Quartz flake

STP 47
STRATUM A
(Bag 38)
 1 Olive green wine bottle glass
 1 Quartz cobble

STP 48
STRATUM A
(Bag 39)
 1 Olive green wine bottle glass
 1 Modern cement
 9 Black linoleum edging

STRATUM B
(Bag 40)
 2 Modern cement
 6 Black linoleum edging

STP 49
STRATUM C
(Bag 41)
 1 Olive wine bottle glass

STP 52
STRATUM A
(Bag 55)
 1 Amber bottle glass fragment

STP 53
STRATUM A
(Bag 42)
 1 Slag

STP 54
STRATUM B
(Bag 43)
 1 Undecorated whiteware sherd
 1 Olive wine bottle glass fragment
 1 Wire nail
STP 56
STRATUM B
(Bag 44)
2 Iron fragments, possible hinge

STP 57
STRATUM B
(Bag 53)
3 Olive green wine bottle glass
1 Aqua glass fragment

STP 58
STRATUM A
(Bag 45)
1 Distal quartz flake

STRATUM B
(Bag 46)
3 Undecorated ironstone sherds

STP 59
STRATUM B
(Bag 47)
1 Green faceted ink bottle, blown in mold, glass tipped pontil, tooled lip

STP 60
STRATUM B
(Bag 48)
3 Olive wine bottle glass
2 Clear vessel glass
1 Quartz heated rock

STP 64
STRATUM A
(Bag 54)
1 Clear bottle glass
1 Window glass

STP 66
STRATUM B
(Bag 56)
1 Blue transfer printed whiteware
STP 69
STRATUM A
(Bag 57)
1 Wire nail
1 Redware drainpipe fragment

STP 70
STRATUM B
(Bag 58)
2 Slag
1 Clinker

FEATURE 2
STRATUM A
(Bag 50)
4 Undecorated ironstone sherd
1 Brick

TRENCH 1
SECTION 1-4
STRATUM A
(Bag 59)
2 Oyster shell
2 Coal

SECTION 1-4
STRATUM B
(Bag 60)
1 Undecorated pearlware sherd
1 Undecorated whiteware sherd
1 Black hand painted whiteware rim
1 Blue transfer printed refined earthenware spall
1 Aqua bottle glass
6 Brick
15 Oyster shell
1 Hand wrought nail
29 Cut nails
3 Wire nails
1 Iron hinge
1 Quartz proximal flake
1 Quartz chip
SECTION 4-8
STRATUM B
(Bag 61)
1 Olive green wine bottle glass
1 Clear bottle glass
4 Clear vessel glass
1 Window glass
2 Ceramic drainpipe
4 Oyster shell
2 Clinker
2 Quartz chips
6 Burned whiteware sherds
1 Undecorated ironstone sherd
3 Undecorated semi-porcelain rims
1 Undecorated European porcelain base
1 Green transfer printed European whiteware sherd

SURFACE FIND 1
47’ WEST OF STP 34
(Bag 52)
1 Almost whole quartz flake

SURFACE FIND 2
DISTURBED AREA
(Bag 51)
1 Almost whole quartz flake with cortex
1 Quartz uniface
3 Quartz chips

SURFACE FIND 3
CLEARED AREA NORTH OF CITY PROPERTY
(Bag 62)
1 Quartz early stage biface
1 Whole quartz flake
2 Almost whole quartz flakes with cortex
1 Distal quartz flake
1 Distal quartz flake with cortex
1 Quartz flake fragment
3 Quartz chips
1 Quartz heated rock

SURFACE FIND 4
50’ FROM SIDEWALK PATH TO HOUSE
(Bag 63)
1 Blue hand painted American grey stoneware sherd, poorly fired
1 Undecorated whiteware sherd
2 Blue mottled whiteware sherds
1 Rickett’s type olive green wine bottle base
2 Machine made ketchup bottle, clear
1 Machine made aspirin bottle, clear, post bottom
1 Machine made bottle, wide rounded mouth, embossed on base "2 1/2 fl. oz/ 2"
1 Machine made bottle (shoe polish?), clear, embossed on base "HA/ 2-K-5833"
1 Clear tumbler base
1 Whole lightbulb "GENERAL ELECTRIC CO. USA/ 30W/GE/115V"
1 Metal disk, possible bottle seal

SURFACE FIND 5
CLEARED AREA
(Bag 64)
15 Black-painted porcelain, molded. Probable lamp base
1 Molded ironstone lid
1 Molded ironstone sherd
3 Undecorated whiteware sherds
1 Blue transfer printed whiteware sherd
2 Green and red decalomania whiteware sherds
1 Undecorated pearlware sherd
1 Undecorated European porcelain sherd
1 Yellow hand painted porcelain sherd
1 Banded semi-porcelain rim sherd
1 Blue glazed earthenware bowl sherd (20th c.)
1 Unglazed redware sherd
1 Ginger beer bottle stoneware sherd
1 Rickett's type olive green wine bottle base
1 Oyster shell
1 Aluminum can
1 Painted wood, architectural
1 Iron strip, possible hinge
1 Piece of plastic

SURFACE FIND 6
NORTH BOUNDARY OF SITE
(Bag 65)
1 Blob top aqua soda bottle neck/lip
1 Undecorated yellow ware base sherd